
Eurographics Symposium on Point-Based Graphics (2007)

M. Botsch, R. Pajarola (Editors)

Sampling Point-Set Implicits

J. Proença1, J. A. Jorge1, M. C. Sousa2

1Dept. Information Systems and Computer Engineering, TU Lisbon, Portugal
2Dept. Computer Science, University of Calgary, Canada

Abstract

We present a novel approach for point-set implicit surface sampling that is able to rapidly distribute particles over

the surface of 3D objects. Our methods benefit from the inner structure of a MPU implicit to obtain a near-optimal

initial distribution, with higher densities in areas of higher complexity. The adequate number of particles to effec-

tively sample the surface is determined almost automatically and in accordance to the surface characteristics. We

also use the MPU information to obtain local surface complexity heuristics that are used in the simulation stage

of the particle system. Shape modeling operations are directly supported and the redistribution of particles is very

fast for local edits. We present performance results that show that our system is faster than other state-of-the art

approaches for the same number of points.

Categories and Subject Descriptors (according to ACM CCS): Sampling, approximation, and interpolation.

1. Introduction

Implicit surfaces provide simple and flexible mathematical

representations for 3D objects that allow for precise shape

definition and modeling. One particular subgroup, point-set

implicits, is able to reconstruct complex surfaces from point

clouds that can be obtained from 3D scans of real objects.

However, sampling this type of representation is a diffi-

cult problem, because of its complexity and continuous na-

ture. Creating a particle system that scatters points over the

surface has been a commonly used solution. In 1994, Witkin

and Heckbert [WH94] presented an approach to distribute

particles over implicit surfaces using attractor and repulsion

forces. This set the standard for other systems that used sim-

ilar methods to find areas of interest or render the surface

through points or splats [Elb98, FJW∗05, JWS06, LGS06].

One of the main difficulties when simulating such a par-

ticle system is the number of iterations (or relaxation steps)

that are necessary to converge into an optimal distribution

and the associated evaluations of the potential function that

generate a large computational overhead. In more recent

years, new methods have emerged that produce near-optimal

initial distributions to shorten this simulation stage [LGS06].

In this paper, we present a novel approach that is able

to quickly distribute particles over a point-set implicit sur-

face with higher densities in areas of higher detail. We use

Multi-level Partition of Unity (MPU) implicits [OBA∗03]

that are able to represent complex surfaces retrieved from

dense point clouds. The MPU is also characterized by its

internal octree structure that establishes a 3D cell subdivi-

sion of the surrounding space of the surface, where cells are

smaller and more numerous in areas of higher complexity.

The main contributions of our work are:

• We use the descriptive power of the MPU octree to rapidly

generate a near-optimal initial distribution of particles

that is adaptive according to the local surface complexity.

Therefore, we only need a limited number of relaxation

steps in the simulation stage to obtain a good distribution

of particles.

• Our method is able to determine the appropriate number

of particles according to the surface topology and com-

plexity, without user intervention.

In addition, we use surface complexity heuristics obtained

from the octree cells that allow us to avoid computing the

principal curvature values during the simulation of the par-

ticle system for the same purpose, thus accelerating the pro-

cess. These heuristics can also be used with other adaptive

octree structures, that may be built for various types of point-

set implicits. The particle system is able to regenerate itself

after modeling operations, by applying a new simulation step

that is confined to the area of the shape edit. This regener-

ation occurs quickly for localized modifications. The initial
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generation of particles is fast and we are able to obtain ex-

cellent performance levels even for high complexity models.

These results compare very favourably to other state-of-the-

art approaches.

2. Related Work

Implicit surface sampling using particles was first introduced

by Figueiredo et al. [dFdMGTV92], who used attraction and

repulsion forces to create point distributions for polygoniza-

tion. Witkin and Heckbert [WH94] developed this concept

further in a modeling application, by using an adaptive repul-

sion and split-and-death criteria for a particle scattering that

minimizes an energy criterion. While either papers does not

support non-uniform distributions, the elements introduced

in terms of physical-based particle systems paved the way

for a series of approaches.

Hart et al. [HBJF02] extended the Witkin-Heckbert ap-

proach to uniformly sample more complex surfaces, being

able to numerically differentiate implicits defined by large

numbers of control parameters. Rosch et al. [RRS02] used

curvature information to sample unbounded surfaces and

singularities. Crossno et al. [CA97] also conceived an ex-

tension to Witkin-Heckberth for sampling iso-surfaces ex-

tracted from volume data. Meyer et al. [MGW05] presented

a new class of energy functions and numerical techniques for

obtaining uniform or non-uniform distributions of particles

over implicits, but while their methods use less relaxation

steps than [WH94], each step consumes more computation

time.

