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Abstract 
Reconstruction of archaeological finds from fragments, is a tedious task requiring many hours of work from the 
archaeologists and restoration personnel. In this paper we present a framework for the full reconstruction of 
the original objects using texture and surface design information on the sherd. The texture of a band outside 
the border of pieces is predicted by inpainting and texture synthesis methods. The confidence of this process is 
also defined. Feature values are derived from these original and predicted images of pieces. A combination of 
the feature and confidence values is used to generate an affinity measure of corresponding pieces. The 
optimization of total affinity gives the best assembly of the piece. Experimental results are presented on real 
and artificial data. 
 
Categories and Subject Descriptors (ACM CCS): I.4.9 [Image processing and Computer vision] : Applications 

 
 

 
1. Introduction 
 

In archeological sites, we may encounter a large number of 
irregular fragments resulting from one or several broken 
objects. The reconstruction of the original objects is a 
tedious and laborious task. In this paper, we consider the 
complex problem of automatically assembling 2D/3D 
objects, from their fragments commonly called sherds, 
using input from multiple cameras or 3-D scanning system 
with synchronized texture facility. The artifacts are free-
form, multiscale individually and with respect to one 
another, they are geometrically and photometrically highly 
complex and highly variable, and huge in number.  

Previous works on the assembly problem have focused 
mainly on geometrical properties of the pieces. The puzzle 
pieces are represented by their boundary curves. As the 
fractions of boundaries are adjacent and thus similar, a 
pairwise affinity measure is computed by partial curve 
matching. Some approaches especially related to standard 
toy-store jigsaw puzzle solver use feature based matching 
methods. The problem of jigsaw puzzle solving is a 
reduced and restricted version of the general assembly 
problem. Its computerized solution was first introduced by 
Freeman [FG64], who successfully solved a 9-piece jigsaw 
puzzle. Other works [GMBO2, WSKL88, CFF98, KDB*9] 
also use feature based matching approaches. These 
methods are relatively fast so that they manage to 

assembly even if the number of puzzle pieces becomes 
large. The main drawback of this approach is that they 
cannot provide detailed matching of boundaries and 
overlapping regions. Research involving classical jigsaw 
puzzles has so far ignored texture or color information to 
the assembly problem. There are a few approaches, which 
use only the color values of pixels on the boundary 
contour [CFF98]. 

More general partial curve matching algorithms that
solve the global 2D and 3D assembly problems based on 
geometrical properties were presented in [KK01, RB82, 
Wol90]. The problem of 3D curves is addressed by 
[UT99]. The accuracy of the matching technique depends
on perfect extraction of the trace of a curve and the 
computation of curvature and torsion. It is potentially a 
non-robust process and has only been tested on artificial 
data. Another research [SL02] matches 2D and 3D break 
curves by combining a coarse-scale representation of 
curves and refine iteratively via a fine-scale elastic 
matching. The works that achieved global assembly of 
pieces based on curve matching have not attempted to 
combine the geometrical methods with textural 
information.  

There is great scientific interest in the archaeological 
community in reconstructing objects from fragments. An 
automatic tool that assists archeologists in reconstructing 
monuments or smaller fragments would be highly 
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beneficial. Such a tool would lead to avoiding unnecessary 
manual experimentation with fragile and often heavy 
fragments, and reduce the assembly time. Currently, the 
Digital Michelangelo team is tackling the problem of 
assembling the Forma Urbis Romae[Lev00]. It is a marble 
map of ancient Rome that has more than a thousand 
fragments. Their investigation is based on broken surface 
border curves, possibly texture patterns, and additional 
features of the fragments. The University of Athens has 
developed “The Virtual Archaeologist” [PKT01] system, 
relying on the broken surface morphology to determine 
correct matches between fragments. This method detects 
candidate fractured faces, matches fragments one by one 
and assembles fragments into complete or partially 
complete entities. The Shape Lab at Brown University 
presents an approach to automatic estimation of 
mathematical models of axially symmetric pots made on a 
wheel [WC03]. This technique is based on matching break 
curves, estimated axis and profile curves, a number of 
features of groups of break-curves. Finally, the assembly 
problem is solved by maximum likelihood performance-
based search. At the Technical University of Vienna, a 
fully automated approach to pottery reconstruction based 
on the fragments profile, is given.[KS03] 

