
3D Modeling for Non-Expert Users
with the Castle Construction Kit v0.5

Björn Gerth1 René Berndt1 Sven Havemann2 Dieter W. Fellner2

1Institut für ComputerGraphik, TU Braunschweig, Germany

Abstract

We present first results of a system for the ergonomic and economic production of three-dimensional interactive
illustrations by non-expert users like average CH professionals. For this purpose we enter the realm of domain-
dependent interactive modeling tools, in this case exemplified with the domain of medieval castles. Special empha-
sis is laid on creating generic modeling tools that increase the usability with a unified 3D user interface, as well
as the efficiency of tool generation. On the technical level our system innovates by combining two powerful but
previously separate approaches, the Generative Modeling Language (GML) and the OpenSG scene graph engine.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces]: Multimedia Informa-
tion Systems, I.3.6 [Computer Graphics]: Interaction Techniques

1. Introduction

Interactive three-dimensional illustrations have a huge po-
tential for engaging the public audience in museums and ex-
hibitions, as well as for the exchange of scientific hypothe-
sis about the past among researchers. But expectations are
high due to the ubiquitous use of 3D, which is slowly but
steadily becoming a standard in the entertainment and edu-
tainment sectors. ’Serious games’ are expected to deliver the
same level of quality as known from X-Box and Playstation,
even if realized with only a fraction of the budget.

A central issue is the content authoring problem, in case of
3D also known as the modeling bottleneck. In principle there
are two ways to create 3D objects, namely shape acquisition
(3D scanning) and shape modeling. The focus of our paper
is the latter, for which there are two main applications:

• Virtual reconstructions of destroyed cultural heritage
sites to let users explore their ancient form at a certain
point in history, or a hypothesis about it

• 3D Illustrations as a straight generalization of the famil-
iar 2D drawings in museums exhibitions, e.g., to empha-
size the context of the findings and their surroundings

Archeologists, museum curators and art historians usually
have a background in human sciences rather than engineer-
ing or computer science. These persons are untrained in
3D modeling, but they have distinct three-dimensional ideas
about the appearance of historic sites and monuments. But
is there a way to let them express their ideas in 3D? – It is
a very demanding task to provide this particular community
with easy-to-use tools that (i) require no/not much learning,
but (ii) still guarantee high-quality results.

The 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
VAST (2005)
M. Mudge, N. Ryan, R. Scopigno (Editors)

c© The Eurographics Association 2005.

2ComputerGraphik & WissensVisualisierung, TU Graz, Austria

http://www.eg.org
http://diglib.eg.org

 Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

Figure 1: Castles in recent computer games: Stronghold2 is a castle and medieval warfare simulation (a), sophisticated place-
ment tools of The Settlers (b), and the game map editor of The Battle for Middle Earth with integrated castle designer (c,d).

1.1. Options for Solving the Modeling Bottleneck

Three-dimensional objects are usually created with sophisti-
cated 3D modeling software, with procedural modelers like
3D Studio Max or Maya, or with parametric CAD software
like AutoCAD or Catia. These tools require serious learn-
ing efforts, and since they are all-purpose tools they do not
provide any particular support for creating CH content.

Custom tools exist for the architectural domain, for in-
stance house planning software. It permits average users
to create standard houses easily by using libraries of pre-
defined intelligent 3D components such as staircases, walls,
and windows, and catalogues of furniture. Drawbacks of
house planning software are that (i) the components are for
modern but not for ancient architecture and (ii) due to the
proprietary format new intelligent components can not be
added by normal users but only by programmers.

Modelers such as AutoCAD and Maya are extensible
through their built-in scripting languages (AutoLisp and
MEL) to let users add specialized modeling functionality by
programming. This is a way to speed up the modeling, but
it leads to another problem, the separation of modeling from
viewing: The finished models are exported to some exchange
file format (DXF, VRML) and loaded into a runtime viewer,
but there any specialized modeling functionality is gone. The
export throws away the high-level semantic modeling infor-
mation, which precludes any on-line high-level editing – but
the possiblity to change objects is a major asset when choos-
ing interactive 3D graphics as a media form!

