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Abstract

In this paper we present a progressive compression method for point sampled models that is specifically apt at
dealing with densely sampled surface geometry. The compression is lossless and therefore is also suitable for stor-
ing the unfiltered, raw scan data. Our method is based on an octree decomposition of space. The point-cloud is
encoded in terms of occupied octree-cells. To compress the octree we employ novel prediction techniques that were
specifically designed for point sampled geometry and are based on local surface approximations to achieve high
compression rates that outperform previous progressive coders for point-sampled geometry. Moreover we demon-
strate that additional point attributes, such as color, which are of great importance for point-sampled geometry,
can be well integrated and efficiently encoded in this framework.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Data]: Coding and information theory - Data
compaction and compression; 1.3.5 [Computer Graphics]: Computational geometry and object modeling - Curve,

surface, solid and object representations

1. Introduction

The increasing amount of geometric information acquired
with 3D scanners gives rise to an equally growing demand
for data representations that allow for efficient and compact
storage as well as transfer of this data. Geometry compres-
sion has therefore been an important field in computer graph-
ics for a long time and recently point-sampled geometry re-
ceived an increasing amount of attention in particular. In
general, the output of a 3D scanning session is a dense and
relatively regular point sampling of the surface. Some ac-
quisition devices equip the point samples with additional at-
tributes, of which color usually is one of the most important.
In this paper we present a progressive compression method
for point sampled models that is specifically apt at dealing
with densely sampled surface geometry as produced by 3D
scanning devices. The compression method presented here
is lossless and therefore is also suitable for archiving the un-
filtered, raw scan data. The progressiveness of the algorithm
renders it suitable for streaming applications, e.g. on the in-
ternet.

Our method represents the point-cloud as an octree de-
composition of space which we compress using novel pre-
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diction techniques that were specifically designed for point
sampled geometry to achieve high compression rates, out-
performing previous progressive lossless point-cloud en-
coders and achieving comparable performance during pro-
gressive decompression as existing lossy methods. We also
demonstrate that additional point attributes, such as color,
which are of great importance for point-sampled geometry,
can be well integrated and efficiently encoded in this frame-
work.

2. Previous work

Several compression schemes for point-sampled geometry
have been proposed. The progressive point set surfaces by
[FCOASO03] are based on the MLS surface definition of
[ABCO*03]. The input point-set P is reduced, the result-
ing base point set is triangulated and then compressed using
a mesh compression algorithm. The base point-set is refined
by insertion of additional samples in the local neighborhoods
of the base points. These new samples are projected on the
MLS surface induced by P and only the difference needs to
be encoded, yielding a lossy compression. Unfortunately the
method has a tendency to smooth out sharp features as a con-
sequence of the MLS surface approximation. The algorithm
of [OS04] makes use of the MLS surface as well. They use a
set of planar height fields to resample the surface and encode
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the data using image based techniques. The partitioning of
the point-cloud into planar regions is obtained by a method
similar to the one given in [PGO1]. The method could be
called semi-progressive as it uses progressive coding only
within the patches. Since this method is based on the MLS
surface as well, it also suffers from the smoothing inherent
to this approximation, but also may introduce artifacts at the
patch boundaries. The MLS surface is also not well suited
for compression of noisy scanning point-clouds, as it may
break down in regions of too much noise or high irregu-
larity. [WGE™*04] create a hierarchy on the point-cloud by
joining pairs of similar samples. The similarity measure can
be chosen to include, besides spatial proximity, additional
attributes, such as color or normals. Pairs are collapsed to
their average and only the offset to one of the points has to
be encoded for compression and a local coordinate system
is used for offset representation, resulting in a progressive
coder for geometry and arbitrary point attributes. Although
not technically a compression algorithm, one of the earliest
methods concerned with efficient representations of point-
clouds is the QSplat rendering system of [RLOO]. QSplat is
based on a hierarchical bounding sphere data structure where
each node is quantized to a size of 48 bits, including attribute
data such as color and normal information. High quality ren-
derings are obtained despite this strong quantization.

