
The 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
VAST (2005)
M. Mudge, N. Ryan, R. Scopigno (Editors)

Real-time Shader Rendering for Crowds in Virtual Heritage

Pablo de Heras Ciechomski, Sébastien Schertenleib, Jonathan Maïm, Damien Maupu and Daniel Thalmann

VRLab, EPFL
CH-1015, Lausanne, Switzerland

{pablo.deheras, sebastien.schertenleib, jonathan.maim, damien.maupu, daniel.thalmann}@epfl.ch
http://vrlab.epfl.ch

Abstract

We present a method of fully dynamically rendered virtual humans with variety in color, animation and appear-
ance. This is achieved by using vertex and fragment shaders programmed in the OpenGL shading language
(GLSL). We then compare our results with a fixed function pipeline based approach. We also show a color va-
riety creation GUI using HSB color space restriction. An improved versionof the LOD pipeline for our virtual
characters is presented. With these new techniques, we are able to use a full dynamic animation range in the crowd
populating the Aphrodisias odeon (which is part of the ERATO project), i.e., a greater repertoire of animations,
smooth transitions and more variety and speed. We show how a multi-view ofthe rendering data can ensure good
batching of rendering primitives and comfortable constant time access.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Virtual Heritage]: Computer Graphics Anima-
tion

1. Introduction

We are working on the project - Identification, Evaluation
and Revival of the Acoustical heritage of ancient Theaters
and Odea - (ERATO) [ERA05], where our responsibility lies
in recreating the Aphrodisias odeon in Turkey and filling it
with a virtual humans audience that follows a play on stage
[dHCUDC04,UdHCT04,dHCSMT05,TCU∗04]. The work
on the Odeon is now finalized and some pictures of it can be
seen in Figure1.

Since the beginning of the project, our focus has always
been on creating a graphical pipeline that could be applied
to many different scenarios and cultural heritage settings.
We would like the user of our library to be able to quickly
get a heritage application running from scratch, through the
use of customizable meshes, textures, colorings, behaviors
and scenarios. One of our contributions in this paper lies in
the use of HSB color constraining with a tool specifically
developed for our designer needs. These color constraints
are specifically designed for fast prototyping and final de-
livery of virtual heritage crowds with historically significant

constrained color ranges. We are able to display a full dy-
namic range of animations and transitions between anima-
tions computed with a minimal memory footprint. This is
achieved on the fly for an entire crowd of virtual characters,
thanks to an improved deformation pipeline using hardware
vertex and fragment shaders. Finally we show how a tool
from the OGRE3D distribution [Ogr05] can be adapted and
improved to handle virtual human LODs with texture seam
preservation.

Variety is defined as having different forms or types and
is necessary to create believable and reliable crowds in op-
position to uniform crowds. For a human crowd, variation
can come from the following aspects: gender, age, mor-
phology, head, kind of clothes, color of clothes and be-
haviors. We propose here a way to create as many color
variations as possible from a single texture. Several works
have been done on the subject. [TLC02] propose an image-
based rendering approach to display a crowd. Variety comes
from multipass rendering where different colors are assigned
to significant parts of the body such as clothes, hair and

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

Figure 1: The final Aphrodisias odeon version with sculptures

skin color. [dHCUDC04] propose to create several tem-
plate meshes, which are at run-time cloned to produce a
large number of people. These clones can then be modi-
fied by applying different textures to create variety. Simi-
lar work that also treats meshes with variety uses a static
pre-deformed mesh ([RFD04,DHOO05,CLM05]). The dif-
ference between these approaches is the use of one, two,
or three levels of geometrical details before starting to ren-
der the impostors. There is one exception to the rule of go-
ing from strict geometric rendering to impostors in [WS02],
where they use a smooth transition from triangle mesh-
based rendering to particle splats. However, none of these
approaches attack the problem of editing colors variety ac-
cording to designer needs, nor do they address the problem
of using a large animation palette. Indeed, all crowd ren-
dering papers to date employ only one walking animation
except for [UdHCT04, dHCUDC04, dHCSMT05, GSM04].
The main reason for this lack of animation variety is that
when using a billboarded crowd, this variety needs to be
constrained since billboarded approaches could be extended
to use more animations but would explode the memory re-
quirements in the process. Having one or a few animations
is fine when one works with static meshes, but as can be
seen in [dHCSMT05], this leads to a memory explosion
when several template meshes are added with multiple an-
imations each. This was solved in [dHCSMT05] by having
dynamically deformed meshes with animations and geomet-
rical caches. We build our meshes upon this idea and im-
prove the color editing, the animation variety and the overall
performance.

