
Normal Estimation for Point Clouds: A Comparison Study
for a Voronoi Based Method

Tamal K. Dey Gang Li Jian Sun

The Ohio State University, Columbus OH, USA

Abstract
Many applications that process a point cloud data benefit from a reliable normal estimation step. Given a point
cloud presumably sampled from an unknown surface, the problem is to estimate the normals of the surface at the
data points. Two approaches, one based on numerical optimizations and another based on Voronoi diagrams are
known for the problem. Variations of numerical approaches work well even when point clouds are contaminated
with noise. Recently a variation of the Voronoi based method is proposed for noisy point clouds. The centrality
of the normal estimation step in point cloud processing begs a thorough study of the two approaches so that one
knows which approach is appropriate for what circumstances. This paper presents such results.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

In many problems dealing with point cloud data, a normal
estimation step precedes the main task. For example, in sur-
face reconstruction, the quality of the approximation of the
output surface depends on how well the estimated normals
approximate the true normals of the sampled surface, see
[AK04, ABCO∗01, BC00, DS05] for example. Similar cor-
relation exists between estimated normals and point-based
rendering of surfaces [AA03]. Being so central to point
cloud processing, the normal estimation step deserves spe-
cial attention on its own right. The problem is compounded
by the fact that the input point cloud can be noisy. There-
fore, we need a normal estimation method that remains ro-
bust against noise.

There are two dominant approaches for estimating nor-
mals from point clouds; one is numerical applying some
optimization technique, the other is mostly combinatorial
applying some Delaunay/Voronoi property. The numerical
optimization based approach is known to work well under
noise. However, it is not established how well the Voronoi
based approach scales with noise. The original algorithm of
Amenta and Bern [AB99] that uses the poles in the Voronoi
diagrams works well with the data that are not noisy. It
does not work in principle and in practice when data be-
comes noisy. Recently, starting with the work of [DG04],

Dey and his co-authors [DGS05, DS05] have suggested
a Voronoi/Delaunay based method for estimating normals
from noisy point cloud data. The centrality of the normal
estimation step in point cloud processing begs a compari-
son of this technique with the competitive numerical based
approaches. The purpose of this paper is to make this com-
parison study.

In the numerical approach, a widely used technique is to
find a proper set of points in the local neighborhood for
a point p and then compute a plane that best fits to these
chosen points. The normal of the plane is taken as the esti-
mated normal at p. This basic plane fitting method has been
made more effective with sophisticated modifications. We
consider two such variations, one by Pauly, Keiser, Kobbelt
and Gross [PKKG03] and the other by Mitra, Nguyen and
Guibas [MNG04] which have been shown to work well in
practice.

2. Plane fitting methods

Hoppe et al. [HDD∗92] proposed an algorithm where the
normal at each point is estimated as the normal to the fit-
ting plane obtained by applying the total least square method
to the k nearest neighbors of the point in the point cloud.
Specifically for a point p and its k nearest neighbors {pi}k

i=1,

c© The Eurographics Association 2005.

Eurographics Symposium on Point-Based Graphics (2005)
M. Pauly, M. Zwicker (Editors)

http://www.eg.org
http://diglib.eg.org

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

they find the fitting plane nT x = c for p by minimizing the
error term e(n,c) = ∑k

i=1(n
T pi − c)2 under the constraint

nT n = 1. Notice that the normals computed by fitting planes
are unoriented. They proposed an algorithm to orient the nor-
mals consistently.

Pauly et al. [PKKG03] and Mitra et al. [MNG04] im-
proved the method in two different ways. Pauly et al. noticed
that the fitting plane for a point p should respect the nearby
points more than the distant points in the point cloud. Hence
the neighboring points are assigned different weights based
on their distances to p. The smaller the distance of a sample
from p, the bigger the weight it has. In other words, they re-
defined the error term as e(n,c) = ∑k

i=1(n
T pi − c)2θ(‖pi −

p‖), where θ() is a weighting function. In their implemen-
tation [PKKG03], the weighting function is taken as Gaus-

sian, i.e., θ(‖pi − p‖) = e−
‖pi−p‖2

h2 , where h2 is chosen to
be one third the square distance between p and its k-th near-
est neighbor. We call this method as weighted plane fitting
method, or WPF in short.

