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Abstract
We present a novel cost function to prioritize points and subsample a point set based on the dominant geometric
features and local sampling density of the model. This cost function is easy to compute and at the same time
provides rich feedback in the form of redundancy and non-uniformity in the sampling. We use this cost function to
simplify the given point set and thus reduce the CSRBF (Compactly Supported Radial Basis Function) coefficients
of the surface fit over this point set. Further compression of CSRBF data set is effected by employing lossy encoding
techniques on the geometry of the simplified model, namely the positions and normal vectors, and lossless encoding
on the CSRBF coefficients. Results on the quality of subsampling and our compression algorithms are provided.
The major advantages of our method include highly efficient subsampling using carefully designed, effective, and
easy compute cost function, in addition to a very high PSNR (Peak Signal to Noise Ratio) of our compression
technique relative to other known point set subsampling techniques.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling – Curve, surface, solid, and object representations

1. Introduction

Due to the advances in 3D data acquisition techniques such
as laser range scanners, point set surfaces are increasingly
popular. As scanning devices produce higher detailed sur-
faces that contain huge number of unorganized points, sur-
face reconstruction algorithms need large memory and run-
ning time. Clearly, the sampling by these automatic scan-
ners are not dependent on the surface features, and hence the
data sets exhibit a large proportion of redundant informa-
tion. Simplification of such point sets is one of the important
preprocessing techniques for making storage, transmission,
computation, and display more efficient. Other than these ap-
plications, the time consuming processes, such as computa-
tion and polygonization, involved in the reconstruction of the
surface from its point samples using implicit representations
benefit a lot by reduced input point set.

In this paper, we present a novel point cloud simplifi-
cation method that is suitable for implicit representations.
The method uses the curvatures of implicit functions and the
distribution of CSRBFs (Compactly Supported Radial Ba-

sis Functions) [Wen95,MYR∗01] in order to prioritize the
points to be removed and simplifies the model progressively.

The main contributions of our paper are as follows.

1. Our point cloud simplification technique is feature-
sensitive, has guaranteed sampling density, is easy and
efficient to compute, and simple to implement.

2. Specifically, our point decimation scheme does not re-
quire refitting of implicit surfaces for every iteration of
point removal and re-prioritization.

3. We also propose a technique to compress the CSRBF co-
efficients of the implicit surface that is fit over the sim-
plified point model. Our coder stores vertices, normals,
and CSRBF coefficients without using mesh connectivity
unlike other conventional techniques.

4. By virtue of our choice of CSRBF as the preferred
implicit representation, as against other multi-level ap-
proaches, the compressed implicit functions can be di-
rectly used in the applications without refitting the sur-
faces. Further, the amount of storage required to store
these functions is just proportional to the number of
points in the data set.
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2. Related work

There are quite a few papers on point set subsampling
and resampling for rendering and representation. Some of
the techniques provide guarantees on error in subsampling
by implicitly or explicitly measuring the distance between
the smooth or piecewise linear surface fit on the original
and reduced point sets. A few other techniques use a sim-
ple distance-between-points based approach to reduce the
number of points and cannot strictly guarantee any quality
of simplification either in terms of surface approximation
bounds or in terms of local sampling density.

One of the most commonly used surface representations
is Point Set Surfaces (PSS) [ABCO∗01] that reduce the re-
dundant points by estimating a point’s contribution to the
Moving Least Squares (MLS) surfaces.

Pauly et al. [PGK02] introduce various surface simplifi-
cation techniques to point sets. The incremental and hierar-
chical clustering, iterative simplification, and particle simu-
lation algorithm are implemented to create approximations
of point-based surfaces with lower sampling density. In it-
erative simplification, they use the influential surface sim-
plification of the quadric error metric in [GH97]. The non-
uniformity in sampling distribution is addressed by resam-
pling using the MLS method which is based on sampling
density estimation. However, this method does not provide
any absolute or relative sampling density guarantee.

Moenning and Dodgson suggest a coarse-to-fine uniform
or feature-sensitive point cloud simplification algorithm with
user-controlled density guarantee [MD03]. In [MD04], they
build upon the intrinsic point cloud simplification idea put
forward in [MD03]. It supports both sub- and resampling
of point sets for dealing with non-uniformity and under-
sampling in the input. Since both techniques are generic
simplification algorithms, the simplification accuracy is not
measured against any implicit or other surface representa-
tions. In other words, it has sampling density guarantee but
does not guarantee any bounds on surface approximation.