2. Variety Rendering

Our variety in rendering extends the way Tecchiaet
al. [TLC02] use to create color variety from a single texture
to dynamically animated 3D virtual humans. Our goal is to
have a wide variety of colors and appearances by combin-
ing our texture and color variety (see Section5). Each mesh
has a set of interchangeable textures and the alpha-channel
of each texture is segmented in several zones: one for each
body part. This segmentation is done using a desktop pub-
lishing software (in our case Adobe PhotoShop [Pho05]).
We present two possible approaches to use the alpha layer

Figure 2: Texture and alpha zone map of a patrician woman

information for creating color variety. The first approach is
software-based and runs on graphics cards with a fixed func-
tion pipeline. The second one uses a fragment shader.

2.1. A Software Approach: Fixed Function Pipeline

An alpha zone is denoting a part of the texture of the charac-
ter that is to be modulated with a certain color. For example
an alpha zone is a specific part of a dress or some jewelry that
we want to be able to color to differentiate crowd members
from each other. Some triangles, denoted as "dirty" trian-
gles, can span several such alpha zones that have to be col-
ored differently. An example of such triangles can be seen
in Figure2 where triangles close to the border between the
face skin color and the hair are overlapping. A solution con-
sists in re-triangulating "dirty" triangles to have them cover
each zone with more triangles. Even if this could be easily
achieved, it is to be rejected, because there would be no con-
trol on the amount of new triangles generated and a nonsen-
sical situation could appear: a lower LOD mesh having more
triangles then a higher LOD mesh. Our approach consists of
using alpha tests on a split mesh to reduce the work of the
graphics card. Meshes are quickly split at startup in several
sub-meshes: one per group of uniform triangles, plus one
for the "dirty" triangles. This splitting is achieved by plot-
ting every triangle over the texture’s alpha layer. During the
plotting, if a change in the alpha value appears, the triangle is
then considered as "dirty". Once the mesh is split, multipass
rendering is done only on the "dirty" triangle sub-mesh.

The main drawback of the software approach is that the

c© The Eurographics Association 2005.

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

rendering complexity depends on the amount of "dirty" tri-
angles. If some alphas overlap a large amount of triangles,
the rendering will slow down accordingly, which makes the
frame rate depend considerably on the chosen texture. More-
over, it also depends on the way alpha zones are designed.
One willing to use this splitting mesh technique should take
into account this issue and try to reduce as much as possible
the amount of "dirty" triangles by being extra careful when
creating textures. A way to ensure this is to have zones with
uniform alpha values connected by a large pixel neighbor-
hood. However, this approach is able to run on our crowd
generator on a large install-base of machines.

2.2. A Hardware Approach: Shaders for Color Variety

In our continuing process to improve the execution speed of
our crowd inside the Aphrodisias odeon, we have decided
to explore the performance of high-end consumer graph-
ics cards, specifically the nVidia Geforce 6 series [nVi05]
with support for GL Slang (GLSL) by 3DLabs [3DL05] and
shader model 3.0. Each character is able to have up to 256
different alpha key areas corresponding to a certain body part
like in [GSM04]. Using the software approach, this is com-
pletely unreasonable, as it would require 256 passes for the
uniform alpha triangles and another 256 passes over the dirty
ones. Although the hardware approach could manage such
a number of areas much better than the software approach,
in practice, we only use up to 10 different areas, such as
lips, eyes, hair, parts of the dress, jewelry etc. In the frag-
ment shader, we have to determine for each pixel which area
it is part of and then color it with the appropriate modulat-
ing color. In our first implementation of the fragment shader,
we had anif-elsestatement check for determining the cor-
rect color to apply with a limitation of 8 alpha zones. Since
Shader model 3.0 allows nestedif statements, we can do
with only 3 if evaluations per pixel. Another way to pro-
gram the fragment shader is to send a one dimensional tex-
ture and map the alpha value to the color we want to modu-
late with, for a specific character. In order to batch drawing
calls [Wlo03], we put all the individual one dimensional tex-
tures into one 2D texture of 1024 times 256 size. Each row
in this texture atlas maps from an alpha value to a color value
and only one extra variable has to be sent to the mesh in the
form of an identifier for which row to sample from.