Mitra, Nguygen and Guibas noticed that a proper se-
lection of the value of k is crucial to obtain a good nor-
mal estimation. Using the same value of k at all points as
in [HDD∗92] could give biased fitting especially at places
where samples are arbitrarily dense. Hence, instead of us-
ing k nearest neighbors of the point, they consider the sam-
ples within a ball of certain radius r. Under the assump-
tion that the noise has zero mean and standard deviation
σn, they could get a bound on the angle between the esti-
mated normal and the true normal with a probability almost
one. An optimal radius r can be obtained by minimizing this
bound, which has the following expression in three dimen-
sional case provided the probability is 1− ε:

r =
(1

κ
(

c1
σn√ερ

+ c2σ2
n
))

1
3 (2.1)

where ρ is the local sampling density, κ is the local curva-
ture and c1 and c2 are some constants. The actual algorithm
takes σn as user input and evaluates r in an iterative manner.
Initially ρ and κ are evaluated based on the k(= 15) nearest
neighbors and then the radius r is obtained from equation
2.1. Once one gets the neighborhood size r, ρ and κ are re-
evaluated based on the samples within this neighborhood to
get a better estimation of ρ, κ and r. They claim that three it-
erations in general are enough to obtain good estimations for
all the quantities. We call the above method as the adaptive
plane fitting method, or APF in short.

3. Big Delaunay ball method

For a "noise-free" point set, Amenta et al. [AB99] proposed
a Voronoi based method for estimating normals. For a given
set of points P ⊂ R

3, let VorP and DelP denote the Voronoi
diagram and its dual Delaunay triangulation of P respec-
tively. Denote the Voronoi cell for a point p as Vp. Amenta

and Bern [AB99] showed that the line through p and the fur-
thest Voronoi vertex in Vp, called its pole, can approximate
the normal at p up to orientation. However this property does
not hold for noisy samples. Dey and Goswami [DG04] ex-
tended the idea of poles to the noisy samples.

Call a ball Delaunay if its boundary circumscribes a De-
launay tetrahedron, or equivalently has a center at a Voronoi
vertex v and has a radius ‖v− p‖ where v∈Vp. By definition,
the Delaunay balls are maximally empty. The Delaunay balls
with poles at their centers are called polar balls. The obser-
vation of Amenta and Bern can be interpreted in terms of the
polar balls as follows. If p is a sample point on the bound-
ary of a polar ball B, the segment joining p and the center
of B estimates the normal direction at p. Dey and Goswami
observed that, under some reasonable noise model, certain
Delaunay balls remain relatively big and can play the role
of polar balls. This suggests an algorithm for estimating the
normals for the noisy point cloud. Redefine the pole for a
point p ∈ P as the furthest vertex of its Voronoi cell whose
dual Delaunay ball is big. Similar to the "noise-free" case,
the normal line at p can be approximated by the line through
p and its pole. We call this algorithm Big Delaunay Ball al-
gorithm, or BDB in short.

3.1. Algorithm

The key to the BDB algorithm is to identify the big Delaunay
balls. The big Delaunay balls are identified by comparing
their radii with the nearest neighbor distances of the incident
samples. Specifically, for a point p ∈ P, let λp denote its av-
erage nearest distances to the five nearest neighbors of p in
P. We call a Delaunay ball big if its radius is larger than cλp
for at least one of its incident points p ∈ P where c is an
user defined parameter. A small value for c makes the algo-
rithm sensitive to the noise since the small Delaunay balls
are identified as big. On the other hand, a large value for c
makes less Delaunay balls marked as big. As a result, more
points have no big Delaunay ball incident on them and hence
no normal can be estimated for these points. We fix c = 2.5
in our experiments which yields the best normal estimation
for all the models.

After we obtain the estimation for the normal lines, We
adopt the same method as Hoppe et. al [HDD∗92] to orient
them consistently. The entire algorithm is described in Fig-
ure 1.