Another stream of research that is relevant to our work is
the explicit computation and use of curvature of the surface
for simplification. In mesh simplification, the algorithm pro-
posed by Turk [Tur92] uses repelling particles to re-sample
the polygonized surfaces using curvature measurements. In
[MGW05], a class of energy functions for distributing par-
ticles on implicit surfaces is used for the curvature based
sampling of implicit surfaces. These techniques are funda-
mentally resampling techniques as against our subsampling
technique. In other words, they use a (polygonal or implicit)
surface representation to move the points on the surface for
better positioning. They are computationally expensive and
a coarser point set is not a strict subset of the finer point set.

Implicit shape representations have proven to be use-
ful for modeling, animation, and visualization. RBFs (Ra-
dial Basis Functions) are popular for interpolating scattered

data [SPOK95,TO99]. RBFs have been employed with bet-
ter results than competing techniques, especially for pro-
ducing high quality surfaces, repairing incomplete data and
in methods requiring no topological constraints. The funda-
mental problem with RBF is its computation cost in terms
of the need for solving large linear systems that is propor-
tional to the size of the point data set. Hence its applicability
is limited to small point sets.

For modeling the large point sets, CSRBFs that make
the linear algebraic equation sparse [Wen95,MYR∗01] and
the fast RBF-based method using FMM (Fast Multipole
Method) [CBC∗01] are proposed. Moreover, multi-scale ap-
proach to interpolate point set surfaces with irregularly sam-
pled and/or incomplete data [OBS03] and MPU (Multi-level
Partition of Unity Implicits) making use of the partition of
unity weights and local piecewise quadric approximation
functions are suggested [OBA∗03]. Since a hierarchical ap-
proach solve CSRBFs to reduce the implicit error at each
level, it uses more CSRBF coefficients than single level
CSRBFs. Further, since partition of unity approach needs
the overlapped area to make the functions blended, we need
more CSRBF coefficients too.

As for implicit representations applied for the shape com-
pression, [CBC∗01] proposes a coarse-to-fine greedy algo-
rithm based on the fitting accuracy to reduce RBF centers
to represent a surface. Since this method has to solve RBFs
iteratively, it is computationally expensive.

In this paper, we propose a point cloud simplification
technique for implicit representations and compress implicit
functions. Since CSRBFs are able to reconstruct large point
sets and CSRBF representations which are similar to RBF
representations [CBC∗01] are suitable for data compression,
we use CSRBFs for the implicit surface reconstruction.

The rest of the paper is organized as follows. We first in-
troduce the CSRBF implicit surfaces (Section3), our choice
of specific CSRBF surface (Section3.1), measurement of er-
ror in fitting the CSRBF (Section3.2), and computation of
curvature in implicit surfaces (Section3.3). Followed by this
elaborate introduction on definition and computation tech-
niques of CSRBF, we introduce our point simplification al-
gorithm (Section4) with special stress on the cost function.
We analyze various effects and facets of this algorithm in
Section4.1. The algorithm described, reduces the number
of points of the data set thus requiring less storage for the
CSRBF data. We further compress this data using lossy and
lossless compression techniques (Section4.2). Finally we
discuss the results of our methods with comparison to other
state of the art techniques (Section5).

3. The CSRBF Implicit Surfaces

Let us consider a set of points{pi}N
i=1 scattered along a sur-

face with unit normals{ni}N
i=1. We wish to find a functionf
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that interpolates{pi}N
i=1 implicitly.

f (pi) = 0, i = 1,· · · ,N. (1)

To make the solution of Equation1 unique, off surface points
{pi}M

i=N+1 are appended to the input data along the unit nor-
mals{ni}N

i=1, such that

f (pi) = 0, i = 1,· · · ,N, (2)

f (pi) = di 6= 0, i = N+1,· · · ,M. (3)

In this paper, we assume that the number of points on the
surface and off the surface are the same:M = 2N. We cre-
ate off-surface points on only the (inside or outside) of every
surface point. The off-surface function valuesdi are assumed
to be positive outside the object and negative inside the ob-
ject.

Now, the function valuesf (x) at all pointsx in space can
be defined using the basis functions, namely the CSRBF. Let
Q = {pi}M

i=1 be input points. Then,

f (x) = ∑
pi∈Q

λ i ϕσ (||x−p i ||), (4)

whereϕσ (r) = ϕ(r/σ), ϕ(r) is the Compactly Supported
Radial Basis Function (CSRBF). The support size or, in
other words, the range of influence of a pointpi is given
by σ . The value of the support sizeσ is determined by the
sampling density as recommended by [OBS03].