Since many important concepts of geometry compression
were introduced in the context of mesh compression and we
also build upon some of those ideas we briefly discuss the
contributions most relevant to our work, a more thorough
survey can be found in [AGO03]. For meshes, not only geom-
etry information, but also the mesh connectivity has to be
encoded. Mesh compression methods can be loosely sepa-
rated into two categories: connectivity or geometry centered.
Instances of connectivity centered algorithms are the algo-
rithms of [GS98] and [R0s99]. These coders are not pro-
gressive and the ideas therein have been transferred to point-
clouds with the single rate encoders proposed by [GKISO05]
and [MMGO06]. A spanning tree is constructed on the points
and traversed. Only offsets to consecutive points are en-
coded and several prediction rules for the geometry are ap-
plied [TG98]. In general the compression rates of single rate
encoders are higher compared to those of progressive coders,
since no intermediary information needs to be transmitted.
The geometry centered algorithm of [KG00] is a lossy codec
based on a spectral analysis of the mesh. While high com-
pression rates are obtained, unfortunately computing the co-
efficients is computationally very expensive. A different ap-
proach was introduced in [DGO0] and [GD02]. While the al-
gorithm was originally intended for mesh compression it is
nonetheless directly applicable to lossless point cloud com-
pression. It is based on a binary hierarchical decomposition
of space. For each cell subdivision, the number of points in
each cell are encoded and only non-empty cells are further
subdivided until the desired precision is reached. [PK05] use
an octree and, similar to [BWKO02], do not encode the num-

ber of points in each cell but instead store for each child the
fact wether it is occupied or empty. However the approach
of [BWKO2] is not truly a point-cloud compression algo-
rithm but encodes an implicit surface, i.e. sampling rate and
precision are identical. The method of [PKO05] on the other
hand can not be directly applied to point-sampled geometry
as it makes extensive use of connectivity information for pre-
diction of non-empty child cells. [PK05] and [BWKO02] both
show that an octree decomposition is capable of achieving
very good compression rates. This is the motivation for our
lossless progressive compression method that also builds on
an octree decomposition. However, we suggest novel predic-
tion schemes that are specifically designed for point-sampled
surfaces and result in compression rates that are similar to,
or even better than, lossless single rate encoders, such as
[GKISO05]. Moreover we show how additional attributes can
be integrated in the framework.

3. Octree compression

In this section we briefly review the general concept
of octree-based geometry compression as introduced by
[BWKO02] [PKO5]. Given the bounding cube of the point-
cloud P that is to be compressed, an octree O is constructed
with a maximum number of levels L and the points in P
are sorted into the cells of the octree. The points in P are
replaced by the cell centers of the octree’s leaves, i.e. the
points in P are quantized. The number of levels determines
the precision of the coordinate quantization. An octree of
depth L gives a precision of L bits per coordinate direction.
In accordance with the notion found in the literature, our
compression scheme is lossless in the sense that these quan-
tized coordinates are preserved during the compression. As
noted in the seminal work of [Dee95], usually a quantization
into 16 bits per direction inside the bounding cube suffices
to achieve a virtually lossless compression.

In order to compress the quantized point set P only the
octree has to be encoded since P can then be reconstructed
as the cell centers of the leaves of O. The coding of the oc-
tree proceeds in a top-down and breadth-first fashion. The
root cell can always be assumed to be non-empty. Then, for
each cell it has only to be encoded which child cells are non-
empty . The decoder can then faithfully recover the octree by
following the same traversal rules as the encoder while al-
ways constructing those child cells that have been specified
as occupied by the encoder. Note that no further information
has to be encoded for empty cells.

Therefore the compression of the octree only depends on
the way the non-empty child cells are encoded. If the oc-
cupied child cell configurations can be well predicted, high
compression rates can be achieved.

In [BWKO2] the existent child cells are specified in a sin-
gle byte per cell subdivision, i.e. each bit specifies the oc-
cupancy of a child cell. This way the octree is encoded as
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a sequence of bytes that can be compressed with arithmetic
coding [MNWO98], exploiting the fact that certain child cell
configurations appear more frequently than others. However
no prediction is employed and hence the compression is only
minimal.

[PKO5] on the other hand propose to encode a child cell
subdivision in two steps, instead of in a single byte: First
the number of non-empty child cells is written. For a given
number e of non-empty child cells the number of possible
child cell configurations is given by (%) and all these config-
urations are stored in a look-up table. The cell occupancy is
then encoded in a second step as index into this look-up ta-
ble. This approach is advantageous as it is more amenable to
elaborate predictive coding, since the information of the first
step can be used to achieve a more accurate prediction in the
second step. However, [PKOS5] do not explicitly predict the
number of non-empty child cells in the first step and for the
second step use a prediction that heavily depends on explic-
itly encoded mesh connectivity. For point-clouds though, ex-
plicitly encoding connectivity information that, for instance,
could be captured in a nearest-neighbors graph, introduces
an unnecessary overhead.