The perceived level of engaging dynamic interaction can
be greatly enhanced using game engines. They provide flu-
ent interaction, best possible rendering quality, animated
characters (virtual enemies), event-driven interactions, and
possibly even physical simulations. But there are some seri-
ous issues with using game engines, among others:

• authoring cost: the game industry counts in man years
• sustainability: short lifecycle of game technology
• re-usablity: proprietary game data structures are a

dead end, no later re-use of models created
• generality: rendering is optimized for low-poly,

multires-models, no custom renderers supported

The last issue is of great importance in the CH context (and
especially for Epoch) where many sophisticated surface rep-
resentations have been developed that need to be displayed
together. This is witnessed by the publications of previous
VAST conferences, just to mention densely sampled trian-
gle meshes [BC∗04], point clouds [DD∗04], or high-quality
BTF rendering [MMK04], e.g., for precious artifacts.

To summarize the requirements of a CH authoring sys-
tem: An extensible set of CH specific modeling tools, rep-
resented in a non-proprietary, sustainable format standard,
combined with a CH presentation system, into which also
non-standard rendering methods can be integrated.

2. Related Work on Domain-Dependent Modeling Tools

The problem of creating custom tailored modeling tools has
not received much attention so far as a research topic of
its own. Extensive texts on modeling like the Handbook of
CAGD only mention the fact that domain-dependent tools
are important for practical shape design, but do not ex-
plain ways to realize them [HJA02]. There is no clear pic-
ture or systematic survey, the aforementioned proprietary ap-
proaches (MEL, AutoLISP, etc) clearly dominate. Formats
such as 3DS (3DStudioMax) or Collada [Col] allow for stor-
ing animations and for attaching some high-level informa-
tion. – One lesson learned from VRML, however, is that any
sort of non-trivial interaction requires programming, i.e., to
resort to a second formalism, such as JavaScript.

The absence of any sort of standard format for domain-
dependent, or procedural, modeling tools has also been
identified as a major problem for the manufacturing indus-
try: Models containing intelligent 3D parts (’features’) are
’frozen’ when they are transferred from one parametric mod-
eler to another, e.g., from SolidWorks to Catia: Intelligence
is lost. Some interesting background information about the
fundamental obstacles experienced by the STEP consortium
trying to solve this problem was given by Michael Pratt on
SMI 2004 [Pra04]; a detailed discussion is part of [Hav05].

A thrilling new aspect was recently added to the whole
subject by a new generation of computer games from the
simulation genre. The title Stronghold2 terms itself the ulti-

c© The Eurographics Association 2005.

50

Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

Figure 2: User-defined world in The Settlers. High quality and great variety is obtained at the same time: The game provides
about 60 different pre-defined building types, each with a number of configuration options on several levels of extension.

Figure 3: Several typical castles from [Koc00]. They are all
composed of similar elements, but each has a different style.

mate castle simulation [Str05]. The latest Settlers from Blue-
Byte or the Lord of the Rings series from Electronic Arts
play in a fantasy world that can be designed to a large ex-
tend by the user [Set05, Lor05]. Interesting with respect to
domain-dependent modeling is that greatest emphasis is put
on usability: Gamers are unpatient and not willing to spend
precious game time on impractical modeling tools:

• generality is sacrificed for clarity of actions
• only few but very well-chosen options
• no WIMP-style GUI but freely floating graphical objects
• optimized with respect to mouse movements

Fig. 1 shows such streamlined modeling tools in action, the
quality of a typical world can be judged in Fig. 2. Similar
as with Lego vs. clay, modeling efficiency is obtained by
radically reducing the degrees of freedom (DOF), or, more
suitably, by exposing only the essential DOFs of the model.
An important maxim for domain-dependent modeling tools
is: Not everything can be changed, but everything that can
be changed can be changed efficiently.