The CSRBF (Equation4) implicit representation is basi-
cally given by the function centers{pi}M

i=1 and their corre-
sponding coefficients{λ i}M

i=1. Due to this simple represen-
tation structure, CSRBF are particularly amenable to data
compression. Our scheme for CSRBF compression is de-
scribed in Section4.2.

3.1. Choice of CSRBF Basis Function

There are many different kinds of CSRBF functions that are
used for different purposes and with different orders of conti-
nuity. We analyze a special kind of CSRBF called the Wend-
land’s CSRBF [Wen95] which is generally used for surface
reconstruction purposes, withC0, C2, C4, andC6 continuity
as listed below, where CSRBFs are defined to be 0 ifr > 1.
We choose the one that gives us the best result.

C0 ϕ(r) = (1− r)2
+

C2 ϕ(r) = (1− r)4
+(4r +1)

C4 ϕ(r) = (1− r)6
+(35r2 +18r +3)

C6 ϕ(r) = (1− r)8
+(32r3 +25r2 +8r +1)

We reconstructed models under varying sampling density
using the above four CSRBFs and measured the error of each
of the reconstruction from the original point set. Figure1
shows the reconstructed Stanford Bunny models using the
four CSRBFs using the same reconstruction kernel (support
size). From the graph in Figure1, we see that for all sizes of
the model, the quality of reconstruction of the surface with
orderC2 CSRBF is better than the other three. Furthermore,

C0: 62.18 dB C2: 66.91 dB

C4: 66.24 dB C6: 65.70 dB
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Figure 1: Top four models: reconstruction of the simpli-
fied Stanford Bunny point set consisting of 3,334 points. Bot-
tom graph: reconstruction accuracy of number of points and
PSNR by four kinds of CSRBFs on Stanford Bunny model.

the orderC2 CSRBF showed the best quality in other mod-
els (Armadillo and Venus) also. Hence we use Wendland’s
CSRBF withC2 continuity as our representative function
throughout this paper. In this paper, although we restrict our
analysis to this particular CSRBF, note that our method is
general enough to be applicable to any CSRBF. In the graphs
shown, the quality of the reconstruction is measured using
PSNR as described in Section3.2.

3.2. Measuring Surface Fitting Error

Throughout the paper, we will be measuring the deviation of
the implicit surface fit over a reduced set of points from the
original model. The error in geometry is usually expressed
in terms of Peak Signal to Noise Ratio (PSNR) . PSNR is
defined as

PSNR [dB]= 20× log10
peak

d
, (5)

c© The Eurographics Association 2006.



M. Kitago & M. Gopi / Efficient and Prioritized Point Subsampling for CSRBF Compression

Figure 2: Curvature measures of Stanford Bunny model and
Armadillo model using MPU implicits.

where “peak” is the model’s bounding box diagonal and
d is the distance of a point from the described geometry.
While comparing triangular surfaces,d is measured using
metrics like Haudorff metric. In case of implicit surfaces,
Taubin [Tau91] justifies the use of a function specifically de-
signed for implicit surfaces to measured. This Taubin dis-
tance of a pointpi is given by | f (p i)|/|∇ f (p i)|. In other
words, each distance of a point from the zero set of the im-
plicit surface is normalized using the rate of change of this
function at that point. This accounts for the non-uniform
scaling or warping of the coordinate system by the im-
plicit function. For example, since an ellipsoid grows slowest
along its smallest eigen vector, the ‘unit-distances’ along the
three axes is expressed in terms of the velocity of the implicit
front in the particular direction.

The above normalized distance measure is what is com-
monly used with implicit surfaces as done by, for exam-
ple, [OBA∗03] for adaptive octree subdivision of MPU im-
plicits. We also use this distance function in the computation
of PSNR as described below.

Let P = {pi}N
i=1 be original point set.d is defined as the

average of algebraic sum of Taubin distances.

d =
∑pi∈P | f (p i)|/|∇ f (p i)|

N
. (6)

Note that this PSNR measurement is not specific to
CSRBF, but applicable to any implicit function.

3.3. Measuring curvatures of implicit surfaces

The curvature of implicit surfaces is derived from its closed
form expression, and from the first principles of differential
geometry as the second order partial derivatives of the func-
tions. In [AJ04], the computed curvature is used for polygo-
nizing closed implicit surfaces. We make use of it for iden-
tifying the features and simplifying the point set based on
these features. We briefly describe the method of computing
the curvature for the sake of completion.

