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Abstract

We propose a generic point cloud encoder that compresses geometry data including positions and normals of
point samples corresponding to 3D objects with arbitrary topology. In this work, the coding process is led by an
iterative octree cell subdivision of the object space. At each level of subdivision, positions of point samples are
approximated by the geometry centers of all tree-front cells while normals are approximated by their statistical av-
erage within each of the tree-front cells. With this framework, we employ attribute-dependent encoding techniques
to exploit different characteristics of various attributes. As a result, significant improvement in the rate-distortion
(R-D) performance has been obtained with respect to the prior art. Furthermore, the proposed point cloud encoder
can be potentially used for lossless geometry coding of 3D point clouds, given sufficient levels of octree expansion
and normal space partitioning.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data Com-
paction and Compression;

1. Introduction

3D models find applications in emerging fields such as gam-
ing, animation and scientific visualization nowadays. With
the increasing capability of 3D data acquisition devices and
computing machines, it is relatively easy to produce digi-
tized 3D models with millions of points. The increase in both
availability and complexity of 3D digital models makes it
critical to efficiently compress the data so that they can be
stored, transmitted, processed and rendered efficiently.

Traditionally, polygonal meshes (and triangular meshes in
particular) have been widely used to represent 3D objects. In
a polygonal mesh, both its geometry and topology data have
to be specified. In recent years, point-based 3D model repre-
sentation gains more popularity with several advantages. For
example, the triangulation overhead is saved, processing and
rendering are facilitated without the connectivity constraint,
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and objects of complex topology can be more easily repre-
sented. They make the point based representation an ideal
choice in many applications that use high quality 3D models
consisting of millions of points. With such a huge amount of
data, efficient compression becomes extremely important.

In this work, we propose an efficient progressive coder for
point clouds, which processes point samples of 3D objects
with arbitrary topology and encodes geometry attributes in a
unified framework. We present novel contributions in posi-
tion and normal coding. They include utilization of local data
correlation in position prediction and novel quantization and
data reorganization in normal coding. Both of them lead to
greatly reduced entropy values and, as a result, significant
improvement over the prior art in coding efficiency

1.1. Related Work

Mesh Compression: The problem of 3D mesh compres-
sion has been extensively studied for more than a decade.
In general, there have been two lines of research: single-
rate and progressive mesh compression. Compared with
single-rate mesh coders, progressive ones allow a mesh
to be transmitted and reconstructed in multiple levels of
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detail (LODs), which is suitable for streaming in net-
worked applications. Most single-rate mesh coders [TR98,
BPZ99b,TG98,AD01b,GS98,Ros99] and early progressive
mesh coders [Hop96, COLR99, AD01a, LK98, BPZ99a] are
connectivity-driven. That is, connectivity coding is given a
higher priority, which drives the whole coding process and
the geometry coding. Since geometry information is often
visually important and it demands more bits to represent,
it is natural to develop geometry-driven progressive mesh
coders [GD02,PK04,PK05,KG00a,KSS00,KG00b]. In gen-
eral, connectivity-driven coders can only treat manifolds
while some geometry-driven coders [GD02, PK04, PK05]
can handle meshes with arbitrary topology. For a compre-
hensive survey of 3D mesh coding techniques, readers are
referred to [PKK05].

Point-based Model Compression: Similar to techniques
for mesh coding, most coders for point-based models can
be classified into single-rate coders [GKIS05] and progres-
sive coders [BWK02, FCOAS03, OS04, WGE∗04, WZK05,
KV05]. The work in [KSW05] is unique in the sense that,
although it encodes an input model into multiple LODs,
the bitstream of a coarser LOD is not embedded in that of
a finer one. Thus, we do not classify it as a progressive
coder. Furthermore, some point-based model coders only
deal with samples from manifold objects [FCOAS03,OS04]
while others can handle samples from arbitrary 3D ob-
jects [BWK02,WGE∗04,GKIS05,WZK05,KSW05,KV05].

A prediction tree was built up for each input model
in [GKIS05] to facilitate prediction and entropy cod-
ing, which is however not suitable for progressive cod-
ing. A multilevel point-based representation was adopted
in [FCOAS03], where the coefficient dimension is reduced
from 3D to 1D for higher coding efficiency. Techniques of
3D model partitioning and height field conversion were in-
troduced in [OS04] so that the 2D wavelet technique can
be used to encode the 3D data. The coders proposed in
[FCOAS03] and [OS04] can only deal with points from
manifold surfaces.