3. Technical Foundations: GML and OpenSG

Our approach combines the strengths of two technologies
that were previously unrelated:

• The Generative Modeling Language (GML) does not
have a scene graph, so all models exist in the same coor-
dinate system, and there are no multiple shape instances.

• The OpenSG scene graph engine provides the ’hooks’ to
change all aspects of the scene at runtime, but it has no
scripting language. Hitherto, all types of dynamic changes
must be programmed in C++, i.e., defined at compile time.

It turns out that both technologies fit surprisingly well to-
gether. Their tight integration opens a number of very inter-
esting options, some of which are sketched in this paper. But
first a short introduction into the ingredients.

3.1. The Generative Modeling Language

The GML has been sucessfully employed in a CH context
for the procedural construction of Gothic window tracery
as shown on VAST 2004 [HF04]. Its important novel fea-
ture is that (i) it can encode procedural modeling tools and
(ii) it contains a runtime engine to apply these tools interac-
tively. So the GML bridges the gap between modeling and
viewing, it can be seen as a viewer with integrated modeling
capabilites. This permits for an extremely concise encoding
for the web-based transmission of highly complex models of
a procedural kind [BFH05]: Instead of 3D objects transmit
only the modeling operations that create these 3D objects.

c© The Eurographics Association 2005.

51

 Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

Figure 4: Interactive dragging of Arkade CVs. It uses a customized version of the polygon editor with geometric error checks.

The GML is a stack-based programming language, simi-
lar to Adobe’s PostScript, which solves the nasty code gen-
eration dilemma: With procedural tools modeling becomes
very similar to programming. But it is not tolerable to re-
place interactive shape design by literal programming us-
ing an ascii text editor; furthermore not all good artists are
also good programmers. PostScript, on the other hand, is
the ’invisible programming language’. Code can be – and
is! – generated automatically with ease: Whenever printing
a PostScript document the printer actually executes a com-
puter program that produces the bitmap that is printed on
paper – technically, as a side effect of program execution.

3.2. The OpenSG Scene Graph Engine

OpenSG is an open source scene graph system with built-
in support for (i) multi-threading and (ii) cluster rendering.
This feature will be of greatest importance in the near future
to assure scalability: Parallel computing on multi-core CPUs
(e.g., with Hyperthreading), is the only option to increase the
processing power further when the clock speed comes close
to physical barriers, which is the case already today. OpenSG
clusters are driving transparently and efficiently tiled pro-
jection screens and multi-projector units, including several
CAVE systems.

OpenSG can also digest dynamical changes to the scene
graphs: All scene relevant data exist in several aspects that
are replicated among the render clients. Changes are logged
in a change list that helps to synchronize the data periodi-
cally, typically once per frame.

OpenSG uses very consistently the node-field paradigm:
A single field is an atomic piece of data, e.g., an integer,
float, string, or a reference, etc. A multi field is a (dynamic)
uniform array of single fields, i.e., an array of integers, or of
floats, or of strings etc. A field container is very much like
a class in object oriented programming, or like a record in
a relational database: It is just a list of several named fields,
which can be single or multi fields. The scene graph itself
is a tree made up of nodes. A node is a field container with
fields parent, children, and core. The single field parent and
the multi-field children are references to other nodes, and
the single field core references a node core. A node core

1 osg-getroot % push scene graph root
2 /Transform osg-corednode % create node+core
3 (10,0,10) osg-translate % change transform
4 dup % stack = root trans trans
5 /Cylinder osg-primitive % create node+core
6 dup begin % push cylinder scope
7 /sides 20 def % fake dict
8 /height 15 def % fake dict
9 /botRadius 2 def % fake dict

10 end % pop cylinder scope
11 osg-addchild % cylinder child of trans
12 osg-addchild % trans child of root

Figure 5: Creation of a Cylinder primitive in GML and in-
sertion into the OpenSG scene graph. The osg-translate op-
erator can be called at any time to move or animate objects.

is a field container that contains actual data, e.g., a trans-
formation matrix, or some geometry that is to be rendered.
The separation between (lightweight) node and (potentially
heavy) node core is important for multiple instancing of the
same geometry for, e.g., all the identical chairs in a theatre.