2.3. Filtering

Our color variety tool rests on a precise control of alpha key
values. While uploading textures to the graphics card, such
filtering as "nearest" filtering is preferable to a "linear" filter-
ing. Indeed a "linear" filtering would create new alpha val-
ues at the border of two alpha zones and thus, pixels at these
borders would not be drawn. However, nearest neighbor fil-
tering is very gross and, to soften the texture, Mipmaps are
required [Wil83]. OpenGL’s Mipmap creation tool cannot be

used here since we need separate bilinear and nearest neigh-
bor filtering. In fact, the alpha layer itself has to be nearest
neighbor filtered separately, while the RGB layer must be
bi-linearly filtered when the Mipmaps are being built. This
is not yet implemented.

2.4. Color

The color variety presented here is based on texture color
modulation. Each fragment is colored by modulating the
pixel color by the texture color: thus, the value produced by
the texture function is given by:

Cv = CtCf (1)

where f refers to the incoming fragment andt to the texture
image. ColorsCv, Ct , andCf are values between 0 and 1. In
order to have a large panel of reachable colors,Ct should be
as light as possible,i.e., near to 1. Indeed, ifCt is too dark,
the modulation byCf will give only dark colors. On the other
hand, ifCt is a light color, the modulation byCf will provide
not only light colors but also dark ones. This explains why
part of the texture has to be reduced to a light luminance,
i.e., the shading information and the roughness of the mate-
rial. Passing the whole texture as luminance does not make
sense. First, there is no gain in memory : OpenGL will em-
ulate an RGB texture based on luminance values, because
graphics cards are optimized for RGB textures. The draw-
back of passing the main parts of the texture to luminance is
that "funky" colors can be generated,i.e., agents are dressed
with colors that don’t match. Some constraints have to be
added when the modulating colors randomly. With the RGB
color system, it is hard to constrain colors effectively. That
is why we use the HSB system [Smi78], also called HSV,
meaning Hue, Saturation, Brightness (respectively Value).
This model is linked to the human color perception and is
more user-friendly than the RGB system. In Section5, we
present a graphical user interface that has been created for
helping designers to set constraints on colors.

2.5. A Hardware Approach: Shaders for Deformation

By re-writing the vertex deformation step into a hardware-
based vertex shader, we can no longer re-use the result of a
computation on the vertices in a software memory caching
scheme, as in [dHCSMT05]. However, the benefits are two-
fold: first, as the graphics pipeline on our cards are made
of 6 vertex processors working in parallel [nVi05], we have
a major speed-up. Second, our variety coloring can now
be done in one pass per pixel in the fragment shader (not
as in the software approach, which is a multi-pass solution
[dHCSMT05]). Thus, we have 16 of these fragment shaders
working in parallel.

Each vertex needs the array of deformation matrices, in-
dices and weights for these matrices, a normal, a position,
and a texture coordinate. A way of sending this data to the

c© The Eurographics Association 2005.

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

graphics card is through attribute vectors [3DL05]. Instead,
we prefer to send the per vertex attributes embedded in the
standard components [SWND03], i.e., in our case : the color,
texture coordinate, position and normal. This is achieved by
storing up to three matrix indices in the RGB color compo-
nent, the number of affecting bones in the alpha color com-
ponent, the weights of bones one through three in the w com-
ponent of the position and the third and fourth component of
a four dimensional texture coordinate. We also ensure that
for low LODs, the character will not use more than one bone.
This allows us to use theif statement in the vertex shader
that is part of shader model 3.0 instead of activating another
program. Anif statement only costs 2 cycles according to
nVidia sources.

To better use the graphics card, we need to store the ge-
ometric data, the weights, the texture coordinates, the num-
ber of bones affecting each individual vertex and so on. This
is done by storing the glDrawElements call in a display list.
The OpenGL driver will store it in in an optimal form so that,
for rendering a character, we will only need to send a few at-
tributes; in this case the transformations of each bone, which
row to sample from the 2D alpha to color texture, and a vari-
able stating (for a character supposed to use only one bone
per vertex). Thus, we decrease the communication to the
graphics card to a minimum and the rendering is achieved
in one pass.