To the best of our knowledge, among all previous coders
for point-based models, only coders in [BWK02, WZK05,
KSW05, KV05, WGE∗04] can handle samples of arbitrary
objects. Only position data were encoded in [BWK02] based
on iterative octree-based space partitioning. An extended
edge collapse operator merged two end-points of a virtual
edge into one point in [WZK05]. Multiple Hexagonal Close
Packing (HCP) grids with decreasing resolutions were con-
structed in [KSW05], where sequences of filled cells were
extracted and encoded for each HCP grid. Cluster-based hi-
erarchical Principal Component Analysis (PCA) was used
in [KV05] to derive an efficient statistical geometry rep-
resentation. Since research in [BWK02, WZK05, KSW05,
KV05] focused on efficient rendering, no R-D data of point
cloud compression were reported therein. Iterative point pair
contraction was conducted for LOD construction and the re-

verse process was encoded in [WGE∗04], where all point
attributes were encoded under a common framework. Al-
though this technique is applicable to samples from non-
manifold objects in principle, no such results were pre-
sented. Besides, there is a limit on the number of LODs
in [WGE∗04]. If this constraint is not met, coding efficiency
can be significantly degraded.

1.2. Main Contributions

In this work, we propose a novel technique for progressive
coding of geometry attributes, including positions and nor-
mals, of point samples from 3D objects with arbitrary topol-
ogy. Our major contributions include the following.

• Full-range Progressive Coder: At the decoder side, a
model is progressively reconstructed from a single point
to the complete complexity of the original model.

• Generic Coder: It can compress point data for objects
with arbitrary topology.

• Effective Geometry Prediction: A novel neighborhood-
based prediction technique is used to exploit the data cor-
relation in a local neighborhood, leading to greatly re-
duced entropy.

• Efficient Normal Coding: A novel quantization scheme
and a local data reorganization scheme are proposed to
exploit the correlation of local normal data effectively.

The rest of this paper is organized as follows. An overview
of the proposed algorithm is given in Section 2. The pro-
posed position and normal coders are detailed in Sections 3
and 4, respectively. Experimental results are presented in
Section 5, and concluding remarks are given in Section 6.

2. Overview of Proposed Algorithm

Constructing LODs of the Model: The proposed encoder
recursively and uniformly subdivides the smallest axis-
aligned bounding box of a given model into eight children in
the octree data structure. Only the nonempty child cells will
be subdivided further. The part of the model within each cell
is represented by its cell’s attributes – the position of each
cell is represented by the geometric center of the cell, and
the normal of each cell is set to the average of the normals of
contained points. A leaf node of the octree consisting of one
point has the same normal as the original point in the model,
but its position is the grid center of the leaf node. Hence,
even a one-point cell can be further subdivided so that the
center of a smaller cell approximates the actual geometry as
close as possible. The attributes of nonempty cells in each
level in the octree structure yield an LOD of the original 3D
model. Each point in an LOD is called a representative.

Coding of LODs: The main contribution of the paper lies
in the coding of LODs of the model represented by the octree
data structure. In association with each octree cell subdivi-
sion, we encode the geometry attributes of each nonempty
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child cell. The position of each cell is implicit as the subdi-
vision of a cell is uniform and the center of the cell can be
computed from the position of the parent cell. Nevertheless,
the sequence of non-empty child cells has to be encoded ef-
ficiently, as detailed in Section 3. The second attribute, i.e.,
the normal, is first quantized based on uniform subdivision
of the unit sphere. For each cell subdivision, all child nor-
mals are predicted by the normal of their parent. Then, their
residuals are encoded. On the unit sphere, quantized normals
around the predicted normal are locally sorted and indexed,
resulting in a reduced entropy of normal residual indices.
The coding of normals is described in Section 4.

3. Position Coder

Our main contribution in position coding is a technique to
lower the entropy of codes representing nonempty children
by a neighborhood-based predictor. For each octree cell sub-
division, the point representing the parent cell is replaced
by points representing the nonempty child cells. The de-
coder needs to know which child cells are nonempty so that
a representative can be placed at the geometry center of each
nonempty child cell, leading to a finer approximation to the
original point cloud model.

