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Abstract
We present a hybrid framework for physics-based simulation of fracture and debris clouds. Previous methods
mainly consider bulk fractures. However, in many situations, small fractured pieces and debris are visually impor-
tant. Our framework takes a hybrid approach that integrates both tetrahedron-based finite element and particle-
based meshfree methods. The simulation starts with a tetrahedral mesh. When the damage of elements reaches
a damage failure threshold, the associated nodes are converted into mass-based particles. Molecular dynamics
is used to model particle motion and interaction with other particles and the remaining elements. In rendering,
we propose an algorithm of dynamically extracting a polygonal boundary surface for the damaged elements and
particles. Our framework is simple, accurate, and efficient. It avoids the remeshing and stability problems of pure
mesh-based techniques and pure meshfree methods and offers high visual realism.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physics based modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Realistic animation of material fracture and the subse-
quent fractured debris clouds remains a challenging prob-
lem in the Computer Graphics community. Prominent ex-
isting methods [MBF04, OH99, PKA∗05] for physics-based
fracture simulation mainly consider bulk fractures. When
considering long term total effect of the material dam-
age/fracture/penetration animation, the failed material is one
of the crucial parts of the modeling. This is because the inter-
action between the failed material and the unfractured bulk
material will cause further fracture of the bulk material and
dictate the post initial fracture behavior of the complete an-
imation. Current fracture simulation approaches are unable
to model the fracture debris and the behavior of the failed
material accurately and efficiently.

In this paper we propose a hybrid solution to the anima-
tion of the fracture behavior of multiple body interactions.
Our approach initially models the entire interaction system
with the finite element method. When the continuum dam-
age of the elements reaches a critical state, the nodes of
the damaged elements are converted into meshless particles

and subjected to the associated pressure fields. The parti-
cles are modeled by the molecular dynamics (MD) method
to account for the interaction between the particles, and the
interaction with the unfractured elements. This generalized
framework for animating the fracture behavior of multiple
objects and interactions is a composite of individual ingre-
dients of the state-of-the-art development of the respective
research fields. The combination of both mesh and meshfree
techniques makes this approach a hybrid simulation method.
Figure 1 shows such a simulation result computed by our
simulation framework.

The primary reasons for the choice of the ingredients in our
approach are: FEM has been well established for model-
ing contact problems, but has difficulty in handling discrete
fields and changing boundary. Meshfree methods are good
at modeling debris clouds. In some physical events such as
deep penetration, debris clouds play an important role for
the visual effects. Thus, the combination of the two methods
becomes crucial. Our contributions in this paper are:

• The integration of both mesh and meshfree methods, in
particular, the particle based MD method with FEM. We
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Figure 1: A vase shattered onto the ground, where particles
are used to model the fractured debris cloud. A zoomed-in
view of the boxed region is shown at the top-right corner.

accurately model the underlying physics for the anima-
tion of the fracture behavior of multiple objects and their
interactions to provide a realistic scenario of the physics.

• A visualization technique to dynamically extract polyg-
onal boundary surfaces for failed elements and particles,
and a reconstruction of the physical representation of dy-
namic systems from the discrete simulation outputs.

This paper is organized as follows. We discuss the related
work in Section 2. In Section 3 we first give an outline of the
simulation framework, then present the physical laws gov-
erning the simulation. In Section 4 we propose a visualiza-
tion technique to extract the polygonal boundary surfaces for
the particles. Experimental results are presented in Section 5.
Finally we conclude the paper in Section 6.

2. Related Work

Previous work in fracture simulation can be classified as
non-physics, FEM, and meshfree methods. Non-physics
based methods are popular in the early stage of fracture
modeling. Neff and Fiume [NF99] model the destructed wall
structure caused by a spherical blast wave using an artificial
pattern generator. Hirota et al. [HTK98] use a mass-spring
model to create static crack patterns. Smith et al. [SWB01]
and Norton et al. [NTB∗91] model dynamic cracks, such as
a teapot shattered onto the ground, using a constraint based
method and a mass-spring method, respectively. Although
these methods allow for easy control of fracture patterns and
are simple and fast, they do not provide very realistic results.