Let us consider the implicit functionf (x) = 0. The gra-
dient vectorg and the normal unit vectorn are defined at

the arbitrary pointx using the first order partial derivative of
f (x).

g = ∇ f , and n = g/ ‖ g ‖ . (7)

The curvatures of functionf (x) are defined as matrixC by
the partial derivatives of the normaln.

C =




∂nx
∂x

∂nx
∂y

∂nx
∂z

∂ny

∂x
∂ny

∂y
∂ny

∂z
∂nz
∂x

∂nz
∂y

∂nz
∂z


 . (8)

The above matrix is the rank-deficient shape operator matrix
of the surface whose first two eigen values give the principal
curvaturesκ1 andκ2, the third value being zero along the
normal vector direction.

4. Our Point Cloud Simplification Algorithm

We have seen that the number of basis function centers and
the coefficients for CSRBF is proportional to the number of
point samples in the model. The goal of our point cloud sim-
plification algorithm is to reduce the associated CSRBF data
by reducing the number of points. The idea behind reduc-
ing the set is to assign an importance value or a cost value
for every point in the data set and remove the point that is
least important. Once a point is removed, its neighborhood
points would gain more importance by virtue of fewer points
representing that region, and hence their cost values are re-
evaluated. The above process is repeated till a desired num-
ber of points have been removed.

The Cost Function: One of the main contributions of this
work is the cost function to evaluate the importance of a
point in the data set. LetP = {pi}N

i=1 be input points scat-
tered along a surface. We define thesuitability of the point
p i for removalas

ci =
Ni ·∑p j∈P ϕσ (||p j −p i ||)

Ki
, (9)

whereϕσ (r) = ϕ(r/σ), ϕ(r) = (1− r)4
+(4r + 1) is Wend-

land’s CSRBF [Wen95]. σ is its support size decided by the
recommended support size [OBS03] scaled by asubsam-
pling support size factor, α. Ni is the number of points within
the radiusσ of pi andKi is the curvature of the original sur-
face atpi computed asK = ε +max(|κ1|, |κ2|), whereε > 0
is used to avoid division by zero in Equation9. Since we
usec as a relative measure for comparing the importance of
points, the absolute value ofε is immaterial. We useε = 1.0
in our experiments. More information on estimation ofK is
given later in this section.

The intuition behind this cost function is to have the dis-
tribution of points proportional to the local curvature. Higher
curvature regions, indicating features, require higher distri-
bution and vice-versa, and the ratio of these two quantities
should be approximately the same at all points in the data set.
The numerator of the cost function,∑p j∈P ϕσ (||p j −p i ||)
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estimates the contribution of the pointpi to the CSRBF sur-
face inpi ’s neighborhood. The curvature at that point being
a constant, if there are many points in the neighborhood, the
importance of the contribution of a single point reduces and
the point’s importance increases if it is one of the very few
points representing the neighborhood. This aspect of impor-
tance estimation is captured by the scale factorNi . Hence, if
ci is high, the corresponding point’s importance in its neigh-
borhood is low, and hence the distribution of points in that
region is unusually high with respect to the curvature. Such
points are best candidates for removal.

Curvature Estimation: In order to compute the suitability
of every point for removal, we need to calculate the curva-
ture of the surface at all the points. Computation of curvature
(refer to Section3.3) requires fitting of implicit surface. Note
that the goal of our algorithm is to make the CSRBF com-
putation viable by reducing the point set, and this prohibits
the use of CSRBF to the initial data set in order to compute
the curvature. Since normal curvature is an inherent property
of a surface and independent of its functional representation,
any smooth function that arguably represents the surface of
the point set correctly, can be used. We use a fast, local im-
plicit function, the MPU implicits [OBA∗03], to compute
the curvature of the original model (and is computed only
once). Figure2 shows the maximum absolute curvatures of
Stanford Bunny and Armadillo models. Notice the expected
curvature measurements in the parts of eyes of the Bunny
model and hands and legs of the Armadillo model.

4.1. Analysis of the Algorithm

Putting things together, we first compute the curvature at ev-
ery point on the given data set using MPU implicit fitting.
Once the curvatures are set, the suitability cost of every point
for removal is calculated as given by Equation9. The point
with maximum value ofc, pmax is removed. This removal
would affect the cost of all points within a radius ofσ from
pmax, hence they are recomputed. From the new set of cost
values, the point with maximum value ofc is again chosen,
and the above process is repeated till a desired number of
point reduction is achieved. Note that the curvature is com-
puted only once based on the original model and is not re-
computed for every iteration.