2.6. Comparison of Shaders Versus a Software
Approach

In our first approach to create color variety for the virtual
humans, we were using a multi-pass rendering for each col-
ored region and we optimized it so that only the triangles that
were fully inside a region were rendered in blocks. The trian-
gle that passed several regions were rendered several times,
using alpha checks (see [dHCSMT05]). With a software ap-
proach, the decision process is done by the alpha function
which has to do up to 8 passes of sub-mesh rendering and
one pass per triangle group fully withing an alpha region.
This gives us 1 pass per sub-mesh and 8 passes for the dirty
triangles, which is still faster than to use 8 passes consid-
ering all triangles as dirty. In the shader approach only one
pass is done over the triangles though the fragment program
has to run on all rendered pixels. Since the fragment program
is only 6 GLSL lines using two texture look-ups to get the
final color it is extremely fast.

On the side of the vertex shader we only do one OpenGL
display list call for each human and upload the attributes
of bone matrices along with only two extra variables. This
gives us an enormous advantage in terms of rendering prim-
itive calls comparing to the software approach which does
up to 16 glDrawElements calls. Storing the geometry and
variables of the mesh in graphics card memory even if it has
to be deformed on the hardware gives a considerate boost in
performance as seen in the results section.

3. System Architecture

Crowd simulations require addressing many problems from
different perspectives. In our experiments, a typical scenario
features more than a few hundreds distinct virtual charac-
ters. The number of assets to be created and controlled in-
teractively within the simulation is becoming a predomi-
nant factor. Naturally, the real-time performance of such a
virtual environment depends on the appropriate usage of a
3D API such as OpenGL [Ope05]. These APIs come with
design particularities that oblige the developers to organize
their rendering pipeline in a very strict order. Unfortunately,
this organization is not intended to be easily controllable for
high-level simulation designers. Very often, developers have
to make some compromise between real-time performance
and the flexibility offered by their system. In order to over-
come this barrier, we have improved our scene management
by extending the way the data can be fetched. The idea is to
provide different views based on the specific requirements
of every module.

3.1. Multi-View Scene Representation

By providing different view representations of the same
shared data, we can optimize both the access time and the
different components computation. For instance, the GPU
rendering pipeline and the semantic representation have dis-
tinct requirements. The 3D rendering module needs to clas-
sify 3D meshes among their rendering cost penalty (OpenGL
state sorting, shaders parameters bindings, etc), while the se-
mantic view may access them by their unique ID. Our ap-
proach tends to overcome the limitations of classifying ob-
jects in a unique list or queue. To implement this multi-view
representation, we are relying on the multi-index container
from the [Boo05] library. This container maintains multiple
indices with different sorting and access semantics. It goes
beyond the single view representation that the STL map or
set may offer. The original idea of this concept came from
the indexing theory as used in relational databases. Thus,
we can simultaneously optimize data access for spatial, state
or semantic considerations, by fitting precisely their local
requirements. Figure3 depicts such a container with three
view indices on the same shared data.

This design does not only allow a perfect balancing be-
tween the 3D rendering and semantics view, but it also offers
different possibilities to optimize every single component.
For instance, 3D rendering optimizations are often platform
specific : some hardware may be more efficient to fetch dif-
ferent textures than to modify their lighting computation
mode. By extending our multi-index container with addi-
tional views, we can adapt our system more easily. This is
particularly important for controlling the simulation, as dif-
ferent semantic indexing may be necessary. They may rep-
resent more logical or intuitive views for accessing the dif-
ferent objects could they be using unique ID or by classi-
fying them in different categories (human, dynamic object,

c© The Eurographics Association 2005.

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

Figure 3: Multi-view representation

static object). From a performance perspective, as our vir-
tual worlds are populated with thousands of dynamic enti-
ties, it is really important that we keep a constant time ac-
cess on every representation. The container implementation
is ensuring this requirement. Moreover, the spatial efficiency
becomes acceptable with regards to memory consumption as
the number of indices grows. Finally, the memory fragmen-
tation remains minimal especially in comparison to manual
management, which can show up in more usable memory
available and better performance.