Terzopoulos and Fleischer [TF88] have pioneered physics
based simulation by using finite differences to handle plas-
tic deformation and cloth tearing. Later on, based on re-
search from computational mechanics, researchers started to
work on finite element methods that directly approximate

the equations of continuum mechanics. O’Brien et al. are
the first to apply this technique for simulating brittle frac-
tures [OH99] and ductile fractures [OBH02]. To conform
with the fracture lines that are derived from the principal
stresses, elements are dynamically cut and remeshed. How-
ever, remeshing can be expensive and reduces the time step
for simulation. To avoid these issues, Molino et al. [MBF04]
propose a virtual node algorithm, where elements are dupli-
cated and fracture surfaces are embedded in the copied tetra-
hedra. Building upon the recent advances in meshfree meth-
ods for computational mechanics, Pauly et al. [PKA∗05] ex-
tend the meshfree surface deformation framework of Müller
et al. [MKN∗04] to deform solid objects that fracture. In
their system, both sparse simulation nodes and dense bound-
ary points are maintained. To adapt the simulation nodes to
the fractures, new simulation nodes are inserted. Similarly,
new points are generated at the crack interface. The explicit
modeling of advancing crack fronts and associated fracture
surfaces makes it easy to generate highly detailed, complex
fracture patterns, but requires handling of topological opera-
tions on crack fronts. In our application domain, topology
maintaining operations are very difficult to achieve. Note
that it is also possible to model fracture surfaces implic-
itly in a meshfree fracturing method, such as the level set
method [VXB02]. However, it is expensive to model a large
amount of tiny fractures using such techniques.

Particle-based methods have been widely used in computer
graphics for simulating a wide range of amorphous phe-
nomena, such as fluid [FF01], smoke [FSJ01], and explo-
sion [FOA03]. In these methods, particle motion is the pri-
mary concern and is computed by physical equations such
as the Navier-Stokes. Particles have also been used for gran-
ular material simulation. Bell et al. [BYM05] use anisotrop-
ical particles and molecular dynamics equations to simulate
splashing and avalanche of sands. They also compute inter-
acting forces between particles and rigid objects by sam-
pling the boundary surfaces of rigid objects into particles,
but no fractures are involved. For deformable solid model-
ing, Desbrun and Cani [DC95] model soft inelastic materials
using particle systems coated with a smooth iso-surface. In
all these methods, particles are generated in the beginning,
which is much different from our simulation method that
generates particles from damaged elements. Another distinct
difference is that in these systems particles are used to model
amorphous objects and can be rendered using texture splats
or isosurfaces. In our method, particles are given a clear,
sharp, polygonal boundary to provide meaningful simulation
of the actual fragmented pieces.

The meshfree/particle method was initially developed by the
computational mechanics community. A detailed summary
of this technique is beyond the scope of this paper. For some
excellent reviews, please refer to [Liu02]. In hybrid parti-
cle/FEM interaction, Johnson et al. [JBS00,JBS01] propose
a generalized particle algorithm (GPA) for high velocity im-
pact and other dynamics problems, where a variation of the
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smooth particle hydrodynamics (SPH) method is used to
model particle motion, which is different from the molecular
dynamics method used in our framework.

3. Simulation

3.1. Overview

Consider an interactive system of at least two individual con-
tinuum objects with initial velocities and subjected to a grav-
ity field. The objects are discretized in space by finite ele-
ment meshes with all the surface elements treated as mas-
ter contact segments and all the surface nodes treated as
slave contact nodes. Contact search is performed in every
time step to find the corresponding contactable master seg-
ment and slave node pairs. When impact occurs, the objects
subjected to the contact forces undergo finite strain visco-
elasto-plastic deformation. If the accumulated effective plas-
tic strain of any given Gauss point of the element reaches the
threshold value, the continuum damage effect needs to be ac-
counted for the deviatoric stress. At the same time, the equa-
tion of state (EOS) is considered for the hydrostatic pres-
sure of the material to account for the shock physics. When
the damage of a Gauss point reaches a critical value, the
material of the corresponding finite element is considered
failed. The material of the finite element can no longer han-
dle any shear stresses, but still retains the hydrostatic pres-
sure. At this time, since the finite element cannot withstand
any shear stresses, it mostly likely undergoes severe distor-
tion and causes the simulation to stop. Therefore, it is re-
moved from the continuum body. The mass and the hydro-
static pressure of the failed finite element are distributed to
the corresponding nodes of the element. The boundary sur-
faces are regenerated as new master contact segments. The
finite element nodes of the failed elements are then treated as
mass based particles using the rule described in Section 3.2.
Particles are modeled by the molecular dynamics method to
account for the interactions amongst the mass particles and
between the mass particles and the existing master contact
segments. They are not divided any further.