Neglecting continuity of color and texture for adjacent 
fragments is a waste of valuable information for many 
cases. The pictorial information on a fragment consists of 
various components, and different specifications of surface 
image of pieces are dominant according to implementation 
field. In the classical jigsaw puzzles, the essentials of 
assembly depend on the alignments of object edges (e.g. 
picture of a house), the similarity of colors (e.g. cloud 
drawing) and continuity of textural properties (e.g. grass of 
a garden) for the adjacent pieces. In the archeological 
field, the pictorial features may include highly directional 
marble veining, the pattern of surface incisions, paintings 
on the outer and inner surfaces, carvings and horizontal 
circles due to finger smoothing while the pot is spinning 
on the wheel.  

In archeology, erosion, impact damages or undesired 
events cause fragments to vanish or deteriorate, such as in 
the case of Forma Urbis Romae. This reality increases the 
necessity of pictorial information to solve the 
reconstruction of all types of puzzles, because the 
geometrical approaches relying on exact matching of break 
curves are not applicable to the assembly of the pieces, if 
the border of fragments have disappeared. The texture 
prediction method can manage to estimate possible 
adjacent fragments, even if there is a gap caused by 
erosion between two neighboring pieces.  

In this paper, we design a texture prediction algorithm, 
which predicts the pixel values in a band outside the 
border of the pieces with a confidence measure. Features 
obtained from the predicted texture outside a piece are 
correlated with original pictorial specifications of possible 
neighboring pairs. An affinity measure of corresponding 
pieces that utilizes all kind of image information, such as 

continuity of edges, textural patterns, and color similarities 
is defined and the assembly problem is stated as the 
optimization of this affinity measure.  

The rest of this paper is organized as follows: Section 
2 outlines the method used in solving the assembly 
problem, Section 3 presents image inpainting and texture 
synthesis methods that are used in predicting the expanded 
part of the pieces. The cost function/affinity measure used 
in the assembly process is explained in Section 4. 
Experimental results are given in Section 5.  
 

2. Automated puzzle assembly method 
 

Our proposed approach is based on defining a 
performance measure that represents the appropriateness 
of the assembly based on textural features and geometrical 
shape, and to find best transformations of pieces that 
maximize matching of textures of fragments while the 
geometrical constraints are being satisfied. Initially, we 
acquire and preprocess the images of pieces. After 
collection of visual data, the first step is the prediction of 
the pixel values in a band around the border of the piece; 
this step is applied to all pieces separately. The prediction 
algorithm automatically fills in this extension region using 
information in the central part. The main idea in extending 
the picture/texture on the fragment outwards is that the 
correlation between the features of the predicted region 
and its true neighboring piece is significantly higher than 
alternative pairings. We use the mixture of inpainting and 
texture synthesis methods for prediction. Image inpainting 
is the process of filling in missing data in a designated part 
of an image or a video from the surrounding area, and 
texture synthesis is to create a new image with the same 
seed texture but of different shape to a sample region. 
While extending the fragment image, we introduce 
confidence of extension as a new parameter in the 
prediction phase of the assembly problem. This parameter 
represents the reliability of extended values and will be 
used by later processes. The confidence depends on the 
structure of the texture such as continuity of edges, 
roughness of texture and distance to the border of original 
fragment. We then derive feature values in both the 
original fragment and the extended region. The proposed 
approach does not bound the number of features or does 
not restrict the type of image features. Any textural feature 
believed to improve the success of assembly can be easily 
inserted into the process. The next step is to determine a 
similarity or a cost function between two textural regions. 
The final goal of the proposed approach is to establish an 
affinity measure of corresponding pieces by the 
combination of the feature and confidence values. The 
matching of pieces and achievement of the assembly is 
established by optimizing this affinity measure. Initially, 
each fragment has a random position in space. To improve 
the assembly, we have to be able to sense whether a 
particular arrangement of pieces improves the puzzle or 
not; this is done using a total affinity measure defined as 
the sum of affinity measures of all points in the space. The 
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space may be 2D such as for the broken marble problem or 
3D such as for the pot assembly problem. In this paper, we 
present results on 2D examples. The extension of the 
proposed method to 3D is computationally costlier, but is 
theoretically possible. 