Consequently, in our approach, we employ the same two-
step encoding, but employ novel prediction techniques for
both, the non-empty child count of a cell e and, taking e
into account, also the child cell configuration. Our predic-
tion is based solely on the point-sampled geometry and does
not require any explicitly encoded connectivity information.
This is the key to the high compression rates achieved by our
method. The prediction of the number of non-empty child
cells is presented in detail in section 4.2 and the prediction
of the child cell configurations in section 4.3.

4. Predictive coding

Since the octree is traversed in breadth-first order the cen-
ters of the cells on the traversal front at all times provide a
coarse approximation Q of the complete point-cloud P. Dur-
ing traversal Q is refined progressively as additional child
cells are visited (or created in case of the decoder). Indeed
the decoder can stop processing at any time and return Q
as a preliminary result of the decompression, e.g. in stream-
ing applications. Moreover, as Q is an approximation of the
original point-cloud and is accessible to both encoder and
decoder, we use it to predict the child cell configurations of
the cell subdivisions.

4.1. Surface approximation

The prediction is based on an MLS approximation of the
surface induced by Q. For a leaf cell C € O that is to
be subdivided, a planar approximation Fg of the true un-
derlying surface in C is obtained. To compute the plane
FS we find the k nearest neighbors Ny = {q1...qx} in Q
to the cell center ¢(C) of C (note that N; includes c¢(C)).
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Figure 1: The quality of the non-empty child count predic-
tion é. The charts show the absolute difference between é
and the true number e of occupied cells ranging from 0 to 7,
i.e. a difference of zero (leftmost column) is a correct predic-
tion. (a) Shows the distribution on octree level 5, (b) on level
7, and (c) for the entire octree. Note that it is not important
for the arithmetic encoder to have a peak at zero as long as
there is a distinct peak.

Fg is defined as the plane that best approximates these
points in the weighted least-squares sense. The points in
Ny, are weighted by a Gaussian fall-off around ¢(C) with
6 = s max;—;_i|[c(C) — g;|| [ABCO*03] [PGKO2]. The in-
tersection of this plane with the child cells and the distance
of the child cell centers to the plane can then be used for
prediction of the non-empty child cells. For clarity of pre-
sentation, we will drop the annotation of F, 5 in unambiguous
cases.

4.2. Number of non-empty cells

As stated above, the subdivision of C is encoded in two steps.
First we output the number e of non-empty child cells. The
prediction of e is based on an estimate of the sampling den-
sity p of the original point-cloud P. Since p is in general
unknown it is estimated in a preprocessing step by finding
the k nearest neighbors N,i to every point p; € P and esti-
mating a local sampling density by

k
max;_i_x||pi—q;ll)>m

Pi:(

Then p is given by

o= Yim1.|P|Pi
Pl

The number of occupied child cells of C is related to
the area of the plane F' inside C. The larger the area, the
more points can be expected to be contained in C. Also, if
the area of intersection of a certain number ¢é of child cells
of C already is large enough to account for almost all the
expected points, the number of non-empty child cells will
probably be é. Hence, to predict e, we compute the areas
A; of intersection of F' with the child cells of C, Ty,...,Tg.
Given the estimate p of the sampling density and the to-
tal area of intersection in C, A = Z?:]Ai, the expected
number S¢ of points contained in C can be determined by
Sc = max(1, [ (pA) +.5]). To find the prediction ¢ of e, the
A; are sorted in descending order and then é is given as the
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Figure 2: A cell is to be subdivided. Those child cells that
are closest to the surface approximation Fg are more likely
to be occupied.

smallest 7 such that L(ij:I...iAj) +.5] > Sc. This way
child-cells that, although intersected by the plane, only con-
tribute a marginal amount to the overall area of intersection
are not counted as occupied, especially if only a corner of
the cell is "cut-off" by the plane (for an example see in fig-
ure 2 the lower left child cell). We encode e using adaptive
arithmetic coding under the contexts of the octree level of
C, ¢ and Sc. Using Sc as additional context is helpful as it
provides a measure for the quality of the prediction, which
improves for smaller values of Sc. As we found that a dif-
ferentiation between larger values of S¢ did not improve the
compression rate, for the context of the arithmetic coder, we
truncate S¢ at a value of 16. The quality of the prediction
is illustrated in figure 1. As can be seen, even though e is
not always predicted correctly, the prediction usually is off-
set only by a fixed number. For the arithmetic coder though,
this does not prohibit efficient compression as long as certain
non-empty child counts appear significantly more frequently
than others. This clearly is the case with our prediction. In
figure 1 c) the performance of the prediction is shown for the
processing of the entire octree: A child count of 1 dominates
over the whole octree (since practically all cells on finer lev-
els in the hierarchy have only one child) and our prediction
is able to correctly detect these cases.