One may suggest converting failed elements into rigid bod-
ies and simulating them using a rigid body engine. Although
it is simpler, it does not account for all possible physical
equations representing the model and the underlying me-
chanics. The conversion of the failed elements is to continu-
ally model the pressure field resulting from the equation of
state. Converting to rigid bodies or using a simple approach
will not correctly model the underlying physics.

3.2. Element/Particle Conversion

In [JBS00], a straightforward strategy is given to convert a
failed element into a particle. A particle inherits the mass
of the element and is positioned in the element center. In
our system, we remove a failed element from the volumetric
mesh, too. Whether or not to generate a particle depends on

its neighbors. The particle conversion rule is: when all the
elements connected with a node fail, we then convert this
node into a particle. The particle carries a quarter mass from
all its connecting elements and inherits the node’s current
position. In Figure 2, we compare the two different convert-
ing strategies. Although particles should have different ge-
ometric shapes, accurately evaluating their actual geometric
shapes is very expensive and does not contribute much to
the correctness of the simulation, since particles are small.
By treating the particles as isotropic spheres in the simula-
tion stage, the computation cost is tremendously reduced.

Figure 2: Two element/particle converting strategies. (Left)
One element to one particle. (Right) Our strategy, where all
connecting elements must fail. Because of the strict limita-
tion, only one particle is generated.

The advantages of our converting strategy are: (1) Because
of the restrictions we have enforced, much fewer particles
are generated than in the method of [JBS00], while the ele-
ment count remains the same. Therefore, the computational
cost is reduced. (2) There are no new vertices generated,
which eases the dynamic memory management. Many ma-
trices do not need to be recomputed. (3) This kind of particle
conversion makes the visualization technique discussed in
Section 4 possible. Instead of rendering isotropic spheres,
we extract a polygonal boundary for each particle to achieve
more realistic visualization for the fragmented pieces.

3.3. Governing Equation: F = ma

The governing equation describes the force balance rela-
tion amongst the space discretized mathematical abstract
material points and is essentially the Newton’s second law:
F = ma, where F is force acting on the discrete material
point, m is the associated mass, and a is the acceleration.
Let the open set Ωt ⊂ ℜ3 be the domain of interest at the
configuration of time t, with the boundary ∂Ωt = Γ

f
t ∪Γd

t ,
Γ

f
t ∩ Γd

t = /0, and the closure Ωt = Ωt ∪ ∂Ωt . Define the
set of virtual displacement field as, [H1

0 (Ωt)]3 := {w | w ∈
[H1(Ω)]3, w = 0 on Γd}, and the set of virtual velocity field
as, [H1

v (Ωt)]3 := {v | v ∈ [H1(Ω)]3, v = ẋd
t on Γd}, where

H1(Ω) is the first order differentiable Hilbert space. The Eu-
lerian weak form of the dynamic equilibrium equation sub-
jected to the contact boundary condition is given as the fol-
lowing.
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(w,
∂ (ρv)

∂ t +ρηv)Ωt +(D(w),σ)Ωt

= (w,b)Ωt +(w, f )Γ f (t) +(δg,σN +στ )Γc(t) (1)

(τN ,gN −λ c
NN)Γc(t) = 0 (2)

(ττ , ġτ −λ c
τ ∇στ

ψτ (στ ))Γc(t) = 0 (3)

and subject to the constraints λ c
N ≥ 0, ψN(σN) = σN ·N ≥

0, λ c
Nψn(σN) = 0, on Γc(t), and ψτ (στ ) ≥ 0, λ c

τ ≥ 0,
λ c

τ ψτ (στ ) = 0, on Γc(t). Where ρ is material density, v is the
velocity, η is the viscous damping, σ is the Cauchy stress, b
is the body force, f is the external force, g is the contact gap
vector of the slave-node/master-segment pair, σN is the nor-
mal contact stress, στ is the tangential contact stress, τN is
the variation of the normal contact stress, ττ is the variation
of the tangential contact stress, gN is the normal contact gap
vector, gτ is the tangential contact gap vector, λ c

N and λ c
τ are

the Lagrangian multipliers, ψτ (στ ) is the friction law, and
(•,•)Γ =

∫
Γ
• : •ds represents the inner-product. The solu-

tion method for the contact boundary conditions is described
in [ZST03].