3.2. Multithreading for Crowd Simulations

Recent developments in CPU technology have extended the
install-base of computers capable of running multiple hard-
ware threads simultaneously. However, taking advantage of
this advance in hardware technology involves significant
high level modifications within the system design. [Kru05]
have shown that providing an architecture that can scale into
dedicated processes will allow creating crowd simulations
that are currently only possible in a non interactive mode.
Our approach is based on separating the flow of control be-
tween three different threads, as described in Figure4. Each
of them is responsible for one specific component. For in-
stance, we use a dedicated process for the 3D rendering,
another one for the AI processing and a third one for the
event handling and script executions. In order to fully take
advantage of our multi-threaded approach, we need to keep
the shared data as minimal as possible. Most current PC
platforms like the Intel Pentium IV processor with Hyper-
Threading or Dual-Core CPUs [Bin03] are capable of run-
ning two hardware threads simultaneously. By exploiting
three active threads, we are optimizing the resource usage.
One may argue that using one more active thread than the
number supported by the processors may be suboptimal, but
it occurs that the rendering thread is mainly bound on I/O op-
erations, waiting for some acknowledgment from the GPU.
The system architecture and performance also scope better
with current trend in CPU hardware design, which features
multiple simpler in-order cores ([Wan05], [Del]). By sepa-
rating different components within our architecture, we are

Figure 4: Threading Work Flow Design Model

able to generate more complex simulations with the same
level of interactivity.

3.3. Animation Blending

To obtain a more believable and realistic crowd, every agent
in our system has a distinct behavior. To increase the variety,
we are using a bank of animations simulating the different
behaviors. Adding noise functions in the selection and the
execution of every animation provides the feeling that ev-
ery animation is unique. However, the animations transitions
are clearly visible as the last and first frames of both anima-
tions do not match, introducing some jittering artifacts. To
solve this problem, we have extended our animation system
by introducing animation blending : rather than waiting for
an animation completion, every agent may get a notification
to blend their current animation with the next one. By vary-
ing the blending duration and by choosing different blending
modes, we obtain more variety within the simulation. Fig-
ure5 shows the animation transition over time.

4. Geometric LODs

To increase the number of displayed virtual humans, we ren-
der them using more or less simplified polygonal represen-
tations,i.e., we choose the appropriate geometric LOD for
each virtual human depending on its distance to the camera.
The integration of a tool present in the OGRE3D [Ogr05]
distribution into our asset pipeline allows us to easily create
these LODs ([dHCSMT05]). However we had to adjust the
tool to fit our needs. Indeed, we have observed some visual
artifacts produced by the OGRE3D tool on the textures of
our characters. We have fixed the tool by increasing the tex-
ture seam preservation,i.e., by associating an infinite cost
to the action of moving away from a seam. This fix allows
us to reduce the geometry of every template until a limit of
about 400 polygons. Going further than this limit introduces
another kind of artifacts, this time on the produced geometry.

c© The Eurographics Association 2005.

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

Figure 5: Animation Blending Pipeline

Figure 6: Random color system (a) versus HSB control (b).

5. Designing Variety

In the process of designing Romans and more generally hu-
man color variety, we must deal with localized constraints :
some body parts need very specific colors. For instance, ro-
man skin colors are taken from a specific range of unsat-
urated shades with red and yellow dominance, almost de-
prived of blue and green. Eyes are described as a range from
brown to green and blue with different levels of brightness.
These simple examples show that we cannot use a random
color generator as is. We need a tool that allows us to con-
trol the randomness of color parameters for each body part
of each roman (see Figure6).

5.1. Color Models

The standard RGB color model representing additive color
primaries of red, green, and blue is mainly used for spec-
ifying color on computer screens. In order to quantify and
control the color parameters applied to the roman crowd, we
need a user-friendly color model. Ray Smith ([Smi78]) pro-
poses a model that deals with everyday life color concepts,
i.e., hue, saturation and brightness. This system is the HSB
(or HSV) color model. The hue defines the specific shade of
color, as a value between 0 and 360 degrees. The saturation

Figure 7: HSB color space. Hue is represented by a circular
region. A separate square region may be used to represent
saturation and brightness, i.e., the vertical axis of the square
indicates brightness, while the horizontal axis corresponds
to saturation.

Figure 8: The HSB space is constrained to a three dimen-
sional color space with the following parameters (a): hue
from 20 to 250, saturation from 30 to 80 and brightness from
40 to 100. Colors are then randomly chosen inside this space
to add variety on the eyes texture of a character (b).

denotes the purity of the color,i.e., highly saturated colors
are vivid while low saturated colors are washed-out like pas-
tels. We represent saturation as a value between 0 and 100.
The brightness measures how light or dark a color is, as a
value represented between 0 and 100. The color space rep-
resented by the HSB model is shown in Figure7.