 

3. Inpainting and texture synthesis for expanding the 
pieces 
 

As mentioned in section 2, the first step in the 
assembly process is the expansion of each piece in a band 
around the border of the piece by predicting the pictorial 
information on the surface outwards. Inpainting and 
texture synthesis are two techniques that will be used to 
carry out this task. 

Image inpainting refers to the process of filling-in the 
missing areas or changing an image in an un-noticeable 
way by an observer. It is usually applied to the task of 
restoring photographs, films or paintings, and removal of 
occlusions, such as subtitles, stamps and text. In [BSCB00, 
OBMC01], a series of partial differential equations is used 
to mathematically model this process. These techniques 
determine how the linear structures (called isophotes) 
propagate into the region to be inpainted. Other inpainting 
approaches are the Total variational (TV) and Curvature-
drive diffusion models (CCD)[CS00]. TV uses an Euler-
lagrange equation to minimize total variation and employs 
anisotropic diffusion. Such a method handles noise well, 
but does not complete broken edges. CCD is based on the 
TV algorithm and geometric information of isophotes. The 
drawback of these methods is the blurring of inpainted 
image introduced by the diffusion process in the larger 
filling regions.  

Texture synthesis is an active research topic in 
computer vision, which has broad applications such as 
foreground removal, lossy image compression, and texture 
generation.  The problem of texture synthesis is to fill 
large image regions with a sample texture. This method, 
which replicates consistent textures, can be used in 
extension of images, but it has problems to fill in real 
image patterns. Linear structures such as a drawing of a 
line or crossing regions of different textures usually 
include high frequency components, which prevent to 
generate natural images by this approach.  

To overcome the drawbacks of inpainting and texture 
synthesis algorithms, the method presented in [BVSO03] 
first decomposes the image into the sum of two 
components with different basic characteristics and then 
reconstruct each one of these components separately with 
inpainting and texture synthesis. Another approach by 
Harrison [Har01] and Criminisi [CPT03] use exemplar-
based synthesis for object removal process. In this paper, 
we use the approach used by Criminisi to predict the pixel 
values in a band around the border of the piece, however, 
the implementation is slightly different.  

The source region, Φi, is the acquired image of the ith 
piece. A target band, Ωi, outwards from the ith piece is 
defined. This target band represents the extension region 

of the ith piece. The border between Φi and Ωi is indicated 
by δΩi. This border evolves outward as the inpainting 
algorithm progresses. The inpainting algorithm consists of 
three main steps. These steps are iterated until the whole 
target region or band has been filled.  The first step is to 
compute the priority, P, which determines the order in 
which they are filled. Priority value is computed for the 
patches Ψp centered at the point p for p∈δΩi. 
Conceptually, the priority depends on continuation of 
strong edges, D, and confidence of neighbor pixels, C: 
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where |Ψp| is the area of Ψp, np is unit vector 
orthogonal to the front δΩ at the point p and ⊥ indicates 
the orthogonal operator. This confidence value reflects the 
reliability of a region or a pixel, and it effects the filling 
order during inpainting process. Initially, we set C=1 
(%100 reliability) to pixels in the original piece, and 
assign C=0 to the pixels in the target region to be filled. 
The Data term D(p) is a function of the strength of 
isophotes hitting the front  δΩ. This term increases the 
priority if an isophote flows into that patch which is 
important for the assembly process since it causes the 
linear structures to be synthesized or filled first. Therefore, 
the linear structures orthogonal to border of pieces are
completed earlier and these points or patches get higher 
confidence values. 

When all priorities have been computed, the highest 
priority, p’, is determined. The second step of the 
prediction process is propagating the texture and structure 
information into the target band. The color information is 
propagated via diffusion in classical inpainting techniques. 
In our work, as in [CPT03], propagation of the image 
texture occurs by direct sampling of source region. The 
most similar patch for sampling is given as: 
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where d(Ψp′,Ψq) is the distance between the already 
filled pixels of patches at the points p’ and q. The patch at 
the point q’ is the most similar one and the values of each 
pixel to be filled in the p’ patch {neighbor p’ | neighbor 
p’∈(Ψp′∩Ωi)} are copied directly from the patch in the q’ 
point.  