The mathematical modeling of the failed material or debris
clouds proposed in this paper is adopted from the math-
ematical modeling of atomic interaction of the molecular
dynamics method as described in [AW57]. For a particular
mass based particle i, the governing equation is the Newton’s
equation of motion given by,

Fi = mi
d2xi

d2t
(4)

where Fi is the force exerted on the particle i, mi is the mass,
and xi is the position of the center point of i. The force Fi is
the sum of all the interaction force between particle i and
the neighboring particles. And the interaction force between
particle i and particle j is given by,

F j =−∇rU(ri j) (5)

where ri j = ‖xi− x j‖ is the distance between particles i and
j, and U(ri j) is the potential energy function. Each of the
particles also serves as the slave node for the contact for-
mulation. The contact forces are also needed to account for
when the gap vector of the associated slave node to the mas-
ter segment is zero.

3.4. Constitutive Models

The simulation described in this exposition is modeled
in conjunction with the following three aspects: (i) the
Coulomb friction law for modeling the contact-impact in-
teraction, (ii) the continuum damage mechanics based hy-
drodynamic equation for modeling the continuum material
behavior, and (iii) the EOS induced soft-sphere potential for
modeling the failure material behavior. The continuum equa-
tion is discretized using linear tetrahedral elements, since
higher order elements cannot model contact physics.

3.4.1. Friction Law

The contact between the continuum bodies and the contact
between the failed material and the continuum bodies are
modeled by the following Coulomb friction law.

ψτ (στ ) = µ
c‖σN‖−‖στ‖ ≥ 0 on Γc× [0,∞) (6)

where σN ∈ ℜ3 is the normal contact stress, στ ∈ ℜ3 is the
tangential contact stress, and µc ∈ℜ is the Coulomb friction
coefficient.

3.4.2. Hydrodynamic Equation

In the governing equation, the internal force vector is a result
from the constitutive equation which dictates the behavior of
the material. The material behavior of the continuum bodies
is modeled by the continuum damage mechanics based hy-
drodynamic equation given as

σ̃ =
σ

1−ϕ
= σ̃D + σ̃H

σ̃
∇

D = 2GDe
D

σ̃H =−p(ρ,e)I

(7)

where σ̃ is the effective stress tensor, σ is the Cauchy stress
tensor, ϕ is the isotropic damage state variable which is the
ratio between the continuum damaged volume represented
by the micro-void volume and the volume of the material
(see Figure 3 for visualization), σ̃D is the deviatoric portion
of the effective stress tensor, σ̃H is the hydrostatic portion of
the effective stress tensor, G is the shear modulus, De

D is the
elastic part for the deviatoric portion of the velocity strain
tensor, p is the hydrostatic pressure, ρ is the material den-
sity, e is the internal energy per unit mass, I is the rank two
identity tensor, and the symbol •∇ denotes to the Truesdell
stress rate [Tru52]. The combination of the continuum dam-
age mechanics with the hydrodynamic equation and the use
of the Truesdell stress rate for the hydrodynamic equation
are novel and yield meaningful and accurate physics for this
application.

Figure 3: Visualizing the scalar damage values of the sim-
ulation nodes using 1D texture-mapping.
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The deviatoric portion of the hydrodynamic equation incor-
porates the Truesdell stress rate hypo-elasto-plastic model,
the Lemaitre plastic-damage model, and the Johnson-Cook
fracture model together. The deviatoric portion of the hydro-
dynamic equation is obtained after some straight forward but
involved derivation as the following.

σ̃
∇

D =

(
C −

C : ntvpd ⊗ntvpd : C

ntvpd : C : ntvpd +Htvpd

)
: DD (8)

where C = 2GI is the elasticity tensor, I is the fourth-

order identity tensor, Htvpd = h + C(h +
ε̇0Rtvp

ε̇∆t
) ln(

ε̇

ε̇0
)−

H(ε − εD)σeq

(1−ϕ)2(εF − εD)
, h = Bnεn−1(1− T̃ m), ntvpd =

3σD

2σeq
, ε̇ =

ε̇0e

frp

CRtvp H( frp), frp = CRtvp ln(
ε̇

ε̇0
), Rtvp = (A+Bεn)(1−

T̃ m), εF = (D1 +D2eD3
σH
σeq )(1+D4 ln(

ε̇

ε̇0
))(1+D5T̃ ), H(•)

is the Heaviside function, A, B, C, n, m and D1 −D5 are
material constants, ε0 = 1.0s−1, T̃ = (T − Troom)/(Tmelt −
Troom), Troom is the room temperature, Tmelt is the mate-
rial melting temperature, εD is the uniaxial tension damage
threshold strain, σ eq is the von Mises equivalent stress, and
DD is the deviatoric part of the velocity strain. The stress
update formulation can be found in [ZST06].