The distribution of the values of the costc is an important
indicator of the uniformity of distribution of points with re-
spect to the requirement demanded by the local curvature. In
effect, our simplification algorithm strives to make the cost
value same for all points through a single operation, namely
the point removal. Hence our algorithm is strictly a subsam-
pling algorithm in which subsequent levels of detail of the
model is a strict subset of its parent model. The histograms
shown in Figure3 illustrate the distribution ofc after a se-
quence of point removal operations. The shrinking of the
range ofc indicates increasing uniformity in the values of
c.

Note that over the sequence of point removal operations,
the values ofci monotonically reduces. Hence the histogram
in Figure3 will only be pushed towardsc = 0. Ideally, there
are two (probably dependent) parameters in the algorithmic
design space – the value ofc and the number of points in
the final model. If another fundamental operation, namely,
the addition of a pointis allowed, then we can explore the
entire two dimensional solution space. Specifically, given a
value ofcf , we can add points in the region with lowerc to
increase its value, and remove points as before in the regions
of higher value ofc to reduce its value, in effect increasing
the number of points withc = cf . With this additional oper-
ation, we can perform both subsampling and resampling of
the given data set.

4.2. Reconstruction and Compression of CSRBF
surfaces

We fit a CSRBF surface on the subsampled point data set
using the same function in Equation4, whereσ is its sup-
port size decided by the recommended support size [OBS03]
scaled by areconstruction support size factor, β . The value
of β may be different from subsampling support size factor
α whose value is not known at the reconstruction stage. We
achieve a major compression in surface representation just
by subsampling the point set. Further compression can be
achieved by encoding the centers and the coefficients of the
final CSRBF fit on the reduced point set.

Since CSRBFs solve the linear algebraic equation, the sur-
faces generated by the CSRBFs are very sensitive to the
coefficient values. Since even small perturbations in these
coefficients are undesirable, we use a lossless compression
scheme like PPM to encode them. On the other hand, the
CSRBF surfaces are impervious to slight perturbations of
the point locations and their normal vectors. Hence we use a
lossy compression for vertices and normals in our coder.

We encode the simplified point setpi and its normal vec-
torsni using lossy scalar quantization and arithmetic coding,
and the CSRBF coefficientsλi using lossless Prediction by
Partial Matching (PPM) coding [CW84].

5. Results and discussion

We compare our point cloud simplification technique against
known mesh simplification techniques for different mod-
els shown in Figures4 and 5. The technique [Hop99] us-
ing quadric error metric [GH97] (Quadric Decimation),
the vertex clustering technique by quadric error [Lin00]
(Quadric Clustering), the decimation algorithm of triangle
meshes [SZL92] (Decimation), and the progressive mesh
decimation based on [SZL92,Hop96] (Progressive Decima-
tion) are the other techniques used to reduce the number
of points. We fit the CSRBF surface over these simplified
points for comparison. We use Visualization Tool Kit (VTK)
implementation of all these algorithms.

c© The Eurographics Association 2006.



M. Kitago & M. Gopi / Efficient and Prioritized Point Subsampling for CSRBF Compression

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100  120

Distribution of c

34834 points

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100  120

Distribution of c

29834 points

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100  120

Distribution of c

19834 points

Figure 3: Distribution of c on Stanford Bunny data set: (left) 34834 points, (middle) 29834 points, and (right) 19834 points
with α = 1.0.

 58

 60

 62

 64

 66

 68

 70

 72

 74

 1000  2000  3000  4000  5000  6000  7000  8000  9000

PS
N

R
 [

dB
]

Number of points

α = 1.0, β = 2.0

α = 1.2, β = 2.0

α = 1.5, β = 2.0

Quadric Decimation

Decimation

Progressive Decimation
 54

 56

 58

 60

 62

 64

 4000  6000  8000  10000  12000  14000

PS
N

R
 [

dB
]

Number of points

α = 1.3, β = 1.5

α = 1.5, β = 1.5

α = 2.0, β = 1.5

Quadric Decimation

Quadric Clustering

Figure 4: Simplification accuracy of number of points and PSNR on Stanford Bunny model consisting of 35,947 points (left
graph) and Armadillo model consisting of 172,974 points (right graph).