4.3. Child cell configuration

Given the number of non-empty child cells e there is only
a limited number of possible non-empty child cell configu-
rations, e.g. 70 if there are four non-empty child cells or 28
in the case of two. A configuration 7 is defined as the set
of non-empty child cells: 7 = {7;|7; is non-empty}. In the
second step of the encoding of a cell subdivision the respec-
tive configuration has to be specified. To this end, each of
the possible configurations is assigned a weight w(7;) by the
prediction and the array of weighted possible configurations
is sorted in ascending order. The prediction is designed to
assign lower weight to more likely configurations. The con-
figuration of the subdivision is then encoded as index into
the sorted array. As more likely configurations receive lower
weights, smaller indices become more frequent than larger
ones and the entropy of the sequence of indices decreases.

FE =

1 o
Pl
A \ [\

(a) (b) Q)

Figure 3: Different alignments of the plane yield different
expressiveness. In a), if there are two non-empty child cells
this gives a very useful prediction. In the case of one or
three occupied cells however, the expressiveness of the plane
is less distinct as several configurations receive the same
weight. Ambiguous cases are depicted on top. In b) three
and in c) all four child cells have a distinct distance to the
plane. b) has a high expressiveness for all but two non-empty
child cells. c) is expressive for all configurations.

The prediction is based on the observation that the cell
centers of occupied child cells tend to be close to the ap-
proximated surface tangent € (see also figure 2). As a con-
sequence we sum up the distances of every non-empty child
cell’s center to the plane F, so that more likely configurations
receive a lower weight. However, we do not use the euclid-
ian distance to the plane, but employ a weighted L; distance
where coordinate directions are weighted with the cosine of
the angle between the plane’s normal and the direction of the
respective axis:

d(va): Z

ie{xyz}

[n(F)i| |pi — pri(F,p)il ,

with n(F) being the normal to F and prj(F, p) the projection
of p onto F. This reflects the fact that the more aligned the
plane’s normal is with one of the coordinate directions, the
less likely it becomes that a cell is occupied if its cell center
is not close to the plane along this direction. The weight of a
configuration 7 is then given by:

w(T)="Y d(F,c(T))

TeT

4.3.1. Index compression

The index of the configuration in the sorted array is encoded
using arithmetic coding under two contexts. The first context
is the octree level of the cell C. The second context reflects
the expressiveness e(F) of the plane F with respect to the
cell subdivision, i.e. the orientation of the plane to the split-
ting planes of the cell, as the orientation of the plane in space
has a strong influence to the accuracy of the prediction, see
also figure 3. We set:

3( 1 In(F)l
e(F)==z|—s+ max ———F———
) 2( 3 ielorat Ljefayay In(F))l

(© The Eurographics Association 2006.



Ruwen Schnabel & Reinhard Klein / Octree-based Point-Cloud Compression

(@) e(F) =1 (b) e(F) =2

(c) e(F)=3 d) e(F)=4
(e) e(F)=5 (f) Distribution of e(F)

Figure 4: The quality of the configuration prediction with
respect to the expressiveness of the plane F. Depicted are
the distributions of the encoded indices in the case of two
non-empty child cells (there are 27 possibilities) for the five
different expressiveness values. The chart (f) on the lower
right gives the distribution of the five different expressive-
ness values. The data was collected using the Igea model
but exhibits the typical behavior we found for a wide range
of different point-clouds.