The last step for iterations is to update the confidence 
values. After the patch Ψp′ has been filled with new values, 
the confidence values affected by the filling of the new 
patch are updated. This region is limited by the neighbors 
of the point p’.  

ipppCpC Ω∩∈∀′= ′ψ)()(                   (4) 

As the filling proceeds, the confidence values decrease as 
the pixels in the predicted region get farther from the 
original boundary. This indicates that the color values of 
pixels far from border are less reliable than closer ones.
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                  (a)    (b) 
Figure 1: (a) An archeological sherd to be expanded       
(b) The expanded piece 

 
4. Combining puzzle pieces 
 

While matching or calculating similarity of possible 
two neighboring pieces, pixel-by-pixel comparison of two 
pieces is not meaningful. Thus, image features, (fi

k), are 
extracted from the source and target regions for each piece 
after predicting the target band.  Selection of the features 
depends on the structure of the image. Currently, only first 
and second moments (mean and variance) are used in the 
experiments. In the case of using suitable texture features, 
serious improvements can be obtained. The features are 
calculated in a window whose size depends on the 
resolution of the pictures on the pieces. The next step is 
the computation of confidence values for the features. 
When a feature value is extracted by using the pixels in a 
window, the confidence of this feature for a point depends 
on the confidences of all pixels in the window. Mean of all 
confidence of pixels in the window is assigned as 
confidence of the feature, Ci

'.  
Let Dk(fi

k(Ti(x,y,θ)),fj
k(Tj(x,y,θ))) be the distance 

function between the kth feature values of the i and j 
pieces. Ti(x,y,θ) denotes the transform of the ith piece at 
the point (x,y,θ). In our experiments, Euclidian distance is 
used for all features. If distances specific to texture and 
features of pieces are selected, the performance of 
assembly might improve.  For the simplicity of 
expressions, the Ti(x,y,θ) parameter for each variable will 
not be shown. 

We set a threshold, Thk, for the kth feature distance, so 
that the more similar the pieces are, the larger negative 
value the similarity measure, Sk, will take or visa versa.  
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where nk is the number of features. ∑
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k

kS gives the total 

similarity between the ith  and the jth pieces at the point 

(x,y,θ). We can transform ∑
kn

k

kS into (6) by dividing all Sk 

into Thk and normalizing the total constants to 1, so that 
both of them give related responses for the same inputs. wk 
are the weight values for the kth feature and are inversely 
proportional to Thk. 
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where np is the number of pieces in the puzzle. 
Expression (7) denotes that total similarity between the ith  
and the jth pieces are weighted according to the jth 
confidence values, since low confidence points are 
unreliable, even if two pieces are similar. After weighting 
the similarities, summation for all j pieces where i is 
different than j shows how much the ith piece fits the other 
pieces at Ti(x,y,θ).  
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This is the first part of the Cost or Affinity function 
and is derived from the weighted mean of (7). It is the 
summation of similarities for possible pairs. This value 
goes towards negative if there exists a good matching 
between the pictures on the candidate pieces.  
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The second part of the function is for embedding the 
geometrical constraints to Cost or Affinity. In reality, two 
pieces cannot overlap at any point. The confidence values 
are used to formulize overlapping operation. The L 
function will be 1 only for pixels in the original part of the 
image, otherwise it will be 0. Using a sufficiently large wc, 
the Cost increases when the original parts of the ith  and jth 
images overlap. 

∑ += )( 21cos mmF t                              (10) 

Total cost is the summation of similarity and 
geometrical constraints terms for all points in space. The 
only parameter of this performance measure that 
represents the goodness of the assembly of pieces based on 
textural features and geometrical shape is the 
transformation of pieces, Ti.  

The fitness between the pieces is increasing while the 
Cost function is being optimized. Two types of 
optimization methods are used in the experiments. The 
first one depends on the best replacement strategy. 
Initially, the transformations of pieces are randomly 
assigned. The algorithm progresses by finding best 
movement in each step. When the function is stuck into a 
local minimum, two randomly selected pieces are 
exchanged. All local minima are buffered to find the best 
assembly. The algorithm is stopped if the function reaches 
the best value in the local minima buffer more than n 
times.  