Figure 4 shows the simplification accuracy in terms of
number of points and PSNR. Our subsampling was done
using three differentα values and reconstruction using the
sameβ value in all cases. The minimal number of points are
different for eachα because of simplifying until the number
of points in the support of each CSRBF becomes one. Thus
our technique can lead to minimal density with respect to
the feature of the point. The PSNR is better for lower val-
ues ofα since a smaller support size can capture the fea-
tures of the model better than larger supports. Further, in our
experiments with both the Bunny and the Armadillo mod-
els, our method is in general better than all other methods.
In the Bunny model, this is especially true for simplified
model with less than 5000 points, since for fewer number
of points, the sampling becomes more regular in our simpli-
fication process.

Figure 5 shows our simplification results on the Venus
model. The top row shows the reconstructed models with
the points from our subsampling technique. The middle row
shows the reconstructed models from the points reduced
by quadric decimation [Hop99]. As both techniques recon-
struct the models well, results of our technique seem to look
smoother since at lower point count the uniformity in sam-

pling gains more importance than the curvature. Further, this
smoothening effect also distributes the error thus increasing
the PSNR. These effects can be deduced from the accompa-
nying graph.

The timings for simplifying the points depend on the
model size and the support size of CSRBF. On Stanford
Bunny model, points are simplified to 10% of its original
size at a rate of over 4100 points per second for various val-
ues ofα; over 3300 points per second to reduce the Venus
model to 5% of its original size, and over 2500 points per
second to reduce the Armadillo model to 5% of its original
size. Time benchmarks are measured on Intel Celeron M 1.3
GHz processor and 752 MB RAM. The most often repeated
operation in our algorithm is finding the point with maxi-
mumc, removing that point (and hence thec value) from the
list, and recomputing the values ofc in its neighborhood. We
used a priority queue to do these operations.

Figure 6 shows the compression results of CSRBFs on
Stanford Bunny. The top row shows the reconstructed mod-
els from the compressed data. Our coder uses PPM cod-
ing for CSRBF coefficients, and scalar quantization and
arithmetic coding for vertices and normals. The middle row

c© The Eurographics Association 2006.



M. Kitago & M. Gopi / Efficient and Prioritized Point Subsampling for CSRBF Compression

shows the reconstructed models from the lossy scheme. The
lossy scheme codes vertices, normals, and CSRBF coeffi-
cients by scalar quantization and arithmetic coding. On the
top left model consisting of 1,381 points and the middle
left model consisting of 1,834 points, our coder shows bet-
ter PSNR than the lossy scheme. On the other four models,
our coder has about 2.0 to 5.0 PSNR better than the lossy
scheme. The graph compares rate-distortion curves with var-
ious bits of vertices (V), normals (N). The bits of CSRBF for
the lossy scheme are set to 12 bits. The combinations of 12
bits of vertices and 6 bits of normals show the best PSNR.
As can be seen from the lossy scheme, CSRBF coefficients
are very sensitive for data loss.

6. Conclusions and future work

We have described a new point cloud simplification tech-
nique for implicit representations. By using the curvatures
of implicit functions and the distribution of CSRBFs, our
technique is feature-sensitive, has guaranteed sampling den-
sity, is easy and efficient to compute, and simple to imple-
ment. The quality of the simplification and reconstruction is
highlighted by the PSNR graphs especially in the small num-
ber of points. We have also introduced compression frame-
work for CSRBFs. Our coder combines the lossless scheme
for CSRBF coefficients and the lossy scheme for vertices
and normals. Compressed implicit functions can be directly
used in all applications that use implicit functions without
the need for refitting the data.

The future work includes employment of developing al-
gorithm for the next logical fundamental operation: point
addition, and finally developing algorithm that combines ad-
dition and removal of points for effective resampling of the
point set. The resampling technique will be useful in data
sets more irregularly sampled and/or incomplete regions.
The better coder of vertices and normals should be imple-
mented and the the way to reduce the entropy of CSRBF
coefficients losslessly should be investigated.
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2006 points, 63.01 dB 5345 points, 66.32 dB 11345 points, 69.31 dB

Reconstructed models (withβ = 1.5) from points from our subsampling technique (withα = 2.5).

2017 points, 61.30 dB 5375 points, 64.68 dB 11421 points, 68.62 dB

Reconstruction (withβ = 1.5) from the point set given by quadric decimation algorithm.
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Figure 5: Simplification results of number of points and PSNR on Venus model.
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21.7 KB, 62.44 dB 67.5 KB, 67.68 dB 113.3 KB, 69.16 dB

Compression using lossy and lossless schemes

18.9 KB, 61.95 dB 68.3 KB, 66.01 dB 111.0 KB, 64.38 dB

Compression using lossy scheme
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Figure 6: Compression results of file size and PSNR on Stanford Bunny model.
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