Foster et al. [FJW∗05] presented pen-and-ink rendering

styles over implicits that use a Witkin-Heckbert type parti-

cle system for surface sampling, similarly to [Elb98]. They

initialize particles through the intersection of randomly gen-

erated rays with the surface. The system is also able to dis-

tribute particles through attraction and repulsive forces. They

provide uniform or non-uniform distributions and in the lat-

ter the densities may vary according to the surface curva-

ture or the proximity to the viewing position. More recently,

[JWS06] presented an extension of this work, in which parti-

cles originate smarticles, i.e. flocks of points that inspect the

surface searching for areas of interest or to create groups of

lines that represent features spanning specific regions.

One of the major problems common to particle systems

is the computational cost of the relaxation process, which

becomes expensive beyond a few thousand points. Levet et

al. [LGS06] presented an approach applied to analytic and

VIS [TO99] implicit representations that addresses the prob-

lem by rapidly generating a set of initial particles with near-

optimal positions. They perform a pure geometric initializa-

tion, in which particles are iteratively added to the point-set

in a process akin to surface-tracking polygonization. This

optimized initial placement requires less relaxation steps to

achieve either uniform or non-uniform distributions.

2.1. The MPU Surface

The MPU [OBA∗03] efficiently constructs implicit repre-

sentations from dense sets of control points sampled on the

surface of complex objects, using three elements: an oc-

tree of cubic spatial cells that cover the object; quadratic

functions that approximate the local shape in each cell and

weight functions that blend the local functions, thus provid-

ing a precision-controllable approximation to a complex im-

plicit surface efficiently. This process is guided by the sub-

division of the octree structure, where cells become smaller

and more numerous in areas where the point positions and

normals suggest higher variations of curvature.

3. Overview

Our approach uses a Witkin-Heckbert type particle system

to create non-uniform distributions, where particles are more

concentrated in areas of higher detail. We use the inner oc-

tree structure of the MPU implicit to guide the definition of

the initial positions of particles and to obtain local surface

complexity heuristics to support the adaptive point densi-

ties. For this reason, we cannot say that we treat the potential

function as a black box, such as in [FJW∗05, JWS06], since

our methods are connected to the specificities of the octree

of the MPU. However, in terms of mathematical informa-

tion, we only query the potential function to extract its value

and gradient. Because of this, we can say that our techniques

can be used with other point-set implicit representations as

long as an adaptive octree structure is constructed for the as-

sociated control-point datasets (using various processes for

octree sampling such as in [JLSW02, SW04]).

We also store references to every particle in the corre-

sponding octree cell, in order to be able to use this struc-

ture for rapid determination of particles within a fixed ra-

dius. This is usually done using a regular voxel grid, but we

acknowledged the benefits of using the octree, since we ex-

pect the particle densities to follow the cell subdivision level

along the surface (therefore, we have an adaptive voxel grid).

As soon as an object is loaded from a point cloud, the

MPU implicit surface is generated and the associated poten-

tial function is defined for the whole surrounding space. The

particle system is then initialized and an initial distribution

of points is created (Section 4). Afterwards, a physical sim-

ulation stage is performed, where particles suffer repulsion

and attractor forces (Section 5). It comprises a fixed num-

ber of relaxation steps that improve the quality of the overall

distribution. If the user applies some sort of modeling oper-

ation to the shape of the object, there is a local regeneration

of the MPU and the particle system in the affected surface

area (Section 6). All of these elements of our approach are

performed with very good efficiency and we will provide

performance results in Section 7.

c© The Eurographics Association 2007.

12



J. Proença, J. A. Jorge & M. C. Sousa / Sampling Point-Set Implicits

4. Creating the Initial Distribution

To create the initial set of particles we use the spatial com-

plexity descriptive power that the MPU’s octree gives us and

we put a constant number of particles on the surface for

each cell. Since cells are smaller and more abundant in areas

of higher complexity, we get a higher point concentration

where there are more surface details, right from the start.

The first step in this process is to determine which oc-

tree cells contain portions of the surface. Since the MPU po-

tential function f (x) covers the entire 3D space, many cells

do not cover any surface region, i.e. cells where f (x) 6= 0.