Occupancy Code: In our position coder, a 1-bit flag is
used to signify whether a child cell is empty or not, with ‘1’
indicating a nonempty child cell and ‘0’ an empty child cell.
If we traverse all child cells according to a fixed order, and
collect the flag bits of all child cells, we will obtain an 8-bit
code, which we call the occupancy code that has to be com-
pressed. For the ease of illustration, we consider a 2-D ex-
ample and show the quadtree subdivision and its occupancy
code in Figure 1. If we traverse child cells according to the
fixed order, we will obtain two occupancy codes, 1010 and
0101, for two cell subdivisions in Figure 1(a), respectively.

0 1

2 3

0 1

2 3

0 3

1 2

2 1

3 0

1010 0101 1100 1100

cell 1 cell 2 cell 1 cell 2

(a) before estimation (b) after estimation

Figure 1: Examples of occupancy code formation (a) before
and (b) after estimation of each child cell’s relative prob-
ability of being nonempty, where nonempty and empty child
cells are colored green and white, respectively. The traversal
orders are denoted by the blue arrows.

Although both cell subdivisions lead to the same number
of nonempty child cells, their occupancy codes are quite dif-
ferent. If we can estimate, with high accuracy, the relative
probability of each child cell’s being nonempty, and traverse
child cells with higher estimated probability earlier, we can
“push” ‘1’-bits toward one end of the occupancy code as
shown in Figure 1. As a result, the entropy of occupancy
codes will be reduced so as to improve coding efficiency.

It is worthwhile to point out that the technique of octree
cell subdivision was also used in [PK04] and [PK05] for
mesh compression. In [PK05], the index of each nonempty-
child-cell tuple, instead of the occupancy code, is encoded.
Despite its high coding efficiency, the process of pseudo-
probability estimation and tuple sorting is complex, and may
not be applicable to real-time decoding on low-end comput-
ing devices. A bit-reordering technique was used in [PK04]
to reduce the entropy by bit reordering to compress tri-
angular meshes. As compared to the reordering technique
in [PK04], the occupancy code reordering method proposed
above differs extensively in local neighborhood identifica-
tion and probability assignment as detailed below.

Occupancy Code Reordering: The probability of a child
to be empty or non-empty, which determines the occupancy
code, is computed using the neighborhood information of the
parent cell. Based on this probability, the occupancy code
is reordered and encoded. Thus, this process of occupancy
code entropy reduction has three steps: neighborhood iden-
tification, probability assignment, and bit reordering accord-
ing to the relative probability values.

Neighborhood Identification: For 3D meshes, an edge
between two vertices indicates the neighbor relationship,
which was utilized in [PK04] for bit reordering. Since we
do not have edges in a point-based 3D model, we call two
representatives c1 and c2 in the current LOD (and the cor-
responding octree cells, C1 and C2) neighbors if and only if
the following conditions are satisfied.

• The difference of the level numbers of C1 and C2 is less
than a predetermined threshold α.

• The distance between c1 and c2 is less than δ ×
min(diag(C1),diag(C2)), where δ is a constant and
diag(Ci) is the diagonal length of cell Ci.

The first condition requires at most α continuous octree
levels, instead of the whole octree, to be maintained during
the process of compression. This allows a memory-efficient
implementation of the encoder and the decoder. The second
condition guarantees that only nearby representatives (cells)
could be neighbors, and the range of local neighborhood
is controlled by parameter δ. Interestingly, a similar condi-
tion was used in [GKS00] for neighborhood identification
of points for surface reconstruction. In our experiments, we
choose α = 3 and δ = 1.5. Note that there are data structure
and computational geometry algorithms [BKOS98] to deter-
mine immediate neighbors of a cell in both complete and
incomplete octrees. However, these algorithms are not di-
rectly applicable to our case since we would like to control
the extent of the neighborhood using spacial relationships.