3.2. Justification

The justification of the BDB algorithm is given by a claim in
[DS05]. To understand the claim, one needs the definition
of local feature size lfs() for a smooth surface Σ. For any
point x ∈ Σ, lfs(x) is defined to be the distance of x to the
medial axis of Σ [AB99]. Assume that P is a noisy sample
of Σ where it satisfies the locally uniform ε-sampling condi-
tions. We refer the readers to [DS05] for a definition of this

c© The Eurographics Association 2005.

40

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

BDB(P,c)
Compute DelP
for each point p ∈ P

compute λp
for each Delaunay ball incident on p

if its radius r > cλp then mark it as big
endfor

endfor
for each point p incident to a big Delaunay ball

find the furthest Voronoi vertex c in Vp
compute the normal line as the line through p and c

endfor
orient the normals consistently.

Figure 1: Algorithm BDB.

sampling condition. Roughly, this sampling condition means
that each point of Σ has a sample point within a small fac-
tor (given by ε) of the local feature size and also the sample
points cannot cluster together arbitrarily.

Claim 1 ([DS05]) Let p ∈ P be incident to a Delaunay ball
with the center c and radius r. Let r >

1
5 lfs(p̃) where p̃ is the

closest point of p in Σ. Then, the acute angle between the
normal line at p̃ to Σ and the line through p and c is O(ε) for
a sufficiently small ε > 0.

Notice that some sample points may have no big Delaunay
ball incident on them. Hence no normal can be estimated for
these points. However Claim 2 proved in [DG04] shows that
there are sufficiently many big Delaunay balls and hence the
sample points to estimate the normals of the surface almost
everywhere.

Claim 2 ([DG04]) For each point x ∈ Σ, there is a Delaunay
ball containing a medial axis point inside and a sample point
on the boundary within O(ε) distance from x.

Claim 1 and Claim 2 justify the BDB method.

4. Comparison

In this section, we compare the big Delaunay ball (BDB)
method with the WPF and APF methods. Since BDB method
does not estimate the normal for all points in the point cloud,
we only compare the estimated normals for those points at
which the BDB method estimates the normals. Notice that,
the normal estimation only at a subset of the input points
is not a serious restriction for the BDB method as the nor-
mals can be interpolated such as with Gaussian interpolation
[AK04, DGS05] to obtain normals at other points.

4.1. Experimental setup

For comparing the methods, ideally we need to measure the
deviation of the estimated normals from the “true" surface
normals. But, for point cloud data, often we do not know

the sampled surface. We compensate for this shortcoming by
computing a set of referential normals as described below.

For experiments with noise we obtain noisy data by
adding noise to the original point cloud data. The x, y and
z components of the noise are independent and uniformly
distributed. Their amplitudes (noise level) are controlled
by a factor as described later. For referential normals, first
we compute a surface from the original data (presumably
no noise) by a surface reconstruction software called CO-
CONE [COC]. Then, the average of the normals of the tri-
angles incident to a vertex p in this surface is taken as the
referential normal for p.

The other surfaces we consider are some parametric al-
gebraic surfaces. The true normals to these surfaces are nu-
merically computed. The normal at each point is computed
as the cross product of two tangential vectors.

We define the error of an estimated normal at a point p as
the angle (in radians) between the referential normal and the
the estimated normal. Obviously the smaller the error, the
better the normal estimation is.

4.2. Noisy data

In our experiment, we choose the noise level both with re-
spect to a global and a local scale.

For the global scale, we take the amplitude of noise to be a
factor of the largest side of an axis parallel bounding box of
the point cloud. Since this global yardstick is large, the factor
needs to be small so that the point cloud after perturbations
remain reasonable for reconstruction. The factors we exper-
iment with are 0, 0.005, 0.01 and 0.02. The global scale for
perturbations is perhaps more close to reality. In choosing
the factor with respect to a local scale, we use the average
distance of a point p to its five nearest neighbors. The point
p is perturbed with a factor of this distance. Four factors 0,
0.5, 1 and 2 are considered for the experiments. In the APF
method, we increase the value of parameter σn accordingly
as the noise level increases.

We use three data sets, TORUS, BIGHAND and MAX-
PLANCK for perturbations with noise. Just to give an idea
of the perturbations, see the rendered point clouds of BIG-
HAND in Figure 4 with different noise levels.