3.3. The Combination of GML and OpenSG

The combination has two parts, (i) exposing the OpenSG
API to the GML language, and (ii) integrating the GML run-
time engine into the (larger) scene graph engine. Both parts
are only quickly sketched here, for details see [Ger05].

All functionality in the GML comes from operators. Only
two higher-level data structures are built in, (heterogenous)
arrays and dictionaries. A dictionary is a list of (name,token)
pairs, where the token can either be an atomic value, or refer
to an array or another dictionary. Note the striking similar-
ity to the node-field paradigm in OpenSG from above. So
the idea was to treat OpenSG field containers in the GML as
fake dictionaries. This could even be realized in a generic
way with the reflectivity capability of OpenSG: Every field
container type registers itself at startup with a field container
factory that records the type, numerus (single/multi), and
name of the fields in the container. The VRML-like field

c© The Eurographics Association 2005.

52

Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

Figure 6: Ground layout of typical castles adapting to the
local ground topography. Examples from [Koc00].

container type Cylinder for instance, a node core, can be un-
derstood as a GML fake dictionary with entries sides, height,
and radius. It can now be created and integrated in the scene
graph with a GML code snippet as shown in Fig. 5. Note that
this technique makes it possible to translate VRML files fully
automatically to GML+OpenSG; but this will be described
in detail in a separate paper.

The main GML shape representation are combined
B-reps. They can represent both polygonal and smooth
free-form shapes in the same data structure using one
sharp/smooth flag per mesh edge: Faces with a smooth edge
are rendered as Catmull/Clark subdivision surfaces [HF01].
The GML interpreter operates only on a single mesh. In prin-
ciple this is not a limitation since a mesh can contain an ar-
bitrary number of connected components (3D objects). But
all these objects live in the same global coordinate space,
so the only way to move one object is to modify the posi-
tions of its vertices. – This problem has been solved by al-
lowing the GML to switch the current mesh. An OpenSG

Figure 7: Castle wall editor. In insertion mode corner points
can be added by clicking on the red polygon gizmo (1a,b).
In move mode they are represented by red discs that can
be interactively dragged until the desired shape is reached
(2a,b). In tower mode, towers are automatically inserted so
that all portions of the wall can be defended well (3a,b).

scene graph can therefore now contain any number of sep-
arate cB-rep meshes, stored in geometry node cores of type
BRepCombinedFC (field container). Any such node can be
made current, and may be interactively modeled, at runtime.
The low-level integration of combined B-reps into OpenSG
asserts that all mesh changes are even propagated through a
cluster of render client. So all client PCs compute and dis-
play a consistent tesselation of the visible combined B-rep
meshes even if they are modified.

4. The Castle Construction Kit

The new possibilities from the last section are a perfect
match to the technical requirements from section 1.1 for
authoring/presentation software for CH content. Domain-
dependent modeling tools are defined with respect to a do-
main. As example domain we chose medieval castles, and
our Castle Construction Kit (GML-CCK) was realized as
part of another diploma thesis [Ber05]. – First we had to
understand the domain. We found valuable material on cas-
tles in literature on architecture. Very helpful was the book
from Koch on construction forms, where all the building el-
ements and components from different era and styles are ex-

c© The Eurographics Association 2005.

53

 Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

Figure 8: Staufer castles, e.g., in Sicilia, have a very clean
structure. Images are from [Koc00].

plained [Koc00]. Some of its pencil illustrations are repro-
duced here to show the input material we had: Perspective
drawings (Fig. 3) and ground plans (Fig. 6).