The temperature is governed by the temperature equation as
the following.

ρcṪ = ηeσ : (DD−De
D) (9)

where ρ is the material density, c is the material heat ca-
pacity, and ηe = 0.9 is efficiency ratio [BCHW93]. Equation
(9) represents that the temperature change of the system (left
hand side) is equal to a portion of the dissipated energy of
the system (right hand side).

The hydro static pressure is determined from the equation of
state (EOS) along with the material internal energy equa-
tion [WC55]. The rate of internal energy per current unit
mass is given as

ė =
1
ρ

(σD : D− p tr(D)) (10)

where p is the hydrostatic pressure, and tr(D) is the trace
of the velocity strain. The Mie-Grüneisen equation of state
considered here is given by

p(ρ,e) = (1− 1
2

γµ)pH + γρe (11)

where µ = η − 1, η = ρ/ρ0, ρ0 is the material density at
the initial reference state, γ is the Grüneisen parameter and
is given as

γ =


γ0ρ0

ρ
η > 1

γ0 η ≤ 1
(12)

γ0 is the Grüneisen parameter at the initial reference state,
pH is the Hugoniot pressure at the density ρ and is given as

pH =

{
a0µ +b0µ2 + c0µ3 µ > 0
a0µ µ ≤ 0

(13)

a0, b0, c0 are material parameters fitted from the Hugoniot
curves for the uniaxial strain shock wave conditions.

For numerical shock wave computation, the artificial viscos-
ity is needed to stabilize the numerical oscillation [vR50].
The classical artificial viscosity is adapted as the following.

q =

{
α1∆x2ρD2

H +α2∆xρDH DH < 0
0 DH ≥ 0

(14)

where α1 and α2 are the artificial viscosity parameters, ∆x
is the element characteristic length. Therefore, the internal
energy rate and the Cauchy stress are modified as

ė = σ : D−3(p+q)DH (15)

σ = σD− (p+q)I (16)

3.4.3. Interaction Potential Energy Function

The classical molecular dynamics method was developed for
the interaction between discrete particles. It has the follow-
ing advantages: (1) Accurate physical modeling; (2) Easy
implementation; (3) Minimal computational complexity; (4)
Symmetry and robustness; (5) Readily interfaces with clas-
sical finite elements. The failed material resulting from the
continuum damage model is in the form of the debris parti-
cles and subjected to the resulting hydrostatic pressure field.
The interaction of the failed materials is readily suitable to
be modeled by the molecular dynamics method. The inter-
action potential energy function is appropriately modeled by
the soft-sphere pair potential energy function given by the
following form,

U(ri j) = α(
ri

ri j
)γ (17)

where α is the strength of interaction, ri is the radius of the
mass particle ball, and γ is the repulsion parameter. Since
the failed material debris particles are subjected to the hy-
drostatic pressure filed, a soft-sphere pair potential energy
function is proposed as the following.

U(ri j) = p jr jVi

(
1

ri j

)
(18)

where p j is the hydrostatic pressure of particle j, r j is the
radius of particle j, Vi is the volume of particle i, and ri j is
the distance between particle i and j. Therefore, the interac-
tion force between particle i and j is given by the following
expression.

Fi j =−(p jriVj + p jr jVi)

(
ri j

r3
i j

)
(19)
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Most of the existing meshfree methods result in un-
symmetric system equations. Therefore, the convergence
of the mathematical modeling becomes problem-dependent.
Our MD approach results in symmetric system equations
with guaranteed convergence.

4. Particle Geometry Reconstruction

Although the above simulation method generates physically-
correct results, directly rendering particles as spheres does
not convey realistic appearance. Figure 1 shows such an ex-
ample. There are two major reasons. First, modeling parti-
cles as spheres is an acceptable simplification assumption in
the simulation process. However, rendering spherical parti-
cles makes the phenomena unrealistic. Second, due to the
vertex/particle conversion constraints, there will be holes on
the boundary surface where the voided elements are not free
enough to be released as particles. If the tetrahedral mesh is
tessellated fine enough, this may be less of a visual problem.
However, an overly-refined mesh is too costly to compute
for the simulation.