Table 1 and Table 2 show the errors of different normal
estimation methods over these three point clouds with dif-
ferent noise levels. They list the error values, standard devia-
tions and timings. We make several observations from these
experimental data. Also, we plot the average errors in Fig-
ure 2.

First of all, when the noise level is low, all three meth-
ods estimate normals well as indicated by small mean error
and small standard deviation. The WPF and BDB methods
perform almost comparably. In general, WPF method gives
the best estimation when the noise level is low. As the noise

c© The Eurographics Association 2005.

41

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

Model
Name

pts Noise
Level

Mean Error Standard Deviation Timing(sec)

BDB WPF APF BDB WPF APF BDB WPF APF

0 0.112 0.014 0.080 0.051 0.005 0.069 2.99 0.61 3.20
0.005 0.167 0.114 0.203 0.124 0.061 0.125 3.00 0.65 2.98

TORUS 3200 0.01 0.258 0.256 0.477 0.209 0.172 0.342 1.99 0.67 3.12
0.02 0.355 0.622 0.798 0.284 0.396 0.403 1.87 0.68 3.23

0 0.053 0.019 0.032 0.069 0.048 0.073 44.20 6.55 17.65
0.005 0.169 0.094 0.135 0.157 0.119 0.152 44.37 6.18 17.47

BIGHAND 38218 0.01 0.244 0.196 0.508 0.211 0.181 0.379 36.69 6.25 17.80
0.02 0.311 0.455 0.797 0.275 0.324 0.419 35.13 6.67 17.19

0 0.056 0.028 0.034 0.062 0.036 0.045 45.99 8.14 21.57
0.005 0.204 0.125 0.202 0.188 0.108 0.205 44.88 8.04 21.49

MAX-
PLANCK

49089 0.01 0.374 0.307 0.759 0.336 0.262 0.410 44.18 8.16 21.53

0.02 0.593 0.664 0.835 0.444 0.398 0.411 45.11 8.12 21.93

Table 1: Normal estimation errors (in radians) under noise levels determined with respect to the global scale.

Model
Name

pts Noise
Level

Mean Error Standard Deviation Timing(sec)

BDB WPF APF BDB WPF APF BDB WPF APF

0 0.112 0.014 0.080 0.051 0.005 0.069 3.01 0.60 3.20
0.5 0.219 0.150 0.259 0.152 0.083 0.162 1.99 0.63 3.16

TORUS 3200 1 0.340 0.445 0.753 0.252 0.293 0.414 1.78 0.66 3.18
2 0.495 1.023 1.129 0.353 0.374 0.326 1.87 0.65 3.19

0 0.053 0.019 0.032 0.069 0.048 0.073 44.08 6.34 17.37
0.5 0.175 0.092 0.139 0.141 0.077 0.129 35.19 6.32 17.35

BIGHAND 38218 1 0.241 0.198 0.451 0.206 0.143 0.336 33.26 6.50 17.17
2 0.328 0.524 0.829 0.286 0.348 0.416 34.14 6.66 17.71

0 0.056 0.028 0.034 0.062 0.036 0.045 45.92 8.26 21.37
0.5 0.160 0.092 0.132 0.120 0.060 0.095 38.58 8.17 20.99

MAX-
PLANCK

49089 1 0.237 0.197 0.442 0.198 0.123 0.333 39.57 8.45 21.59

2 0.309 0.573 0.822 0.281 0.372 0.417 37.26 8.33 22.08

Table 2: Normal estimation errors (in radians) under noise levels determined with respect to the local scale.

level increases, BDB method gives relatively better perfor-
mance. In general both WPF and BDB perform better than
the APF method, the difference being more pronounced for
larger noise levels.

4.3. Special cases

Other than the noisy point clouds, we experiment with the
normal estimation methods on a couple of special point
clouds. In one case the point cloud samples the surface very
unevenly and in the other, the point cloud samples a “thin"

surface, i.e., the surface has high curvature at some areas.
These special point clouds are obtained by sampling some
parametric surfaces in a special way.