Our idea was to create modeling tools that permit to
quickly produce 3D look-alikes that are not necessarily pre-
cise, but that contain the same structure as the original. In-
terestingly, interest on castle (re-)construction was also ex-
pressed from the fantasy role playing community. The work-
flow is depicted in the cover illustration on the first page:
(a) historical original castle (Scharfeneck from [Koc00]), (b)
adaptation for role playing from [Rad98], (c) 3D look-alike,
and (d) tesselation detail. Historically, castles have devel-
oped out of simple wooden ring walls on a small hill (Motte
in German, see Fig. 14).

Most important for the shape of a castle is the shape of the
landscape. The location can greatly support a fortification.
Height isolines can often be recognized in the ground plan
of a castle adapting to a hill, see images Fig. 6 (3b,4a) in
row 3 (right) and row 4. But at first, to keep things simple,
we chose to start with castles in the plane.

4.1. Castle Wall Editing

As suggested by ground layout examples (Fig. 6) a good first
representation of the castle walls is a closed simple polygon:
A sequence of straight wall segments is connected with el-
ements such as corners, towers, semicircular towers (with
open gorge), that are placed in the polygon vertices. Which
connection to build depends on the rules of warfare: For the
defenders it must be possible to strike every portion of the
wall, e.g., by bow and arrow. This is in fact a geometrical
problem, which we have built into our wall editor. A typical
wall editing session is shown in Fig. 7.

The wall editor uses gizmos to clearly indicate the differ-

Figure 9: Very simple Staufer castle with a few mouse clicks.

Figure 10: The crenellation style is a wall attribute.

ent editing modes. A gizmo is a 3D object that is artificially
set into a 3D scene to represent a certain operation. The wall
editor provides an insertion gizmo (red closed polygon), a
motion gizmo (points as discs), and an option gizmo that
presents a 3D menu with captions floating space, using balls
as switches (Fig. 7, 3a).

4.2. Re-usable Interactive Tools

As it turns out a whole number of objects can be suitably rep-
resented by polygons, e.g., arkades, houses, and palisades.
So it is sensible to further develop and provide more sophis-
ticated polygon editing modes, as all entities that are based
on polygons will immediately benefit from improvements in
the polygon editor. From the user’s point of view the re-use
of existing 3D gizmos/editors is highly desirable as well,
since it reduces the learning effort for the user interface.

So the challenge is to design re-usable gizmos/editors in
a uniform but flexible, customizable fashion, suitable for
many different elements: Care must be taken to avoid erro-

c© The Eurographics Association 2005.

54

Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

Figure 11: Creation of houses and palisades using variants of the polygon editor. A new house is created from a list of available
house types (1a). It can be moved (1b) and rotated (1c) as a whole prior to editing the outline polygon (1d). Row 2: Adaptation
of the ground polygon by alternating insertion and movement actions. A palisade is created very much like an arkade (3b-d).

Figure 12: Movements become efficient only with a scene
graph. It permits to animate elements like a water wheel.

neous states during editing and, therewith, user frustration.
Any editor for simple polygons should always avoid self-
intersections (8-shape). The arkade gizmo in Fig. 4 addition-
ally needs to avoid very acute angles and very short edges,
i.e., the freedom to move the points must be suitably lim-
ited. The wall editor in Fig. 7 must additionally take into
account the wall width, and the feasible wall length depends
on whether it has no, one, or two towers at the ends.

The house and palisade editors are shown in action in Fig.
11. Although the house appears to be classical rectangular,
its ground polygon can in fact be freely edited. The roof is
constructed fully automatically (2d,3a) from the straight line
skeleton of the house polygon [AA96]. Interestingly, the roof
is created with the same extr udestable operator as the win-
dow tracery in [HF04]. The house editor adds two more op-
erations, move and rotate, to the polygon editor that made
not much sense for the wall polygon. The move operation is
also customized, since it checks whether a house is going to
penetrate a wall, in which case the house snaps to the wall
and aligns with it.

