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Abstract
We present the implementation results of a shape segmentation technique and an associated shape matching
method whose input is a point sample from the shape. The sample is allowed to be noisy in the sense that they
may scatter around the boundary of the shape instead of lying exactly on it. The algorithm is simple and mostly
combinatorial in that it builds a single data structure, the Delaunay triangulation of the point set, and groups the
tetrahedra to form the segments. A small set of weighted points are derived from the segments which are used as
signatures to match shapes. Experimental results establish the effectiveness of the method in practice.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Modeling3D Shape
Matching, Point-Based Graphics.

1. Introduction

A spurt of research activities in extracting shape in-
formation from its point sample have ensued in recent
years because of the flexibility offered by points as input
[ABCO � 01, ACK01, PKKG03]. In this paper we address the
problem of segmenting a three dimensional shape into iden-
tifiable ‘features’ from point clouds and then using them for
shape matching. In particular, we focus on noisy point clouds
where the sample points are allowed to scatter around the
shape boundary.

Many applications including object recognition,
classification, matching, tracking need to solve the
problem of shape segmentation, see for example
[AG96, BM02, JH99, KT03, TC92]. Different struc-
tures such as shock graphs [SKK01], medial axis [LK01],
Reeb graphs [HSKK01], mesh partition [KT03] and
shape distributions [OFCD01] have been proposed for the
problem. All of these techniques require an input mesh
and thus are not applicable to point cloud data unless one
reconstructs a surface out of it. Surface reconstruction
is often a costly step and more importantly is not yet an
established robust procedure for noisy data. We bypass an
explicit surface reconstruction step. Our algorithm computes
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a Delaunay triangulation of the point sample and determines
the tetrahedra that have to be clustered together to form
segments of the shape interior. In other words, instead of
building multiple data structures, such as an approximate
surface mesh and then other derived structures like medial
axis and Reeb graphs, the algorithm acts only on a single
data structure, the Delaunay triangulation of the point
sample.

The segmentation algorithm has two phases. The first
phase pre-processes the point set using the idea of Dey
and Goswami [DG04]. It filters Delaunay tetrahedra whose
union approximates the shape interior. The second phase fur-
ther partitions them into segments using the concepts devel-
oped in [DGG03]. It mimicks a topological segmentation of
the continuous shape. This segmentation partitions the space
using Morse structures defined by a distance function.

We exploit this Morse theoretic segmentation for match-
ing shapes based on the principle that similar shapes have
similar such segmentation. We derive a signature of a shape
from its segmentation and match these signatures. From all
segments we select only a few significant segments and rep-
resent each one with a weighted point where the weight is
the volume of the segment. Then, the shape matching prob-
lem boils down to matching two small weighted point sets
instead of matching large point sets derived from the shape
boundaries [HKR93]. Further, representative points can be
precomputed and kept in a database thus reducing both space
and time requirements for matching. We carry out these steps
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Figure 1: Steps of the Algorithm: Top row: Delaunay triangulation of a noisy point sample (left), Delaunay balls where small
balls are shaded white (middle), union of inner big Delaunay balls (right). Bottom row: inner simplices containing maxima
Voronoi vertices are shaded (left), segmentation by stable manifolds of the maxima (middle), segments after merging (right).

so that the entire matching process remains invariant to rota-
tion, translation, mirroring and scaling.

2. Point processing

Let P be a point sample, possibly noisy, derived from the
boundary∂Σ of a shapeΣ embedded in� 3. Assume that the
surface∂Σ is compact and smooth. We will denote the De-
launay triangulation ofP by DelP and its dual, the Voronoi
diagram, by VorP. A Voronoi cell for a pointp � P is de-
notedVp. Each Voronoi vertex is the center of a ball that
circumscribes a dual Delaunay tetrahedron. All such balls
are calledDelaunay balls.

In the point processing phase, the algorithm filters Delau-
nay tetrahedra from DelP whose union approximatesΣ. To
understand the rationale behind the method, first assume that
P is noise-free. For a pointp � P, the inner (outer) pole of
p is the Voronoi vertex lying inside (outside respectively)Σ
and is farthest fromp among all other vertices ofVp. The De-
launay balls centering the poles are calledpolar balls. It is
known by a result of Amenta, Choi and Kolluri [ACK01] that
the polar balls centering the inner (outer) poles approximate
Σ (complement ofΣ respectively). It is easy to compute the
poles from the Voronoi diagram VorP. However, in absence

of Σ, one needs a mechanism to separate the inner poles from
the outer ones in order to obtain an approximation ofΣ. Here
the following intersection depthproperty comes to the res-
cue. Two inner (outer) polar balls cricumscribing adjacent
tetrahedra intersect deeply while an inner and an outer polar
ball intersect only in a shallow manner. The depth of inter-
section is measured by the angle at which the boundaries
of the balls intersect. A depth-first search starting from an
unbounded polar ball, which is guaranteed to be outer, can
collect all of them if the walk moves from an outer polar ball
to an adjacent polar ball only if they intersect deeply.