We obtain the first type of special point cloud TORUS

by sampling a torus with dense samples along the equator
line, as the left most picture of the first row in Figure 3
shows. Also, we sample a part of a single sheet hyperboloid
where the points line up along some curves as shown in Fig-
ure 3. This point cloud HYPERBOL also serves as an example
where the surface has boundaries.

c© The Eurographics Association 2005.

42

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

Figure 2: Normal estimation comparison under noise levels with respect to the global scale(upper row), and the local
scale(bottom row).

For both of TORUS and HYPERBOL, BDB method works
better than the other two methods as Figure 3 shows. The
reason can be explained as follows. All three methods use
some k-nearest neighbors to estimate the normals for some
value of k. While WPF and APF use these neighbors to
fit a plane, BDB use them to estimate the local sampling
density. When points line up along a curve on the surface,
APF and WPF try to fit a plane through the points along the
curve since k nearest neighbors lie along that curve. Conse-
quently, this plane deviates from the true tangent plane con-
siderably. Of course, if k is chosen large enough the prob-
lem goes away. But, this becomes a serious issue for the
users to supply an appropriate k and also a single k may not
be appropriate for all places on the surface. Bad estimation
of normals along the equator line of TORUS and almost all
over HYPERBOL by APF and WPF are results of this pro-
nounced dependency on k. We kept k = 40 (the default value
in PointShop3D) for WPF method and k = 15 (the suggested
value in [MNG04]) for APF method. The BDB method, on
the other hand, does not depend on the choice of k so sen-
sitively. It only needs to estimate the average distance to its
local neighbors for some k neighbors. We kept k = 5 in the
experiments. The arrangement of points along some specific
directions (which is not rare in scanning processes) is not so
harmful for the BDB method. In summary, BDB does not
rely on local information as much as APF and WPF do.

In another special class of point clouds, we sample a very
thin ellipsoid; see the left most picture of the third row in
Figure 3. For a point at the high curvature region, the neigh-
boring points from the point cloud does not lie close to a
plane and hence the fitting plane computed by WPF method
or APF method could not approximate the tangent plane
properly at those points. Of course, this problem can be at-
tributed to the poor sampling density at the high curvature
regions which is not again uncommon in the scanning pro-
cesses. However, BDB method is not so sensitive to this rel-
atively poor sampling as Figure 3 shows.

In the above examples, we make some exaggeration about
the specialty of the point cloud for the illustration purpose.
However these special cases do occur in the real data up to a
certain degree.

4.4. Timings

Tables 1 and 2 show the timings for the three methods.
Clearly, the BDB method is the slowest. The main reason
is that it employs a Delaunay triangulation procedure to the
entire point cloud while the other two methods can operate
very locally. The very reason of globality for which BDB
works better than the other two in special cases makes it
slower. However, we must mention that we used CGAL 2.3
[CGA] for computing the Delaunay triangulations. Recent

c© The Eurographics Association 2005.

43

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

Figure 3: The first column shows the point clouds of TORUS, HYPERBOL and ELLIPSOID. We take the normal estimation error
as grey scale color for each point and render the surfaces with Gouraud shading. The darker the surface, the better the normal
estimation. The column two, three and four show the normal estimation results of BDB, WPF and APF methods respectively.

versions of CGAL are faster and we plan to test the timings
on these versions in future. On reasonable state-of-the-art
PCs, the Delaunay triangulation takes time in the order of
minutes and hours for point cloud data in the range of sev-
eral hundred thousands and millions respectively [DGH01].
Therefore, timings do not become a prohibitive issue for the
point clouds up to this range.

4.5. Summary

We summarize our observations from the experiments as fol-
lows. When the noise level is low and the point cloud sam-
ples the surface more or less evenly, all the three methods
perform almost equally well though WPF gives the best re-
sults. When the noise level is relatively high and the sam-
pling is skewed along some curves or is not dense enough
for thin parts, BDB works the best. In general, if the size of
the point cloud is no more than a few million points (∼5 mil-
lion points), BDB is safer to use if one does not have specific
knowledge about the quality of the input. Otherwise, WPF or
APF should be preferred.

5. Applications

In earlier work, normal estimations with numeri-
cal techniques have been used for some applica-

tions [AA03, PKKG03]. In this section we show some
example applications where BDB method can be used
effectively.