To provide better visualization, we devise a technique to re-
construct geometric shapes for particles. For each flying-out
particle, we find all the voided tetrahedra it is attached to in
the original mesh. Tetrahedral splitting is performed on these
elements. We first extract one piece from each tetrahedron,
then combine these pieces as the geometric shape of that par-
ticle. At the same time, pieces are also given back to the
element faces connecting the voided elements. For voided
elements without particles generated, if the vertices are bro-
ken into different pieces, we apply a similar reconstruction
strategy. Using this technique, a polygonal boundary surface
for the fractured pieces is constructed.

Our reconstruction algorithm is extended from the multi-
material interface surface computing algorithm [NF97],
where a splitting surface is extracted when the vertices of
each element of a tetrahedral mesh are classified as different
materials. We take the same spirit, but apply it to a different
scenario, where each flying-out or broken vertex of an el-
ement is treated as a distinct material. Furthermore, our ex-
tension includes timing-varying and topology-changing han-
dling of the data set.

4.1. Tetrahedral Splitting Configuration

We first discuss how to compute the splitting surface in a
static volumetric mesh. In many finite-element simulation
applications, such as computational fluid dynamics and hy-
drodynamics, researchers are concerned with reconstructing
a boundary surface between multiple materials from simu-
lation results. To represent the material information in the
grid cells, each mesh vertex can have an associated tuple
(α1,α2, ...,αm) as the material classification, where m is the
number of materials. In general, each αi is a fractional num-
ber and it is assumed that α1 +α2 + · · ·+αm = 1, as shown

in [BDS∗03]. In the simplest case, a binary classification is
used so that each vertex belongs to exactly one material.
The Nielson-Frank algorithm calculates a splitting surface
for unstructured grids in such a scenario, which is a gener-
alization of the well-known Marching Cubes (or Marching
Tetrahedra) algorithm [LC87]. The edges of a tetrahedron
with differently classified endpoints are intersected by the
splitting surface. Similarly, the faces of a tetrahedron with
three vertices classified differently are assumed to be inter-
sected by the surface in the middle of the triangle. If each of
the four vertices has a different class, the boundary surfaces
intersect in the interior of the tetrahedron. The resulting mid-
edge, mid-face, and mid-tetrahedron intersections are trian-
gulated to form a piecewise approximation surface.

(a) (b)

(c) (d)

Figure 4: The 4 splitting cases of a tetrahedron: (a) 3-1, (b)
2-2, (c) 2-1-1, and (d) 1-1-1-1.

Since there are only 4 vertices per element, four cases are
identified in [NF97]: (1) 3-1, three vertices are of one class
and one other vertex is of another class; (2) 2-2, two vertices
are of one class and two vertices are of another class; (3) 2-
1-1, two vertices of one class and the other two vertices are
of second and third classes; and (4) 1-1-1-1, each vertex is of
a different class. As the data set is static, once the case num-
ber of an element is determined, it will not change. Figure 4
illustrates the four cases.

When we are dealing with time varying data sets, the classi-
fication of one element may start from case 1 to case 2, and
finally to case 4. If we follow the above splitting configura-
tion, the split objects may exhibit changes in shape, which
will cause visual inconsistency in animation. We need co-
herent splitting so that the split objects can smoothly transit.
Therefore, we always use the splitting configuration of case
4 to construct the splitting surface, even though more tri-
angles are used. Figure 5 shows our configuration for 3-1,
2-1-1, and 1-1-1-1 cases from left to right.

c© The Eurographics Association 2006.



N. Zhang et al. / Integrating Mesh and Meshfree Methods for Physics-BasedFracture and Debris Cloud Simulation

Figure 5: The three cases for consecutive splitting of a tetra-
hedron.

4.2. Dynamic Tetrahedral Splitting

In each time step, we scan the tetrahedral mesh for failed
elements. In these elements, we first determine the split case
of each element, then determine the split points, and finally
we compute the split pieces according to the local coordinate
of each component.

Determine the splitting case: The case number of a voided
tetrahedron is determined by the sum of the number of par-
ticle vertices and the broken vertex sets. Each particle is a
disconnected piece. For the remaining vertices that are still
in the volume mesh, we further check whether they are di-
rectly connected or not. The checking is easily achieved
since these vertices are on the boundary surface of an object.
By searching the triangle edges of the boundary surface, we
can group these vertices into disconnected clusters. For in-
stance, if only one vertex is converted into a particle, it is
classified as case 1. If there is one particle vertex and two
disconnected clusters of the remaining vertices, it is case 3.
Because of the dynamic property of the volumetric mesh,
this operation is executed once in each time step.