The above algorithm does not work whenP is noisy. A
main reason for this is that the intersections between polar
balls do not follow the intersection depth property. We cir-
cumvent this difficulty by observing that, even under noise,
where the points are not perturbed more than a small fraction
of the local feature size, some of the Delaunay balls behave
like polar balls as in the noise-free case. We identify them
by their relative size compared to the nearest neighbor dis-
tances. LetB be a Delaunay ball cricumscribing four points
pi � i � 1 �	�
�
� 4. We sayB is big if the radius ofB is more than
ρ � 0 times bigger than the average nearest neighbor dis-
tances of any ofpi . The average is taken over three nearest
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neighbors andρ is 0� 5 in our implementation. After identify-
ing the big Delaunay balls, we partition them using the inter-
section depth property as in the noise-free case. A Delaunay
ball is inner (outer) if its center lies inside (outside respec-
tively) Σ. It is proved by Dey and Goswami [DG04] that,
under a reasonable noise model, big Delaunay balls satisfy
the intersection depth property and the union of inner big
Delaunay balls approximateΣ. Therefore, a depth-first walk
starting from an unbounded outer Delaunay ball collects all
big outer Delaunay balls. The rest of the big Delaunay balls
are inner. The tetrahedra circumscribed by these inner big
Delaunay balls approximateΣ. The top row of Figure 1 il-
lustrates this phase for a two dimensional shape.

3. Segmentation

In this phase we use the technique proposed by Dey, Giesen
and Goswami [DGG03] for segmentation. We briefly sketch
the method here for completeness.

3.1. Continuous shape

First we describe a segmentation ofΣ using the distance
functionh : � 3 � � where

h 
 x��� inf
p � ∂Σ

�
p � x
� 2 for all x ��� 3.

We would define a vector fieldv : � 3 � � 3 that assigns
to every pointx ��� 3 the direction in whichh increases the
most. Ifh is smooth atx thenv 
 x� coincides with the normal-
ized gradient∇h 
 x��� � ∇h 
 x� � . In our caseh is smooth every-
where except at the medial axis ofΣ. However, it turns out
that one can still define the direction of the steepest ascent
of h at any point on the medial axis [DGG03]. This allows
to define a vector field wherev 
 x� is a unit vector pointed in
the direction of the steepest ascent ofh atx. The vector field
v induces a flowφ : � 0 � ∞ ����� 3 � � 3 such that the right
derivative at every pointx ��� 3 matches with the vector, see
Grove [Gro93].

Given x ��� 3 and an induced flowφ , the curveφx :
� 0 � ∞ � � � 3, t �� φ 
 t � x� is called theorbit of x. A point x
is a fixpoint of φ if φ 
 t � x��� x for all t � 0. Basically, the
orbit of a point is the curve it will follow if it were let move
along the steepest ascent ofh. The fixpoints ofφ are the crit-
ical points ofh. The critical points whereh increases in all
directions are the minima ofh. These are the points of∂Σ.
The critical points whereh decreases in all directions are the
maxima ofh. The rest of the critical points aresaddles. In
Figure 2, the pointsa andc are maxima,b is a saddle.

The stable manifoldS
 x� of a critical pointx is the set of
all points that flow intox, i.e.,

S
 x��� � y �!� 3 : lim
t " ∞

φy 
 t ��� x # �
The stable manifolds of all critical points partition� 3. In

ba
c

Figure 2: The stable manifold of the saddle b separates
those of the maxima a and c producing two segments.

particular, if we take the closure of the stable manifolds of
the maxima, the stable manifolds of saddles and minima
constitute its boundary. We segmentΣ with the closure of
the stable manifolds of the maxima ofh. Figure 2 shows two
segments produced by this segmentation.

3.2. Discretized shape

Now we mimic the above segmentation ofΣ using the dis-
crete sampleP of ∂Σ. The distance function is defined with
respect to the sample points as follows:

h 
 x��� min
p � P
�
x � p

�
for all x �!� 3.

It turns out that the critical points for this function are the
points where the Delaunay and their dual Voronoi objects in-
tersect. This has been observed before [EFL98]. The sample
points are minima. They are the intersection of themselves
and their dual Voronoi cells. The Voronoi vertices that are
contained in their dual Delaunay tetrahedra are the maxima.
There are two types of saddles in� 3. The points where a
Delaunay edge intersects its dual Voronoi facet are saddle
points of type 1 and the points where a Delaunay triangle
intersects its dual Voronoi edge are saddles of type 2. We
define segments as the closure of the stable manifolds of the
maxima mimicking the continuous case. Each of such a seg-
ment is bounded by the stable manifolds of the saddle points
of type 1 and 2 and the minima. The stable manifolds of
the saddle points are a subset of Delaunay objects (edges) in
2D. The same is not true in 3D. Although they can be com-
puted exactly [GJ02], we avoid costly numerical computa-
tions by approximating the stable manifolds of the maxima
with only Delaunay objects using the Delaunay flow idea of
Edelsbrunner, Facello and Liang [EFL98].