The second method depends on pairing of pieces. 
Initially, the algorithm searches for the best pair that gives 
the minimum cost. Then, these paired pieces are merged to 
produce a unique piece. The algorithm is stopped when all 
the  pieces  in  the  puzzle  are  combined and become one 
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piece. In this method, the algorithm backtracks when the 
pairing cannot improve the cost. To implement this 
method, the confidence and feature values of the new 
piece should be defined after merging process.  
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M is the set of pieces that will be merged. (11) gives 
the new confidence value for overlapping points of pieces. 
It express that new confidence value is equal to 1 if one of 
pieces has a confidence of 1, otherwise it is the 
geometrical mean of possible confidence values at that 
point. (12) gives the new kth feature values by calculating 
the weighted mean of pieces in the set M. 

 
            (a)            (b)            (c) 
Figure 2: (a) A puzzle consisting of 4 pieces, (b) 
confidence values of the predicted regions (c) expanded 
versions of the pieces. (Fcost = 0) 

 
5. Experimental results 

The behavior of the defined affinity measure is 
observed under different scenarios. The first one is 
whether the edges continue on the neighboring pieces or 
not. In the inpainting phase, the edges obtain higher 
confidence values as was explained earlier.   The higher 
confidence values force the cost function to locate the 
pieces properly. The second important criterion is 
similarity of corresponding textures on the neighboring 
pieces. The distance measure in the cost function attracts 
similar textures together if the expanded regions of pieces 
are accurately inpainted.  

In the paper, we present results from two different 
datasets. The first dataset consists of 21 pieces of a 
ceramica tile. We will give the details of the experiment 
with 4 pieces so that the details of the images can be 
distinguished.  The second dataset (13 pieces) from 
Stanford university website is part of the Forma Urbis 
Romae dataset[L00] which is a marble map of ancient 
Rome that has more than a thousand fragments. 

In Figure 2, the original images, confidence images 
and expanded images of 4 pieces are placed, respectively. 
The cost in the solution space is equal to zero for this 
placement, because the expanded or original regions of the 
4 pieces are not overlapped anywhere. In Figures 3 and 4, 
different assembly stages and the corresponding cost 
values are shown. Two neighboring pieces are placed 

closer with a shift in Figure 3a, and their corrected 
placement is represented in Figure 3b. The main difference 
between the cost values of (a) and (b) is because the edges 
don’t continue in (a) although the neighboring textures are 
mostly similar. In Figure 3c, the third piece is placed to 
their right position, but the original (real) regions of the 
fourth piece and the third piece are overlapped; in other 
words, the fourth piece violates the geometrical 
constraints. For this situation, the second part of the cost 
function (m2) becomes dominant and the cost increases 
seriously. In Figure 3d, we see the forth piece is placed in 
the most appropriate location. Fig 4 shows the completed 
reconstruction with the associated cost.Figure 5 shows the 
steps of assembling the 13 pieces from the Forma Urbis 
Romae dataset. 

A second experiment is performed to test the 
consistency of the cost function. Puzzles including a few 
pieces (2,3 or 4) were artificially prepared. Exhaustive 
search was carried out calculating the cost function for all 
possible transformations of pieces. The reason of this 
experiment was to check whether there exists any 
placement giving less cost value than the correct assembly 
or not. As a result of the experiment, it was observed that 
all other placements of pieces cost more than the true 
placement. 

The optimization program developed is also tested 
against erosion and missing pieces. Even if the edges of 
the pieces are eroded or one of the puzzle pieces 
disappears, the program was able to find the right 
assembly for the puzzles under test.  

      
a ) Fcost = +269           b ) Fcost = -40 

      
c ) Fcost = +2987         d ) Fcost = -1966 

Figure 3: (a), (b), (c) Total cost for different layouts (d) 
Total cost for the completed puzzle 
 

6. Summary and conclusions 
 

We presented a method for the automated puzzle assembly 
problem using surface texture and picture. The approach is 
based on expanding the boundary of each piece using 
inpainting and texture synthesis and minimizing a cost 
function based on matching feature values obtained from 
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these predicted regions. Initial experiments show that this 
approach is very promising for the automated puzzle 
assembly problem. Future work will concentrate on 
optimizing the search for best transformation and 
generalizing the presented algorithm to solving 3D 
puzzles. 

 
Figure 4:Total cost for the completed puzzle Fcost=-20,076 

 

  
a ) Fcost = 0    b ) Fcost = +9356 

  
c ) Fcost = -15554   d ) Fcost = -19318 

Figure 5: (a), (b), (c) Total cost for different layouts (d) 
Total cost for the completed puzzle 
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