We store every control point from the original point cloud

(that originated the MPU representation) in the correspond-

ing octree cell that covers its surrounding 3D region. All the

cells that contain these points are marked as covering the sur-

face, which gives us a very straightforward process to guar-

antee that all the surface areas are covered by our distribution

(since the MPU is defined by the control points). There is al-

ways the possibility that certain octree cells will not contain

any control points, but this can only happen when the surface

is only lightly captured by a particular cell, because the local

surface definition was created from nearby control points.

We do not identify these cells explicitly because they are not

relevant to the initial distribution of points (the simulation

stage however might push particles into these volumes).

In each surface-containing cell, we select a k number of

control points and use their positions and surface normals to

generate particles. If there is an insufficient number of points

in a particular cell (because k is larger than the number of

control points that are contained in it), new points are gen-

erated with random positions inside the cell. These points

undergo a Newton step afterwards to ensure surface adher-

ence (a Newton step is a well known root-finding method

for potential functions that iteratively approximates a point

to the root using the local gradient).

While this approach is general for any number k of parti-

cles initially created per octree cell, we came to the conclu-

sion that we can always use k = 1 to effectively cover the

surface with an appropriate quantity of particles (all of the

models presented in this paper use that value). This means

that we create the initial set of particles as a subset of the

points in the point cloud that originated the MPU surface,

since we already know that each identified cell contains at

least one control point. This is a benefit in terms of perfor-

mance because it allows us to use points that already lay on

the surface, so we do not need to use the computationally

expensive Newton Step to bring the particles to the surface.

Furthermore, selecting the number of particles adequate for

an appropriate coverage becomes automatic, because the set

of particles naturally reflects the number of smaller or larger

octree cells and therefore the overall surface topology and

complexity.

This approach also provides a near-optimal initial plac-

ing of particles, which drastically decreases the number of

Figure 1: Particle initialization and simulation in the Bunny

model. Top: the set of initial particles obtained from our

octree-driven approach. Bottom: after 20 simulation itera-

tions, we obtain an optimal non-uniform distribution.

subsequent simulation iterations needed to obtain an optimal

distribution.

5. The Simulation Stage

The particle system simulation process is composed by a set

of relaxation steps where at each step every particle suffers

attraction forces to the surface and repulsion forces from

nearby points and moves accordingly. The calculation of

these forces, as well as the movement of each particle, is per-

formed in the same way as in [FJW∗05], except for the repul-

sion distribution factor δi, which directly influences the re-
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pulsion force and controls the local density of particles. Fos-

ter et al. calculate it using Hessian values extracted from the

potential function to determine local mean curvature. This

poses a significant computational burden; we avoid this al-

together by using the octree cell depth information on the

MPU instead. The depth indicates the cell subdivision de-

gree and therefore is a good heuristic for determining the

local complexity of the surface, which yields a simpler for-

mula for δi:

δi = weight(
di −dmin

dmax −dmin
) (1)

where di is the cell depth of particle Pi and dmax and dmin

are the maximum and minimum cell depths where particles

exist in the model (these are determined during the initial

particle generation step). The weight function is an adapted

quadratic B-Spline [OBA∗03] that sets a higher value for δi

if the particle is in one of the lower depth cells (less curved

regions of the surface) and vice versa.

weight(t) =







1−3( t
1.05 )2

, if t <
1
3

1.5(1− t
1.05 )2

, if t ≥ 1
3

0, if t > 1

(2)

The net effect of using this technique is that it is easy and

fast to obtain good results where the particles become well

distributed over the surface to reflect local complexity with

comparatively less steps and a lower cost per particle. How-

ever, using the cell level, instead of the Hessian curvature,

has the effect of discretizing the values of δi while accelerat-

ing its computation, which in turn originates discrete particle

density levels along the surface, instead of a more continu-

ous density variation. Nevertheless, this is only a particu-

larity of our strategy that does not significantly degrade the

final distribution.

6. Regenerating Particles

One of the main advantages of using the MPU implicit sur-

face for representing 3D objects is that its octree structure

allows to locally recompute the surface after a shape edit.

In such an operation, the octree cells of the affected surface

area are marked and new control points are generated to de-

fine the new shape characteristics of the object. In these cells,

the MPU suffers a regeneration process that resembles the

one that is performed upon its creation with the difference

that it is confined only to the cells where the shape is re-

ally modified. This allows for a faster local redefinition that

avoids a total re-computation of the implicit representation.