This gives a value in the interval [0, 1] that reflects the angle
of the plane to the coordinate directions. In order to use e(F)
as context for arithmetic coding it has to be quantized. In
our experiments we found that a discrimination of five bins
was sufficient and delivered the best results. In figure 4 the
distribution of the encoded indices for the different expres-
siveness values in the case of two non-empty child cells are
shown. In the case of two occupied cells, the more aligned
the plane is with one, or several, of the axes, the less expres-
sive is the prediction, as usually about four child cells are
almost equally close to the plane and no further distinction
exists between them. As expected the prediction performs
better for less aligned planes, i.e. lower expressiveness val-
ues. Please note that the expressiveness values having a low
entropy distribution appear more frequently than those with
higher entropy, as show in figure 4 (f). Note also that for
different numbers of non-empty child counts other expres-
siveness values may lead to better predictions, e.g. for four
occupied cells a prediction with e(F) = 5 performs well.
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Figure 5: A cell with only one non-empty child cell is to be
subdivided. The centroid m of the points in Ny is depicted as
dot on the approximating plane. Cells whose center’s pro-
Jjection onto F are farther away from the centroid are more
likely to be occupied. Thus, in the depicted case the child cell
A is more likely to be non-empty than B even though A and
B have equal distance to the plane.

4.4. Single child-cell configurations

For cells that have only one occupied child cell a second ob-
servation can be exploited. Since real-life point clouds usu-
ally exhibit a certain regularity due to the regular sampling
grid of the scanning device, not only the cells close to the
surface can be predicted, but also the location of samples in
the surface itself. This is especially relevant for finer levels in
the octree hierarchy where only a single sample remains per
octree cell and therefore not all child-cells that are close to
the approximated plane can be occupied. Since, for lossless
compression, the case of only one occupied child-cell dom-
inates all other cases the quality of the prediction for single
child-cell configurations has a great impact on the overall
compression performance.

We use the centroid m of the weighted neighbors N, for
the sample location prediction within the surface. Quite sur-
prisingly, those child cells whose cell centers’ projection on
F are farthest away from m are more likely to be non-empty.
The reason for this is that the area farther away from the cen-
troid can be seen as undersampled and therefore an introduc-
tion of a sample in this area becomes more likely since the
surface sampling is expected to be regular and no undersam-
pled regions should exist. An example is depicted in figure
5. Thus, for cells with only one non-empty child cell, the
weights w(7;) for the eight possible configurations are given
as:

W(Z) = d(FaC(Ti)) - d(m,prj(F,c(T,-)))

The distance to m has to be subtracted because the likelihood
of T; being occupied increases for greater values, which is
the inverse behavior as exhibited by the distance to the plane.
Single child-cell configurations are then encoded in the same
way as described above.

5. Traversal order

While a standard breadth-first traversal of the octree already
yields good results, the performance of the compression
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can still be improved by reordering the traversal. Process-
ing those cells earlier that introduce the greatest error will
not only lead to a faster increase of the signal to noise ra-
tio during progressive decompression, but can also improve
the overall compression rate. This is due to the fact that the
prediction becomes more accurate for cells processed later
on. [PKO5] use a prioritized traversal order that allows to ex-
pand some cells even before all cells of the previous levels
have been processed. In our experiments a traversal that re-
tains the breadth-first order of the levels resulted in a better
performance though, which we believe is due to the fact that,
in our case, expanding cells at different levels introduces ir-
regularities in the point-cloud Q that adversely affects the
quality of the surface approximations Fg. Hence we only
reorder the cells on every level to augment the traversal.

To get an estimate for the error introduced by a cell,
we perform a smoothing step every time a level has been
completed. The estimate is based on the assumption that
points that are more strongly smoothed are still farther away
from the true surface. All points ¢; € Q are replaced by
a smoothed version §; defined as their projection onto the
plane Fé". The cells of the level are then traversed in de-
scending order according to the magnitude of the movement
made by their cell center g;, i.e. the distance ||q; — g;||. As
cells with a larger movement are traversed first, cells with
a large quantization error are favored over those that al-
ready provide a fair approximation to the underlying surface.
Therefore larger errors are alleviated earlier in the process
and the signal to noise ratio improves more quickly. The es-
timation of the local surface approximations Fg also benefits
from the early removal of larger errors, resulting in an over-
all gain in the compression rate as the reliability of the non-
empty child cell prediction is significantly increased. Using
the smoothed versions of the points in Q for the prediction
on the next level has a similar effect by reducing the im-
pact of the coarse quantization on higher levels. Please note
though that during the smoothing points are not allowed to
be projected out of their corresponding cells and that after
the final level of the octree has been processed no smoothing
is performed in order retain the losslessness of our method.