Determine the split points: Our system keeps a copy of the
volumetric mesh in its initial, un-deformed position. Since
the element is already voided, in this step we use the orig-
inal tetrahedron. In a straight-forward way, we can use the
mid-edge, mid-face and mid-tetrahedron as the split points,
as used in [NF97]. To generate more accurate split positions
and let the cutting better conform to the simulation result,
we use the scalar damage value computed at each vertex
or particle. Then, based on a user-specified damage thresh-
old value, we compute these bisecting positions and store
them in the barycentric coordinates of the tetrahedron. The
barycentric coordinate values are then used in the next step.
We note that for each split point this computation is executed
once during the whole process.

Perform local split: As the tetrahedron is already voided,
it is incorrect to split the tetrahedron using the current po-
sitions of the four vertices. For each splitting component,
we need to setup a local, virtual tetrahedron for it. The vir-
tual tetrahedron is built based on the current positions of the
vertices in this component. Then, a real split is performed on
the virtual tetrahedron. Since we assume a particle is a mass-
point and does not have any rotational momentum, the local
coordinate is fixed at the time when it is converted from a

mesh vertex into a particle. After that, there is no change to
its local coordinate. Therefore, we simply record this coor-
dinate for each particle at the time of its creation.

The mesh vertices are translating and rotating during the
simulation. To setup the virtual tetrahedron for mesh ver-
tices, we need to find a base triangle in each time step t. In
split case 1, the base triangle is formed by the 3 mesh ver-
tices since they are in one cluster. In case 2, for each cluster
we need to find a triangle on the boundary surface which
shares the two vertices as one of its edges. For each of the
single-vertex clusters in case 3 and 4, we need to find a trian-
gle on the boundary surface which shares that vertex. After
locating the base triangle on the boundary surface, we com-
pute a differential representation for each vertex in the ele-
ment that is not used to form the base triangle. In this com-
putation, we use the initial, un-deformed vertex positions at
time step 0. The vector M d0 is given by

M d0 = d0− (a0 +b0 + c0)/3 (20)

where a0, b0 and c0 are vertices of the base triangle, d0 is
the vertex to be evaluated, M d0 is the differential vector of
d0. See Figure 6 for illustration. Then, the differential vector
M d0 is used to compute d′

t, a virtual, deformed positions of
d0 at time step t:

M dt = k[M d0 ·Nx,M d0 ·Ny,M d0 ·Nz] (21)

d
′
t = (at +bt + ct)/3+M d

′
t (22)

where at, bt, and ct are the deformed positions, k is the ra-
tio of the perimeter of the deformed triangle 4atbtct to the
original triangle 4a0b0c0, and Nx, Ny, and Nz are the three
axis of the triangle atbtct’s local frame in world coordinates.
Once all the vertices of the virtual tetrahedron are ready,
we split the virtual tetrahedron using the barycentric coordi-
nate values computed in advance. The split results are stored
as vectors relative to the real mesh vertices. Since there are
several tetrahedra sharing one edge, a timestamp is used on
each tetrahedron edge to avoid redundant computation and
to keep consistency of the split positions.

a0 d0

c0b0

△d0

a0 d0

c0b0

△d0
at

dt
’

ct

bt

△dt

dt

Figure 6: Computing the virtual position of a particle vertex
d0 in time step t. (left) Vertex d0 and its base triangle. (right)
The deformed position dt and the virtual position d′

t.
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5. Experimental Results

We have implemented the simulation and visualization al-
gorithms in C++. The experiments are conducted on a 2.8G
Intel Xeon PC with 1GB of RAM. The models used for the
simulation are created using NETGEN, a publicly available
mesh generation package [Sch97]. We use a linear Comple-
mentary Conjugate-Gradient method for contact boundary
conditions. In visualization, since the geometry reconstruc-
tion algorithm generates many tiny triangles, we perform an
online vertex clustering simplification on the output data to
reduce the triangle count. In addition, a feature-preserving
surface smoothing algorithm is performed on the simplified
mesh. The accompanying video contains animations corre-
sponding to the examples. The images are rendered using
POV-Ray (http://www.povray.org), an open source
ray-tracer.

t= 3ms t= 6ms

t= 9ms t= 12ms

t= 15ms

Figure 7: Simulation of a vase shattered onto the ground,
where geometric shapes of the particles are reconstructed
and rendered. Images are rendered at different time steps (in
simulation time).