Note the great benefit of using OpenSG at this point: The
move and rotate operations are realized only on the scene
graph level, which means that also large portions of the ge-
ometry can be moved without overhead. We have used the
scene graph also on the object level to add a constantly turn-
ing water wheel to a mill, see Fig. 12.

4.3. GML Dictionaries as Element Classes

Recall that our original goal was an extensible architecture
for domain-dependent modeling tools. The danger in a col-
laborative environment, especially in an open CH context,
is that a huge bunch of incompatible tools may result since

c© The Eurographics Association 2005.

55

 Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

1 dict dup !wall begin
2 /polygon :polygon def
3 /cornedTowers 0 def
4 /rotateMidpoint (0,0,5) def
5 /crenellationStyle /style-4 def
6 /wallWidth 2 def
7 /wallHeight 5.0 def
8
9 /gizmo { } def

10 /model CastleConstructionKit
11 /castle_wall get def
12 /model-update {
13 /construction clearmacro
14 model gizmo
15 } def
16
17 Model begin
18 /current-wall :wall def
19 end
20
21 /construction newmacro def
22 model gizmo
23 end

Figure 13: Castle element class in GML: Semantic informa-
tion about a wall is collected in a dictionary that contains
static data as well as functions to create, modify, and update
the wall. The 3D geometry of the wall and the gizmos is cre-
ated in line 22 by generic functions operating on the local
wall data thanks to begin, end in lines 1, 23.

the tool developer community is so heterogeneous. This can
only be avoided with interface standards, ’interface’ under-
stood in the API sense, with respect to GML code.

We have solved the interface problem by using a unique
feature of the GML, namely the fact that it is a functional
language that can not only store literal data, but also func-
tions in a dictionary. As mentioned before a GML dictionary
can behave like a class object in the OOP sense, even as a
class with a dynamic set of members. – A generic API for
interactive procedural elements was quickly found; in the
simplest case it consists of only the three functions gizmo,
model, and model-update shown for the wall in Fig. 13. This
function also enters the wall dictionary as the current-wall in
the Model dictionary, where it is globally visible (line 18).

Note that the wall is in fact a special case, since it has
no single gizmo, but a mode dependent gizmo. The gizmo
member of the wall is by default set to the empty gizmo:
The interaction mode function can dynamically replace the
empty gizmo function by the gizmo function for the chosen
interaction mode! – Examples are shown in Fig. 11!

Figure 14: Origin of castles, from [Ko c 0 0]: Wooden ring
wall that was gradually transformed into a stone castle.

5. Conclusion and Future Work

We have presented the first working prototype of our Cas-
tle Construction Kit. It is very rudimentary, especially com-
pared to what is possible in Stronghold2, but we believe that
it exhibits already all the features that are essential to achieve
what is not possible using games technology, namely to cre-
ate open libraries of CH specific modeling tools that bring
full modeling capabilites to a CH 3D-presentation, but can
still be rendered with multi-threading on a cluster with a
rendering engine that supports custom render node types.

With our architecture models and modeling tools can be
exchanged, in fact our models contain their own customized
3D modeler. These fundaments laid directly lead to a long
wish-list of improvements, only to mention:

• Differentiate attributes per sub-element (wall, tower)
• Integration of terrain heightfields
• Better appearance, so far only shape was in focus
• Systematically reduce number of authoring mouse clicks
• High-precision construction tools for advanced users,

including AutoCAD-like tools for polygon editing.

There are also several long-term goals we will pursue. First,
we would like to understand the castle domain better and
come up with an exhaustive list of sophisticated intelligent
building elements that permit a much better match between
reality and look-alike. Second, we would like to develop
methods to match the model to given data automatically,
or at least semi-automatically. Our third goal is particularly
fancy: We would like to drag a complete castle interactively
over a hilly landscape, and the castle shall immediately adapt
to its new location so that the ’spirit’ of the original castle
is preserved, but also the laws of medieval warfare are re-
spected, so that a plausible castle results in each time step.

c© The Eurographics Association 2005.