6. Color

Color is an important point attribute if the point-cloud is to
be used for rendering purposes. [WGE*04] specifically ac-
counted for color similarities when pairing points to con-
struct their point-cloud hierarchy. However, when doing so,
some of the geometric similarity may have to be traded for
greater similarity in color values, so that the compression
rates of the geometry may suffer in a way that diminishes
the gain in the compression of the color attributes. We find
the point grouping introduced by the octree to provide suffi-
cient similarity in color for many cases, even though spatial
coherence does not in general guarantee similarity in point
color, since many scanned objects possess wide, uniformly

colored regions where color deviations are smooth and stem
largely from shading. As our geometry compression is loss-
less, we also aim at a lossless compression of 24 bit RGB
color.

We represent colors in an indexed array, i.e. each point is
assigned an index into the array of all colors present in the
object. This already saves some bits compared to the 24 bits
RGB representation, if the array of colors can be encoded
efficiently. As colors themselves are three dimensional at-
tributes they can be compressed in an octree hierarchy as
well. This gives an efficient representation for the array of
colors.

6.1. Color octree

The compression of the octree of colors proceeds similarly
to the one of the positions, albeit different prediction tech-
niques are employed, since, obviously, the prediction rules
described above do not apply in the case of colors. To en-
code a cell subdivision we use the same two-step procedure
as above: first the number e of non-empty child cells is en-
coded, followed by the child cell configuration. For the pre-
diction we again make use of the colors in the traversal front
Q and the nearest neighbors to a cell center N, C Q, which
are defined in the same sense as above.

6.1.1. Number of non-empty cells

This time the number of non-empty children e is not explic-
itly predicted, but simply adaptively arithmetic coded under
two contexts. The first context is the current octree level, as
the number of non-empty child cells tends to decrease for
finer octree levels. The second context is the local color den-
sity, since we observe a greater number of non-empty child
cells in regions of higher density. The color density p(C)
around the cell C is measured by the radius of the ball con-
taining the Nj nearest neighbors relative to the width of the
cell [(C):

 masyene(€) gl
©="""0

We truncate p(C) at a value of 8.

6.1.2. Child cell configuration

The prediction of a child cell configuration exploits the fact
that colors tend to appear in clusters and therefore non-
empty child cells are more likely closer to the centroid m
of the nearest neighbors N;. Thus, a child cell configuration
T = {T;|T; is non-empty} is weighted using the distance of
the non-empty child cell centers to the centroid m of Ny (note
that in the case of colors we do not weight the neighbors with
a Gaussian):
w(T) =} lle(T) = ml|
TeT

This way the colors are compressed at rates between 4-5 bits
per color.
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6.2. Color indices

To compress the point set P together with point colors, the
octree of the colors is compressed first. Then the cells in the
octree of points have to be assigned a color index on every
level. We want the color referenced by a cell to be close to
the mean color of all points in the cell. Hence the color index
i(C) for the cell C is chosen such that the L,-distance be-
tween the mean color of the points contained in the cell and
the indexed color is minimal, i.e. among all possible colors
the nearest neighbor to the mean color of the cell is chosen.
Then the compression of P proceeds as described in section
3-5 with one additional step after a cell subdivision has been
encoded, which specifies the color indices of the child cells.

Note that, in accordance with the progressive nature of
our algorithm, and in order to improve the compression rate,
the array of possible colors is slowly enlarged as the tra-
versal reaches a new octree level. To this end the array of
possible colors is chosen from the corresponding level in the
octree of colors, i.e. if a cell on level / in the octree is sub-
divided, the new colors for the child cells are chosen from
the colors present on level / + 1 in the color octree (or the
maximum level if / + 1 is too large). If a cell with only one
occupied child is subdivided and the color of the cell has
already been encoded within the maximal array of possible
colors, the new child inherits its parent’s color and no further
information has to be encoded.

6.2.1. Color prediction

To efficiently compress the indices a prediction is performed
for every new child cell 7. The prediction is based on a local
surface approximation given by the plane Fé defined simi-
larly as in section 4.1, but using ¢(7') instead of the center
of the parent cell. Note that at the time of the prediction the
cell centers of the new child cells are not yet contained in
Q. The color in T is predicted component-wise, i.e. for each
component of the color a linear model is fitted to the respec-
tive color components of the surrounding points in N, i.e.
Fé serves as local planar parametrization of the surface in
which a linear model can be fitted to the colors of the neigh-
boring points. The three predictions of the color components
result in a predicted color 6(7') for the cell T'.