To determine the neighbors of a cell after subdivision, we
first construct a list of candidate neighbors of the target cell
by inheriting the neighborhood relationship from its parent
and including all children of the parent’s siblings that have
been compressed till now. We prune cells in this list that do
not satisfy the two distance criteria as stated above.
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Probability Assignment: In general, points are roughly
distributed over the surface in a uniform manner, and points
within each cell tend to be close to the local tangent plane
given by the average normal of all contained points. Based
on the observations, for an octree cell, given its local neigh-
borhood and the average normal at the geometry center (to
be detailed in Section 4), we can estimate the probability of
child cells’ being nonempty with the following steps.

• We denote the geometry center of the octree cell by o, the
average normal at o by n, and the approximating plane
passing through o with normal n by p.

• Calculate the absolute distance di, i = 1,2, . . . ,K, from
each neighbor representative nbi to p.

• For either side of plane p, sum up the distances of all
neighbor representatives on that side to p, resulting in two
distance sums, denoted by S1 and S2, respectively. With-
out loss of generality, we assume S1 > S2.

• Higher relative probability values are assigned to child
cells on the side of p corresponding to S1 than those on
the other side.

• For child cells on the same side of p, the closer a child
cell is to plane p, the higher its probability value will be.

Note that, for the sake of computational efficiency, we use a
plane instead of a higher order surface patch to approximate
the local surface.

Being different from the probability assignment in [PK04]
which orders child cells purely based on their distances to a
local surface approximation, our algorithm first prioritizes
all child cells on one side of plane p over those on the other.
In general, the plane-side-based priority assignment has led
to additional coding gain in experiments. The reason is that
p provides a reasonable approximation to the local tangent
plane, and points in a local neighborhood tend to lie on one
side of the tangent plane, which is often the case except for
saddle and other complex surfaces.

Bit Re-ordering: It is not the exact probability values but
their relative magnitudes that matter in the proposed algo-
rithm. They guide the child cell traversal and the order of
corresponding bits in the occupancy code. For the quadtree
cell subdivision example in Figure 2, since the neighbor rep-
resentatives on the lower side of plane p have a larger dis-
tance sum, child cells C2 and C3 are assigned higher relative
probability values than C0 and C1. Furthermore, since C3 is
closer to p than C2, C3 is assigned a higher relative probabil-
ity value than C2. Similarly, C0 is assigned a higher relative
probability value than C1. Let Pi be the relative probability
value of Ci with i ∈ {0,1,2,3}, we have P3 > P2 > P0 > P1,
which determines the order of child cell traversal as illus-
trated by red arrows in the figure. Accordingly, the resultant
occupancy code is 1100, with ‘1’s pushed to the left side.
Note that this probability estimation algorithm takes into ac-
count the local geometry of point-based 3D models implic-
itly, and it works well for different local curvatures including
regions of maxima and minima.

p
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nb1

nb2

d1

d2

c0

nb3

d3

c1

c2 c3

Figure 2: Determination of the child cell traversal order
based on the estimated relative probability values, where
nonempty child cells are filled and the order of child cell
traversal is shown by red arrows.

Effects of Bit Reordering: With the proposed bit re-
ordering technique, the entropy of occupancy codes can be
greatly reduced, especially at coarse octree levels. This is be-
cause cell sizes are comparable to distances between nearby
representatives at coarse octree levels. However, cell sizes
are small when compared to distances between nearby rep-
resentatives at finer octree levels and, as a result, probability
estimation is less accurate.

To demonstrate the effectiveness of the relative probabil-
ity estimation and the bit re-ordering techniques, we show
the distributions of occupancy codes before and after bit re-
ordering, respectively, in Figure 3(a) and Figure 3(b) based
on the accumulative statistics for the octopus model with
eight-level octree subdivision. We see from Figure 3 that,
after bit re-ordering, occupancy codes are concentrated on
several values with high peaks, leading to a reduced entropy
value. The entropies of occupancy codes are 6.95 and 4.58
before and after the bit re-ordering, respectively. The same
procedure of estimating child cells’ relative probability of
being nonempty is carried out by both the encoder and the
decoder based on the information from a local neighborhood
of the parent representative.
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Figure 3: Distribution of occupancy codes (a) before and
(b) after bit re-ordering.

4. Normal Coder

Our main contribution in normal coding is to rearrange the
normal data based on their differences using a novel local
normal indexing scheme so that the entropy of normal data
is greatly reduced.