5.2. HSB Color Model as a Tool for Designing Variety

We have found in the HSB color model an intuitive and flex-
ible manner to control color variety. Indeed, as shown in Fig-
ure8, by specifying a range for each of the 3 parameters, we
are able to define a three-dimensional color space, that we
call HSB map.

We have built a GUI so that a designer can easily load,
modify and save HSB maps for different human templates
(see Figure10). This GUI provides all the necessary tools to
efficiently :

• change the number of virtual humans rendered,
• select which virtual human template one wishes to work

with,
• choose which texture of the selected template one wishes

to work with,
• choose on which body part (alpha value) of the selected

texture one wants to define color ranges,

c© The Eurographics Association 2005.

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

Figure 9: Decurion women with saturation from 40 to 80
and brightness from 50 to 70 (left); plebeian women with
saturation from 10 to 50 (right) .

Figure 10: Real-time design of lower classes texture variety.
Dialog to select the template to edit and to choose the num-
ber of characters (left); the results displayed on the crowd
(middle); dialog to design the variety of the selected tem-
plate with the possibility to choose the body part along with
the texture of the template to edit (right).

• select a saturation and a brightness range between 0 and
100, and choose a range in the hue circle between 0 and
360 (cycles are allowed), for the currently selected alpha
value.

The result of using these features is visualized in real time,
i.e., every change affects directly each rendered human.

5.3. Variety Case Study : Roman Society

To further illustrate the use of the GUI, we shortly present a
case study in the framework of the ERATO Project [ERA05].
In order to simulate Roman society, we had to differentiate
social classes. These differences were shown through cloth-
ing, where not only patterns, but colors as well were defining
the rank of individuals. For instance, decurion women (rich
elite) wore fine fabric with rich colors, while lower class cit-
izens wore simple garments made of raw material usually
dark. HSB maps allowed us to easily specify these signifi-
cant differences by setting saturation and brightness values
for rich garments and lower for modest ones (see Figure9).

Figure 11: Software and hardware rendering mode compar-
ison (FPS on axis Y) using different number of visible char-
acters (axis X).

6. Results and discussion

For validating our multithreading design architecture, we
have analysed our software using the Intel VTune Perfor-
mance Environement [VTu05]. This toolkit allows to clearly
investigate bottleneck issues for multi-threaded applications.
The measurements were done on AMD64 4000+ with 2GB
of memory and a nVidia SLI 6800 Ultra graphics card. The
results depicts that our system is using an average of 75-80%
of all the CPU cycles. According to [Cas04] those results are
really interesting, especially considering that graphics appli-
cations are generally bound on I/O operations.

From Figure11 we can see that the hardware shader ap-
proach of rendering the crowd completely outperforms the
software solution even if we use an animation and geometry
cache. In the tests we compared with one template consisting
of 8 geometrical LODs, going from 1026 down to 490 trian-
gles, playing two animations that were mixed at quaternion
level using skeletons (33 bones) and consisting of 3 (512
pixels wide and high) textures. All humans were in view and
the average of minimum and maximum frames per second
were considered.

7. Conclusions and Future Work

By creating a virtual human character using our pipeline
with LODs, texture varieties and color keying zones, anima-
tions and animation rules, this is multiplied into a diversified
heterogeneous crowd, running fast on desktop computers.
One template is thus re-usable for many different scenarios
and settings with little or no changes to the data.

In the future we would like to extend the lighting model
for different parts of the character on a per texel value using
the fragment shader. Like this we can have special effects
for the skin, clothes and jewelry for example. Moreover we

c© The Eurographics Association 2005.

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D. Maupu and D. Thalmann / Real-time Shader Rendering for Crowds in Virtual Heritage

will improve our tool for designing variety to handle high-
resolution characters and work toward a custom geometric
LOD creation tool.

We showed that shaders and multithreaded environment
give a massive performance boost of around 700 percent
consistently over the whole data set.

8. Acknowledgements

Special thanks to Mireille Clavien and Barbara Yersin for
their help in designing and editing the materials present in
this paper. The presented work is supported by the Swiss
Federal Office for Education and Science and the EC FIFTH
FRAMEWORK INCO-MED PROGRAMME, in frame of
the EU ERATO project, number ICA3-CT-2002-10031.

References

[3DL05] 3dlabs, 2005. http://www.3dlabs.com.

[Bin03] BINSTOCK A.: Multithreading, hyper-threading,
multiprocessing: Now, what’s the difference?IDS 1, 1
(2003).

[Boo05] Boost C++ Library, 2005. http://www.boost.org.