6.2.2. Color index encoding

To encode the color index i(T') of the cell, the array of possi-
ble colors is sorted by similarity to the predicted color 6(T),
i.e. all possible colors o; are assigned a weight w(0;,0(T)) =
|loi —6(T)|| and then sorted in ascending order. Now i(T') is
given as the location of the cell’s color in the sorted array.
Since the predicted color is likely to be similar to the true
color of T, i(T) tends to be close to zero. Again, this is ex-
ploited by arithmetic coding of i(T).

(© The Eurographics Association 2006.

~+ PSNR = PSNR unaugmented

] 50000 100000 150000 200000 260000 200000 350000
bits

Figure 6: Comparison of the compression with and without
the augmented traversal order for the Venus model.

7. Results

To evaluate our method and compare it with existing ap-
proaches, we have applied the algorithm to various point-
clouds. As usual, compression performance is measured
in bits per point (bpp) and the loss of quality by the
peak signal to noise ratio (PSNR). When evaluating the
error of the geometry compression we follow [WGE*04]
and measure the symmetric root mean square distance
RMS(P, Q) between the original, unquantized point-cloud
P and the decompressed points Q. The PSNR is then given
as 20log;, max(RMS(P.g),RMS(Q,P)) where dp is the bound-
ing box diagonal of P. RMS(P, Q) is computed by find-
ing nearest neighbors for every point of P in Q. Taking
RMS(P, Q) as error measure is preferable to measuring the
RMS between the MLS surfaces as the distance between dis-
crete point-pairs takes into account the difference in the sam-
pling as well. The MLS error on the other hand only gives
the distance between the surfaces which neglects the fact that
the quality of the sampling plays an important role for point-
clouds.

All our results were obtained with k = 8 which we found
to yield a good compromise between smoothing of the quan-
tization and achieving a precise normal estimation.

First of all we evaluate the effect of the augmented tra-
versal order and the smoothing. In figure 6 the PSNRs are
shown, once with the augmented traversal activated and the
other time deactivated for the Venus model. Our proposed
traversal order improves the compression rate by about 10%
on average.

In figure 7 the performance of the progressive compres-
sion is shown for three models. Compared to the results
of [WGE*04], in case of the Venus model we are able to
achieve a PSNR of 59.39 with only 2.03 bpp and obtain a
PSNR of 76.65 for 8.71 bpp, whereas their method requires
almost 8 bpp to achieve a PSNR of about 57. Our method
is able to increase the PSNR rapidly until a PSNR of about
50 is reached, after that the increase of the PSNR is slowed
down, but still comparable to that of [WGE*04].

Table 2 compares the bitrates of our method to those
of [GKIS05] and [WGE*04]. All models were quantized to
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Figure 7: Geometry compression: The PSNR versus bits for three models. bpp are measured with respect to the number of

points of the decompressed model.
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Figure 8: Comparison of our method to the lossy schemes
of [FCOASO3] and [OS04]. The MLS surface error is spec-
ified in terms of 10~*dp where dp is the bounding box of
the object. Note that our method becomes lossless for higher
bitrates.

12 bits per coordinate direction. In case of the Santa model
our method even outperforms the non-progressive scheme
of [GKIS05]. We gain about 30% compared to [WGE*04].

To compare our method to the lossy coders of [FCOAS03]
and [OS04] we also computed the mean MLS surface error
as specified in [FCOASO03]. We are able to achieve supe-
rior results to the method of Fleishman for lower bitrates
while our method requires more bits to achieve smaller er-
rors. But conversely to Fleishman, in the limit our method
is able to produce a lossless representation. For the dragon,
the rates of our coder are comparable to those of [OS04], but
for the Venus their method achieves smaller errors for lower
bitrates. This is due to the fact that, in the case of the Venus,
their method requires only very few planar patches to cover
the entire surface. Note however that their coder is lossy and
only semi-progressive.