The first one is the point cloud rendering. We feed
the point cloud together with the estimated normals to
PointShop 3D and use the so call "OpenGL preview" tech-
nique to render the point cloud directly. Figure 4 shows the
rendering results for BIGHAND with different noise levels.

Dey and Sun [DS05] define a smooth MLS (moving least
squares) surface called adaptive MLS (AMLS) based on the
set of points with normals possibly containing noise. All
sample points can be projected onto an approximation of this
surface using a Newton projection method. Once all sample
points are projected, one can use any of the existing recon-
struction algorithms to reconstruct the surface. Here we use
the COCONE software [COC] which can reconstruct surfaces
with or without boundary. In figure 5, we show the results of
three different point clouds: MAX-PLANCK, HYPERSHEET

and LUDWIQ. The left column shows the reconstruction re-
sults before the point cloud gets smoothed and the right col-
umn shows the reconstruction results after smoothing.

c© The Eurographics Association 2005.

44

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

Figure 4: First hand from left is the rendering result for the original smooth point cloud. The 2nd, 3th and 4th hands (from left
to right) are the rendering results for the point clouds with noise levels (local scale) 0.5, 1 and 2 respectively.

Figure 5: Smooth reconstruction from noisy point clouds.

Acknowledgements.

We acknowledge the support of Army Research Office, USA
under the grant DAAD19-02-1-0347 and NSF, USA under
grants DMS-0310642 and CCR-0430735.

References

[AA03] ADAMSON A., ALEXA M.: Ray tracing point set
surfaces. In Proceedings of Shape Modeling International
(2003), pp. 272–279.

[AB99] AMENTA N., BERN M.: Surface reconstruction
by voronoi filtering. Discr. Comput. Geom. 22 (1999),
481–504.

[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D.,
FLEISHMAN S., LEVIN D., SILVA C.: Point set surfaces.
In Proc. IEEE Visualization (2001), pp. 21–28.

[AK04] AMENTA N., KIL Y. J.: Defining point-set sur-
faces. In Proceedings of ACM SIGGRAPH 2004 (Aug.
2004), ACM Press, pp. 264–270.

[BC00] BOISSONNAT J. D., CAZALS F.: Smooth surface
reconstruction via natural neighbor interpolation of dis-
tance functions. In Proc. 16th. Annu. Sympos. Comput.
Geom. (2000), pp. 223–232.

[CGA] CGAL: Cgal library. www.cgal.org.

[COC] COCONE: www.cse.ohio-state.edu/∼tamaldey.
The Ohio State University.

[DG04] DEY T. K., GOSWAMI S.: Provable surface re-
construction from noisy samples. In Proc. 20th Annu.
Sympos. Comput. Geom. (2004), pp. 330 – 339.

[DGH01] DEY T. K., GIESEN J., HUDSON J.: Delau-
nay based shape reconstruction from large data. In Proc.
IEEE Sympos. Parallel and Large Data Visualization and
Graphics (2001), pp. 19 – 27.

[DGS05] DEY T. K., GOSWAMI S., SUN J.: Extremal
surface based projections converge and reconstruct with
isotopy. Technical Report OSU-CISRC-05-TR25, also
available from authors’ web-pages (April 2005).

[DS05] DEY T. K., SUN J.: An adaptive mls surface for
reconstruction with guarantees. Technical Report OSU-
CISRC-05-TR26, also available from authors’ web-pages
(April 2005).

c© The Eurographics Association 2005.

45

T. K. Dey, G. Li & J. Sun / Normal Estimation for Point Clouds: A Comparison Study for a Voronoi Based Method

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Surface reconstruction from
unorganized points. In Proceedings of ACM SIGGRAPH
1992 (1992), vol. 26, pp. 71–78.

[MNG04] MITRA N. J., NGUYEN A., GUIBAS L.: Es-
timating surface normals in noisy point cloud data. In
Internat. J. Comput. Geom. & Applications (2004), p. to
appear.

[PKKG03] PAULY M., KEISER R., KOBBELT L., GROSS

M.: Shape modeling with point-sampled geometry. In
Proceedings of ACM SIGGRAPH 2003 (2003), ACM
Press, pp. 641–650.

c© The Eurographics Association 2005.

46