Overall Structure: In any intermediate LOD, the nor-
mal of a representative is the normalized average of normals
of all points contained in the corresponding octree cell. In
essence, the normalization process reduces the dimension of
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normal data from 3D to 2D, with each representative normal
corresponding to a point on the unit sphere. For each cell
subdivision, all non-empty child cells are predicted to have
the same normal as their parent, and the prediction resid-
uals are coded using a local normal indexing scheme that
organizes similar normals around the predicted one on the
unit sphere into a 1D list. In the following, for the ease of
description, we use the cell normal and the representative
normal interchangeably.

Normal quantization: Before compression, normals
need to be quantized. For this purpose, the whole normal
space (i.e. the unit Gauss sphere) is iteratively subdivided to
a pre-determined resolution [THLR98, BWK02], and a nor-
mal table is constructed accordingly. Afterwards, each input
unit normal can be approximated by one quantized normal
that can be uniquely identified by an index into the normal
table. As to subdivision and indexing of the normal space,
we use the approach proposed in [BWK02]. Initially, we in-
scribe a regular octahedron into the unit sphere, and the eight
triangular facets of the octahedron form the first level of par-
tition. Every subsequent level of partition is obtained by 1-
to-4 subdivision of all triangles in the previous level and pro-
jecting the newly inserted vertices onto the unit-sphere. All
normal vectors in the direction of any point inside a triangle
on the unit sphere will be approximated by the unit normal
of that triangle. The normal table consists of entries that have
vertices and normals of triangles in the subdivision. The it-
erative process of normal space partitioning is illustrated in
Figure 4, where we use (i : j) to index the j-th partition at
the i-th level. In the i-th level, there are 8× 4i partitions in
total and 3+2i bits are needed to identify each of them.

T0:j

T1:4j

T1:4j+1

T1:4j+2

T1:4j+3

(a) (b)

Figure 4: Normal quantization: (a) an octahedron is in-
scribed into a unit sphere, and its eight facets, T0: j ( j =
0,1, . . . ,7) form the first level of partition; and (b) triangle
T0: j ( j ∈ {0,1, . . . ,7}) is subdivided into four sub-triangles,
T1:4 j ∼ T1:4 j+3, with index (1 : 4 j) assigned to the central
sub-triangle whose normal is equal to that of T0: j .

As described in Section 3, the position resolution is pro-
gressively increased with the octree subdivision level in-
creases. In terms of the R-D performance, it is not mean-
ingful to encode the normal information in high resolution
at coarser octree levels since the positional resolution is still
low. Thus, we build up multiple normal tables, one for each
level of normal space partitioning, and associate an appro-
priate resolution-level normal table with each octree level.
This is different from [BWK02] where, for the purpose of

efficient rendering, only one global normal table is built up
according to one pre-determined resolution of normal quan-
tization. Furthermore, we do not increase the resolution of
normal quantization for each octree level but only for every
other octree level.

The effect of normal precision on visual quality decreases
when the density of representatives over a surface increases.
Based on this observation, a maximum of 13 bits (corre-
sponding to 6 levels of sphere partitioning) are used for the
normal quantization once LODs go beyond a certain level of
octree subdivision. For example, cell normals at the 0th and
1st octree levels are quantized by 3 bits; cell normals at the
2nd and 3rd octree levels are quantized by 5 bits, and so on.
The maximum normal quantization resolution of 13 bits is
used for all levels equal or greater than the 10th.

Since we only increase the normal resolution at odd oc-
tree levels, when an even-level octree cell is subdivided, its
normal is simply inherited by all nonempty child cells with-
out coding. When an odd-level octree cell is subdivided,
we need to encode the normal of each nonempty child cell.
In most cases, the normal of a nonempty child cell falls
within a small spatial range around that of its parent, and
the normal difference between the parent and the child has a
smaller magnitude than that of the child cell’s absolute nor-
mal. Therefore, for each nonempty child cell, we predict its
normal to be the same as that of the parent and encode the
residual instead for coding efficiency.