During the computation, we output the results on a fixed time
interval of the simulation time. Information about the input
tetrahedral element size of each example along with the av-
erage time required to compute each time step are listed in
Table 1. Instead of tracking the crack tips and maintaining
the boundary surface at every step of the simulation, the vi-
sualization algorithm operates on the output data only. As-
suming that the output time interval is small enough, this
does not affect the visualization accuracy and we find that
the results are satisfactory. By this means we separate the vi-
sualization stage from the simulation stage, therefore mak-
ing the simulation algorithm simple, clean, and efficient. In
fact we have tried most of the meshless methods available in
the literature, such as the moving least-square, element free
Galerkin, smooth particle hydrodynamics, etc. Due to their
un-symmetric nature, each method has its own deficiency
such as tensile instability or dramatic time step reduction,
etc. The proposed framework overcomes these deficiencies
and provides accurate and stable results. Besides, in all ex-
amples of this paper, the visualization algorithm takes less
than 1 second per frame. We have also counted the extra
triangles introduced as the boundary surface for failed el-
ements and particles. On average a particle will introduce
around 100 triangles (before simplification), which is deter-
mined by the vertex valency in the tetrahedral mesh and the
splitting cases.

Figure 7 shows a porcelain vase shattered onto the ground.
The vase has a vertical velocity of 25m/s. Since the vase
is brittle, it breaks into several large chunks, together with
thousands of small pieces. About 25% of the nodes are con-
verted into particles. However, if elements are directly con-
verted, the particle count will be much larger. On the top-
right corner of Figure 7, a zoomed-in view of the boxed re-
gion in this figure is shown to demonstrate the significant
appearance difference with Figure 1 for obtaining the actual
geometric shapes of the failed material and debris clouds.

Figure 8 shows a stone plate falling onto the ground with a
small angle, where a side-by-side comparison is given. The
initial velocity is 20m/s. In the top row, we show the ren-
dering results where spheres are used for particle rendering.
In the bottom row, the actual geometric shapes are rendered.
As demonstrated by this figure and the companion video, the
visual realism is improved significantly.

6. Concluding Remarks

We have introduced a hybrid framework for fracture simula-
tion that generates a large amount of debris particles. We
have presented the physics-based governing equations for
the hybrid simulation. In visualization, we have further de-
veloped a dynamic tetrahedral splitting algorithm to extract
geometric shapes for the particles. Our system is physically
correct, computationally efficient, and visually realistic.

A general limitation of our current hybrid approach is that a
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Table 1: Simulation performance. The particle numbers are counted at the end of the simulation.

Tetrahedron Node Particle Frame Time step CPU time per
Model # # # # interval (µs) time step (sec.)
Vase 40.4K 13.8K 3445 650 40 37.2
Plate 23.1K 5.4K 644 220 50 21.5

t= 2ms t= 4ms t= 6ms

Figure 8: A stone plate falls onto the ground. The simulation results are rendered using mesh and spherical particles (top row),
and geometric shape reconstruction methods (bottom row) at different time steps (in simulation time).

densely tesselated mesh is required as the input. If the input
mesh is too coarse, the simulation results will significantly
depart from the correct solution and will look unnatural. An-
other limitation is that the geometric shapes of the particles
are dependent on the initial meshing since the particles are
converted from the damaged elements. If one object is tesse-
lated into two different ways, the computed particle shapes
are different. This will not be a visual problem as long as the
volumetric mesh is adequately refined. Lastly, current imple-
mentation of the particles lacks support for angular veloc-
ity, which causes an awkward feeling in the demonstration
video. We plan to add rotational momentum on particles in
our future study.

We envision many practical applications of our system. It
could be used for simulating, visualizing, and understanding
many phenomena. For example, we could simulate a comet
explorer colliding with the comet kernel, which will cause
a splendid explosion and generate a large amount of debris
particles.

There are a number of avenues for our future work, includ-
ing:

• Incorporation of adaptive meshing for accelerating simu-
lation.

• Further improvement of the system efficiency using a
combination of explicit and implicit time integration.

• Extension of our system to the simulation of other phe-
nomena, such as explosion, fire, smoke, etc.

• Integration of other visualization techniques, such as tex-
ture splats, isosurface-based rendering, etc.
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