Since the MPU provides a straightforward way of know-

ing which parts of the surface are altered in a shape edit,

through the marking of affected octree cells, we only have

to regenerate particles in those cells. More specifically, after

a modeling operation, the relevant octree cells are marked

and altered in the MPU regeneration process (the subdivision

depth of the cells may even change). During this stage, we

delete all of the particles that were contained in those cells.

After the MPU regeneration, we insert new points in the par-

ticle system for the new octree cells, in the same way as it is

described in Section 4. Then a new particle system simula-

tion process is started with the difference that it only affects

the particles that belong to the marked cells. This means that

we only compute the attractor and repulsion forces for points

inside the affected area and do not allow particle movements

that result in placing points outside the marked cells (this

is done to avoid particle concentration along the border of

the affected surface area). Figure 2 presents an example of

a shape edit applied to the Cow model, where we used 2D

stroke over-sketching to apply 3D shape modifications to the

MPU surface. In the zoomed in figure of the modeled area,

we can see how only in the affected region (the top of the

Cow’s back) there are modifications in the particle distribu-

tion, while in other areas it remains unaltered (the belly).

Since this process only affects a subset of the particles

(depending on the size of the modeling operation), its total

computation time is shorter than for simulating of the entire

particle system. In fact, for the usual editing operations that

affect a small portion of the surface, the local redistribution

of points only takes a few seconds even for the more com-

plex models (after the local re-computation of the MPU). For

shape edits that affect larger areas of the overall surface, re-

building the MPU takes more time and the particle system

regeneration requires almost the same time as the initial dis-

tribution process.

7. Results and Discussion

The particle system solution that we have conceived is able

to rapidly scatter particles over complex surfaces defined

by MPU implicits, using a non-uniform type of distribution.

Figures show some examples of the final results we get for

some well known models with different complexity levels.

In Table 1 we can see the performance results for each of

the presented test models. These values were gathered us-

ing a 3.6 GHz Pentium IV with 2 gigabytes of RAM and a

NVIDIA Quadro FX 3400 graphics card, running Windows

XP SP2.

As we can see, the number of particles that are selected

for each model is not necessarily proportional to the number

of points in the dataset that originates the MPU, because it

is also influenced by the surface topology and complexity.

Therefore, our particle selection strategy proves to be very

effective in terms of finding an adequate amount of parti-

cles to sample the surface, without any need for parameter

adjustments by the user.

Little time is required to initialize the particle system, tak-

ing less than one second for simpler models such as the

Bunny, Cow and Horse and about four seconds for more

complex examples like the Phlegmatic Dragon and David’s

Head (with 60000 particles created from 800000 dataset

points).
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Figure 2: Particle regeneration in the Cow model after a local shape edit. Left: we apply a 3D shape modification in the back

of the Cow through a 2D stroke. Right: the zoomed in figures show the initial re-initialization of particles on the left and the

result that is obtained after the local redistribution of particles on the right, which lasts only for a few seconds.

Model Dataset Particle Init. Simul.

Points System Time. Time

Bunny 69451 10000 0.3 sec 29 sec

Cow 92864 8334 0.4 sec 31 sec

Horse 96966 6668 0.4 sec 17 sec

Igea 268686 13665 1.1 sec 42 sec

Armadillo 345944 28360 1.5 sec 176 sec

Dragon 480076 26984 2.3 sec 112 sec

David 827181 59994 3.7 sec 789 sec

Table 1: Particle system results. Each row indicates the

model, number of points in the dataset, number of points

in the particle system, time spent in the particle initializa-

tion using one particle per octree cell and time spent by the

simulation stage with 20 iterations performed.

After obtaining the initial near-optimal positions for parti-

cles, we apply 20 iterations in the physical simulation stage.

This number was chosen for all the tests, since it allows us

to achieve adequate particle distributions. The results at this

stage suggest that the simulation time is affected by the com-

plexity of the surface and number of particles. This is why

David’s Head takes a much larger simulation time in com-

parison to the other models, since the MPU definition must

cover a lot of sharp features.

We can compare our results to those of Levet et al.

[LGS06], because they also present a strategy for near-

optimal initial placement of points to generate non-uniform

distributions of particles. They present the initialization and

simulation times for their system using VIS implicit surfaces

[TO99] or analytical representations, with a hardware con-

figuration not much worse than ours. In Table 2 the results

Our Method

Model Implicit Particle Init. Simul.