Local normal indexing: To represent the normal resid-
ual, we propose a local normal indexing scheme. For each
triangular facet Ti:4 j at the i-th level of normal space parti-
tioning, we re-index the same-level facets in a local neigh-
borhood of Ti:4 j on the unit sphere based on their differences
in normal from Ti:4 j and maintain an array, Ai,4 j , of point-
ers to the facets in the local neighborhood as shown in Fig-
ure 5. Technically speaking, we can further expand the local
neighborhood. However, three neighbor rings have already
produced good performance according to our experiments.
Note that not each Ti:4 j has a neighborhood of size 52; trian-
gles at low quantization resolutions may have fewer neigh-
bors. The same normal space partitioning and local normal
indexing is pre-computed by the encoder and the decoder
before the actual encoding/decoding process.

In the following, we denote the quantized normal corre-
sponding to Ti: j as ni: j . For the normal of the root cell, 3 bits
are used to directly encode its global normal index. When
a cell in an odd octree level with quantized normal ni: j is
subdivided, we first predict all its nonempty child cells to
have the same normal, ni:4 j (=ni: j). Then, for each nonempty
child cell, we search the above-constructed local neighbor-
hood for a match of normal. A 1-bit flag is arithmetic en-
coded to indicate whether the local search is successful. If it
is, the local index of the matching normal is arithmetic en-
coded; otherwise, a global search is conducted and the global
normal index is arithmetic encoded.
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Figure 5: Local normal indexing: (a) Ti:4 j ∼ Ti:4 j+3 are as-
signed the smallest four indices since they have the smallest
difference in normal from Ti:4 j . Ti:4 j+1 ∼ Ti:4 j+3 form the 1st

neighbor ring of Ti:4 j; (b) the 1st neighbor ring of Ti:4 j is

expanded and the 2nd neighbor ring (in purple and pink) is
formed by the triangular facets around the 1st neighbor ring.
Note that the purple facets are assigned smaller indices than
the pink ones since their normals are closer to that of Ti:4 j
than those of the pink facets; (c) the local neighborhood is
expanded to the 3rd neighbor ring similarly.

In essence, the proposed local normal indexing scheme
increases the occurrence frequencies of local normal indices
(from 0 to 51 in our implementation), resulting in a reduced
entropy of the normal data. Figure 6 demonstrates the effec-
tiveness of the local normal indexing scheme. By comparing
Figure 6(a) and Figure 6(b), we see a much more concen-
trated distribution around a small number of local normal
indices in Figure 6(b).
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Figure 6: Distribution of normal indices: (a) the distribu-
tion of global normal indices at 9-bit quantization for the
Igea model; and (b) the corresponding distribution of nor-
mal indices after local normal indexing. Note that the local
normal indices are offset by 512 for the purpose of plotting.

5. Experimental Results

Five point-based models are tested in our experiments.
They are the igea, the dragon and the octopus mod-
els by the courtesy of Pointshop 3D, the model of
acer_saccarinum from Xfrog public plants (http://web.inf.tu-
dresden.de/ST2/cg/downloads/publicplants/), and
the model of happy buddha (vripped reconstruc-
tion) from the Stanford 3D scanning repository
(http://graphics.stanford.edu/data/3Dscanrep/). Note
that the models of acer_saccarinum and happy buddha have
been re-sampled and transferred to the Surfel format by us.

The coding cost is measured in terms of bits per point
(bpp) with respect to the total number of points in the origi-
nal model. As for the distortion metric, the MLS surface was
used in [PGMK02,FCOAS03] to compare the difference be-
tween two point-based models. However, we do not use the
MLS-surface-based distortion metric since it is not directly
suitable for measuring the normal distortion and, as argued
in [WGE∗04], it is unable to measure the sampling of a
model, which is crucial for high-quality point-based render-
ing. Instead, we use the peak-signal-to-noise ratio (PSNR)
to measure the position and the normal distortions, respec-
tively, as done in [WGE∗04] for fair comparison. The posi-
tion PSNR is calculated using Euclidean distances between
corresponding points in the original and reconstructed mod-
els, with the peak signal given by the diagonal length of the
original model’s smallest axis-aligned bounding box. The
normal PSNR is calculated using angles between original
and reconstructed normals with a peak signal of 180 degrees.