56

Gerth, Berndt, Havemann, Fellner / 3D Modeling for Non-Expert Users

References

[AA96] AICHHOLZER O., AURENHAMMER F.: Straight
skeletons for general polygonal figures in the plane. Proc.
2nd Annu. Internat. Conf. Computing and Combinatorics
(1996), 117–126. 7

[BC∗04] BALZANI M., CALLIERI M., ET AL.: Digital
representation and multimodal presentation of archeolog-
ical graffiti at Pompei. In Proc. VAST 2004 (Brussels, Bel-
gium, 2004), Chrysanthou Y. et al., (Eds.), Eurographics
Association, pp. 93–103. 2

[Ber05] BERNDT R.: Automatische Codegenerierung mit
der GML (in German). Master’s thesis, Institute of Com-
puter Graphics, Braunschweig Technical University, Ger-
many, 2005. 5

[BFH05] BERNDT R., FELLNER D. W., HAVEMANN S.:
Generative 3d models: A key to more information within
less bandwidth at higher quality. In Proc. Web3D ’05
(Bangor, UK, 2005), ACM Press, pp. 111–121. 3

[Col] Collada project website. collada.org. 2

[DD∗04] DUGUET F., DRETTAKIS G., ET AL.: A point-
based approach for capture, display and illustration of
very complex archeological artefacts. In Proc. VAST 2004
(Brussels, Belgium, 2004), Cain K. et al., (Eds.), Euro-
graphics, pp. 105–114. 2

[Ger05] GERTH B.: Generative Scene Manipulation in
OpenSG. Master’s thesis, Institute of Computer Graph-
ics, Braunschweig Technical University, Germany, 2005.
4

[Hav05] HAVEMANN S.: Generative Mesh Modeling.
PhD thesis, TU Braunschweig, Germany, 2005. 2

[HF01] HAVEMANN S., FELLNER D. W.: A versatile 3d
model representation for cultural reconstruction. In Proc.
VAST ’01 (New York, USA, 2001), ACM Press, pp. 205–
212. 5

[HF04] HAVEMANN S., FELLNER D. W.: Generative
parametric design of gothic window tracery. In Proc.
VAST 2004 (Brussels, Belgium, 2004), Cain K. et al.,
(Eds.), Eurographics, pp. 193–201. 3, 7

[HJA02] HOFFMANN C., JOAN-ARINYO R.: Parametric
modeling. In Handbook of Computer Aided Geometric
Design. Elsevier, 2002, ch. 21, pp. 519–541. 2

[Koc00] KOCH W.: Baustilkunde : das Standardwerk zur
europäischen Baukunst von der Antike bis zur Gegenwart,
22 ed. Bertelsmann, Gütersloh, 2000. 3, 5, 6, 8

[Lor05] Lord of the rings: The battle for middle earth.
Electronic Arts Inc, 2005. www.eagames.com. 3

[MMK04] MÜLLER G., MESETH J., KLEIN R.: Fast en-
vironmental lighting for local-pca encoded btfs. In Proc.
CGI 2004 (June 2004), IEEE, pp. 198–205. 2

[Pra04] PRATT M.: Extension of iso 10303, the step stan-

dard, for the exchange of procedural shape models. In
Proc. SMI04 (Genova, Italy, June 2004), pp. 317–326. 2

[Rad98] RADDATZ J.: Armorium Ardariticum, eine DSA-
Spielhilfe. Fantasy Productions, Erkrath, 1998. 6

[Set05] The settlers: Heritage of kings. Ubisoft Entertain-
ment (BlueByte), March 2005. www.ubi.com. 3

[Str05] Stronghold2: The ultimate castle sim. Firefly Stu-
dios, 2005. www.fireflyworld.com. 3

c© The Eurographics Association 2005.

57

http://collada.org
http://www.eagames.com
http://www.ubi.com
http://www.fireflyworld.com