[Cas04] CASEY S.: How to determine the effectiveness of
hyper-threading technology with an application.IDS 1, 1
(2004).

[CLM05] COIC J.-M., LOSCOSC., MEYER A.: Three
LOD for the Realistic and Real-Time Rendering of
Crowds with Dynamic Lighting. Research Report RR-
2005-008, Laboratoire d’InfoRmatique en Images et Sys-
tèmes d’information, Université Claude Bernard, France,
2005.

[Del] Powerpc 970m. http://www-
306.ibm.com/chips/products/powerpc/.

[dHCSMT05] DE HERAS CIECHOMSKI P., SCHERTEN-
LEIB S., MAÏM J., THALMANN D.: Reviving the ro-
man odeon of aphrodisias: Dynamic animation and va-
riety control of crowds in virtual heritage. InProc. 11th
International Conference on Virtual Systems and Multi-
media (VSMM 05)(2005).

[dHCUDC04] DE HERAS CIECHOMSKI P., ULICNY B.,
D. T., CETRE R.: A case study of a virtual audience in a
reconstruction of an ancient roman odeon in aphrodisias.
In Proc. 5th International Symposium on Virtual Reality,
Archaeology and Cultural Heritage (VAST 04)(2004).

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time geome-
try/impostor crowd rendering system. InProc. ACM SIG-
GRAPH 2005 Symposium on Interactive 3D Graphics and
Games(2005).

[ERA05] ERATO - identification, evaluation and revival of
the acoustical heritage of ancient theatres and odea, 2005.
project website, http://www.at.oersted.dtu.dk// erato.

[GSM04] GOSSELIN D., SANDER P., MITCHELL J.:
Rendering a crowd. InShaderX3 : Advanced Rendering
with DirectX and OpenGL(2004), Charles River Media,
pp. 505–517.

[Kru05] KRUSZEWSKIP.: A practical system for real-time
crowd simulation on current and next-generation gaming
platforms.

[nVi05] nvidia, 2005. http://www.nvidia.com.

[Ogr05] Ogre3d, 2005. http://www.ogre3d.org.

[Ope05] OpenGL, 2005. http://www.opengl.org.

[Pho05] Adobe photoshop, 2005. http://www.adobe.com.

[RFD04] RYDER G., FLACK P., DAY A. M.: Adaptive
crowd behaviour to aid real-time rendering of a cultural
heritage environment. InProc. 5th International Sympo-
sium on Virtual Reality, Archaeology and Cultural Her-
itage (VAST 04)(2004).

[Smi78] SMITH A. R.: Color gamut transform pairs. In
SIGGRAPH ’78: Proceedings of the 5th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, USA, 1978), ACM Press, pp. 12–19.

[SWND03] SHREINER D., WOO M., NEIDER J., DAVIS

T.: OpenGL Programming Guide: The Official Guide to
Learning OpenGL, Version 1.4. Addison-Wesley, 2003.

[TCU∗04] THALMANN D., CETRE R., ULICNY B.,
DE HERAS CIECHOMSKI P., CLAVIEN M.: Creating a
virtual audience for the heritage of ancient theaters and
odea. InProc. 10th International Conference on Virtual
Systems and Multimedia (VSMM 04)(2004).

[TLC02] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Image-based crowd rendering.IEEE Computer Graphics
and Applications 22, 2 (March-April 2002), 36–43.

[UdHCT04] ULICNY B., DE HERAS CIECHOMSKI P.,
THALMANN D.: Crowdbrush: interactive authoring of
real-time crowd scenes. InSCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation(New York, NY, USA, 2004), ACM
Press, pp. 243–252.

[VTu05] Vtune, 2005. http://www.intel.com.

[Wan05] WANG D.: The cell microprocessor.ISSCC 1, 1
(2005).

[Wil83] W ILLIAMS L.: Pyramidal parametrics. InSIG-
GRAPH ’83: Proceedings of the 10th annual conference
on Computer graphics and interactive techniques(New
York, NY, USA, 1983), ACM Press, pp. 1–11.

[Wlo03] WLOKA M.: Batch, batch, batch: What does it
really mean?GDC 1, 1 (2003).

[WS02] WAND M., STRASSERW.: Multi-resolution ren-
dering of complex animated scenes.Computer Graphics
Forum 21, 3 (2002). (Proc. Eurographics’02).

c© The Eurographics Association 2005.