We compare the R-D performance of the proposed point
cloud coder with those proposed in [BWK02, WGE∗04]
which are the most related prior art in the sense that they
can progressively encode point samples of 3D objects with
arbitrary topology. The other coders, as stated in Section 1,
are single-rate coders, may not apply to samples from non-
manifold objects, and/or provide no R-D data on point cloud
compression. The coder in [BWK02] only compresses po-
sition data while that in [WGE∗04] compresses point at-
tributes including position, normal and color.

To compare the R-D performance between our posi-
tion coder and that in [BWK02], we plot the R-D curves
in Figure 7 for the octopus model, where the R-D data
for [BWK02] were obtained with our own implementation.
We see from Figure 7 that our position coder costs less at
any fixed PSNR value. In particular, for any PSNR below
65, the bitrate of our position coder is roughly 33∼50% less
than that of [BWK02].
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Figure 7: R-D curves with the proposed position coder and
that in [BWK02] for the octopus model.

To compare the R-D performance between our progres-
sive coder and that in [WGE∗04], we plot the R-D curves
for position coding in Figure 8(a) and (b) and the R-D
curves for normal coding in Figure 9(a) and (b), respec-
tively, for the dragon and the igea models. In these fig-
ures, the horizontal axes and vertical axes give the posi-
tion/normal coding bitrates and the corresponding PSNR
values, respectively. Note that the R-D data of position cod-
ing for [WGE∗04] are taken from the progressive coding

c© The Eurographics Association 2006.

108



Y. Huang & J. Peng & C.-C. J. Kuo & M. Gopi / Octree-Based Progressive Geometry Coding of Point Clouds

curves in Figure 10 in [WGE∗04] and the R-D data of nor-
mal coding for [WGE∗04] are taken from the progressive
coding results in Table 2 of [WGE∗04]. Due to the lack of
data, we can not make a full-range comparison especially in
the case of normal coding as shown in Figure 9. The curves
in Figures 8 and 9 clearly demonstrate the advantage of our
coder over [WGE∗04] in both position and normal coding.
As shown in Figure 8, the PSNR improvement for position
coding is around 10dB for the igea model, and around 15dB
for the dragon model, at all bitrates. As shown in Figure 9,
at certain high PSNR values, the normal coding bitrate with
our coder can be about 50% of that in [WGE∗04].
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Figure 8: R-D curves with the proposed position coder and
that in [WGE∗04] for (a) dragon and (b) igea.
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Figure 9: R-D curves with the proposed normal coder and
that in [WGE∗04] for (a) dragon and (b) igea.

A comprehensive list of R-D data is provided in Table 1,
which provides the R-D data for the position and normal
coding with the proposed point cloud coder for the five test
models. In this table, the bitrates are reported in bpp, and the
distortions in PSNR. In Table 1, the ‘N/A’ notation signifies
unavailable data. This is due to the fact that we only expand
the octree up to 11 levels in experiments and the coding gains
of the octopus and the happy buddha models are higher than
those of others. We see from this table that the R-D perfor-
mance of normal coding is worse for the acer_saccarinum
model than others. This is due to the high randomness in
the normals of acer_saccarinum, which is more challeging
to encode effectively.

Visual examples of intermediate LODs are shown in Fig-
ure 10 for dragon, igea and acer_saccarinum. The same
dragon and igea models are used in [WGE∗04]. The first
four rows show the models reconstructed at total bitrates
of 2bpp, 4bpp, 8bpp and 16bpp, respectively, and the last
row shows the uncompressed original models. As shown in
this figure, a reasonable profile already appears at 2bpp. We
can achieve very decent model quality at 8bpp. Finally, the
reconstructed models are almost indistinguishable from the
original models at 16bpp.

6. Conclusion

A generic point cloud coder was proposed to encode geome-
try attributes, including position and normal, of points sam-
pled from 3D objects with arbitrary topology in this work.
With novel and effective schemes of quantization, predic-
tion and data rearrangement, the proposed point cloud coder
results in a significant R-D gain over the prior art. Another
advantage of the proposed point cloud coder is that it does
not re-sample the input geometry. Thus, it can be potentially
used for lossless geometry coding, if the levels of octree ex-
pansion and normal space partitioning are sufficiently large.

As an extension of the current work, we will work on
the coding of other point attributes such as radius and color.
Furthermore, we will conduct experiments on gigantic point
clouds with hundreds of millions of points and explore effi-
cient decoding and rendering on GPUs.
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