Repr. System Time. Time

Bunny MPU 10000 0.3 sec 15 sec

David MPU 59994 3.7 sec 433 sec

Levet et al. [LGS06]

Bunny VIS 12388 313 sec Total

Ellipsoid Analytic 55748 25 sec 589 sec

Table 2: Particle system comparison to Levet et al. [LGS06].

The top table presents our results and the bottom one the

ones from Levet et al. Each row indicates the model, type of

implicit representation, number of points in the particle sys-

tem, time spent in the particle initialization and time spent

by the simulation stage with 10 iterations performed.

from both systems using a similar number of particles and

10 simulation iterations are presented. In the Bunny model,

defined by a VIS by Levet et al., they perform particle initial-

ization and the simulation process in 313 seconds, while we

perform the same task in about 15 seconds. Our times are

about 20 times faster for a similar number of points, but it

can be argued that the VIS implicit evaluations have a greater

computational overhead than the MPU.

However, when comparing the ellipsoid results from

Levet et al., defined by an analytic implicit (which obvi-

ously is a much simpler representation than the MPU), to

our David’s Head results, the advantages of our method be-

come clearer. Indeed, while they need 25 seconds to set the

initial positions for 55748 particles, we only require 3.7 sec-

onds to compute the initial positions of 59994 particles in

the David’s Head model. It takes 589 seconds for the simu-
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Figure 3: Final particle distribution results for the Igea

(Top) and Horse (Bottom) models.

lation stage in the ellipsoid, while we distribute particles in

433 seconds in our model. In this case, our results are seven

times faster for the initial placing of particles and the simula-

tion stage takes 74% of the time used in [LGS06], while we

are using an implicit representation that is much more com-

putationally expensive to evaluate, a more complex surface

shape and a greater number of particles.

We can conclude that our performance results compare

very favourably to the ones from Levet et al., which can be

justified by the fact that, in the simulation stage, they need

to perform function evaluations and geometrical computa-

tions that we avoid with our octree-driven approach, and in

the simulation stage they extract curvature values from the

implicit representation, while we use the much faster octree

cell depth heuristic. Their approach is more general than

ours, as theoretically it can be applied to any type of im-

plicit, but in terms of performance it does not deal well with

medium or high complexity surfaces. Our approach is more

directly connected to the octree structure and uses the MPU

implicit, which allows for fast sampling of surfaces obtained

from hundreds of thousands of points and featuring lots of

intricate shape details.

However, it is important to refer certain limitations from

our approach. Since our particle simulation strategy is some-

what similar to [FJW∗05], there are some situations where

we require the user to adjust a repulsion force parameter to

the surface scale and topology, in order to avoid particles es-

caping from the surface near discontinuities. While the par-

ticle system can handle occasional holes in the MPU, due to

defective dataset point clouds, it does not support incomplete

open surfaces also.

8. Conclusions and Future Work

We have presented methods for fast sampling of point-based

MPU implicit surfaces, where we harness the descriptive

power of the surface representation to provide rapid near-

optimal initialization of particles. The number of particles is

automatically adjusted to the surface complexity and topol-

ogy, regardless of its size and scale. This initial scattering

of particles shortens the subsequent simulation stage that is

necessary for achieving an optimal distribution. We also use

octree heuristics to adjust the particle density to the local

surface complexity, thus avoiding computationally expen-

sive curvature evaluations. Our methods work well for dif-

ferent levels of surface complexity and also support shape

edits, being able to redistribute particles in modeled areas.

This regeneration occurs rapidly for local edits.

Our approach shows good performance results that im-

prove on the state-of-the-art even for highly detailed models.

We compare the particle initialization and simulation times

to the strategy from [LGS06], for similar numbers of parti-

cles. Our approach is faster even when compared to simpler,

easier to evaluate analytic representations. However, some

areas of further improvement remain. While we already pro-

vide automatic initialization and selection of the number of

particles, methods for automatically adapting the repulsive

forces would eliminate any need for user intervention at the

simulation stage. Another area of improvement is to provide

support for distributing particles over open surfaces, since

many point-cloud datasets only include limited portions of

real surfaces.
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Figure 5: Final particle distribution results for the David’s Head (Top) and Armadillo (Bottom) models. Red points correspond

to octree cells of higher depth (particles are more concentrated), green points to lower depth.
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