When comparing our method to the one of [PKOS5], as
done in table 3, one has to consider the fact that our method
does not make use of any connectivity information in the
models. The effects of this become apparent when compress-
ing less regularly and less densely sampled mesh geometry,
such as the horse and feline models. Here [PKO05] can ex-
ploit the additional information to achieve higher geome-
try compression rates than our coder. Please note however

~ Red = Green « Blue — bpp
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Figure 9: The PSNR for the different RGB color compo-
nents during the progressive decompression of the first 12
octree levels for the Santa model. The exact reconstruction
is achieved after 16 levels.

model #colors  oct bpp Total
Santa 32376 434 115 2344
MaleWB 58642  3.21 145 2337
FemaleWB 39712 3.13 13.12 21.99

Table 1: Compression of the colors for different models.
We use RGB colors with 24 bits. oct gives the bits per color
used by the color octree. bpp gives the bits per point used for
the color information (including the octree) after 12 octree
levels. Total are the bpp including the geometry.

that the cost of connectivity encoding has to be included
in the results as the additional information is explicitly ex-
ploited in the geometry prediction. Compared to the com-
bined cost our method requires slightly less bpp. For true
point-sampled geometry, as in the rabbit model, our method
performs equally well as their geometry compression, but
even without the overhead of connectivity encoding.

We also give some results for the color compression. The
differences in color are measured by finding corresponding
point pairs in the decompressed and original model with a
nearest neighbor search and computing the root mean square
error for each color component. In figure 9 the PSNR for
all three RGB components during decompression of the first
12 octree levels are depicted. Note that although the colors

(© The Eurographics Association 2006.
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model n [GKIS05] [WGE*04] Ours
Venus 134k 10.83 14.28 11.27
Santa 75k 12.23 18.28 11.94
MaleWB 148k 7.26 13.59 8.87

Table 2: Comparison of the bitrates (bpp) of our coder to
those of [GKIS05] and [WGE™*04]. Note that [GKISO5] is a
single rate method and can therefore be expected to deliver
better compression. All models have been quantized to 12
bits per coordinate direction.

model n [PKO5] Geom. [PKOS5] Total  Ours
Horse 19k 13.7 16.6 16.02
Feline 49k 13.2 16.7 14.88
Rabbit 67k 114 14.8 11.37

Table 3: Comparison of the bitrates (bpp) of our coder to
the one of [PKOS5]. All models were quantized to 12 bits per
coordinate direction.

have already full precision on the last levels, the error has not
vanished because the corresponding point pairs are not en-
tirely correct yet due to the point mismatches caused by the
quantization at this stage of the progressive decoding. Also
note that the bpp is unusually large for the first levels, which
stems from the fact that our current implementation encodes
the entire octree of colors at the beginning of the file. How-
ever this is not inherent to our method as the encoding of the
color octree could be interleaved with the geometry informa-
tion. Table 1 gives the bpp required for the color information
for different models.

Finally, figures 12, 11 and 10 show various stages of the
progressive decompression for different models. Renderings
are obtained with Pointshop3D [ZPKGO02] using two-sided
normals. Note that compared to the tree based mesh coders
of [PKO05] and [DGOO], in the case of point-clouds the coarse
quantization on lower levels is far less visible. Our method
further reduces the artifacts with the smoothing step.

8. Conclusion and Future Work

In this paper we introduce a method for progressive lossless
compression of point-sampled models that achieves com-
pression rates that outperform those of previous lossless al-
gorithms. During the progressive decompression, the perfor-
mance of our approach is comparable to that of previous
lossy methods. Although the main focus of our technique
is geometry compression, we show that color attributes can
be handled by our framework as well. Using local surface
approximations yields accurate predictions for the cell sub-
divisions that are exploited by arithmetic coding. Adapting
an augmented traversal order and incorporating a smoothing
step improves not only the PSNR during progressive decom-
pression but also the overall compression rate.

(© The Eurographics Association 2006.

(a) 2.03 bpp (b) 6.45 bpp

Figure 10: Two different stages of the decompression for the
Venus model.

(a) Original (b) 230309 bits

(c) 1816466 bits

Figure 11: Different stages of the decompression of the
dragon. The rightmost model is the original. The model in
b) requires 1.89 bpp and in c¢) 5.06 bpp

In future we plan to include additional point attributes in
the algorithm. Especially normals should benefit from the
prediction with the local planar surface approximations. Fur-
ther it needs to be evaluated if using different quantizations
of the color space can improve the compression rates with-
out affecting the visual quality. Some of our prediction tech-
niques could also be applied in the context of mesh compres-
sion.
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(a) 221746 bits (b) 917174 bits (c) 1782856 bits

Figure 12: Different stages of the decompression of the santa models. The last stage is after level 12 in the octree and is visually
indistinguishable from the original. Note that even for coarse approximations no obvious quantization grid is visible.
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