Let σ1 � σ2 be two Delaunay tetrahedra sharing a triangle
t. We sayσ1 flows intoσ2 denoted byσ1 $ σ2 if σ1 and
its dual Voronoi vertex lie on the opposite sides of the plane
of t. For an illustration see the triangles surrounding the big
green triangle in the hip of the DOG in the lower left pic-
ture of Figure 1. All these three triangles flow into the green
triangle containing a maximum. It follows from the defini-
tion that if σ1 $ σ2, then the radius of the Delaunay ball
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of σ1 is smaller than the radius of the Delaunay ball ofσ2.
Thus, the transitive closure$ � of $ is acyclic. For a maxi-
mumx, one can collect all tetrahedra that are flowing tox by
the transitive closure of$ � . This is the method which was
proposed to compute the pockets in two dimensional shapes
by Edelsbrunner et al. [EFL98]. In three dimensions we face
a difficulty because a Delaunay tetrahedron may flow into
two other Delaunay tetrahedra. Therefore, the approximated
stable manifolds of maxima computed by the above method
may not be disjoint. To overcome this problem we change
the flow relation$ to ˜$ as follows. Define thestrengthof
a tetrahedronσ as the largest value of the distance func-
tion among all maxima that it flows into. We sayσ1 ˜$ σ2
if (i) σ1 $ σ2 and (ii) there is no other tetrahedronσ3 with
σ1 $ σ3 and the strength ofσ3 is larger thanσ2. Now we
define a segmentG 
 x� for a maximumx as

G 
 x���&%
σ ' ˜(*) σ

σ +

whereσ is the tetrahedron containingx. One can turn this
definition into an algorithm very easily. First, we determine
the maxima Voronoi vertices. They are the Voronoi vertices
contained in their dual Delaunay tetrahedra. Then, we sort
these maxima in decreasing order of theirh-values. This
value is given by the radius of the Delaunay ball circumscrib-
ing the dual tetrahedron of the maximum Voronoi vertex. We
process the maxima in this sorted order and for each maxi-
mum x collect the tetrahedra that flow into it. This is done
by a depth first search starting from the tetrahedron dual tox
and then including a tetrahedron in the collection if it flows
into one of the tetrahedra already in the collection. Middle
picture in the lower row of Figure 1 shows the segmentation
obtained by this process for a two dimensional shape.

3.3. Merging

As one can observe from Figure 1, the segments obtained
by the above algorithm may be too fine because of sampling
artifacts. Many maxima may be introduced due to discretiza-
tion. We merge small segments to coarsen the segmentation.
A segment is judgedprominentif the h-value at the maxi-
mum is significantly larger than theh-value at the circum-
centers of the triangles on the segment boundary. In other
words, prominent segments are ‘peaky’ when seen in the
graph of the distance functionh. We merge all segments that
are not prominent with some adjacent segments. Precisely,
we say two segmentsG 
 x1 � and G 
 x2 � are ρ-mergable if
they share a trianglet and the circumradii of the tetrahedra
containingx1 andx2 are no more thanρ times the circum-
radius oft. In the implementation we merge any two 1� 5-
mergable segments.

Final segments of a shape are the ones obtained after the
merging process. The rightmost picture in the lower row of
Figure 1 shows the segmentation after merging. In Figure
3 we show the segmentation of some 3D shapes from their
point samples.

Figure 3: Segmented shapes: Segments are shown with dif-
ferent colors. TheTRICERATOPSand theBULL point sam-
ples are noisy.

4. Matching

For shape matching we use our segmentation scheme. Based
on the principle that similar shapes have a similar segmen-
tation, we generate a signature for a shape from its segmen-
tation and then match it against other signatures. The sig-
natures are a small set of weighted points that represent the
segments.

4.1. Signature

Let GP, Σ denote the set of segments computed from a point
sampleP of a shapeΣ. To simplify notations we useGΣ
for GP, Σ. By definition a segmentg � GΣ is a collection of
Delaunay tetrahedra. For a Delaunay simplexσ let cσ and
vσ denote the centroid and volume ofσ , respectively. The
representative point g� of a segmentg and its weight ˆg are
defined as

ĝ � Σσ � gvσ � g � � Σσ � g 
 cσ - vσ �
ĝ �

That is, the weight ofg is its volume and its representative
point is the weighted average of the centroids of allσ � g,
weight being the volume of each simplex. Given a segmen-
tationGΣ of a shapeΣ, the signature sign
 Σ � is defined as a
set of weighted points as follows.

sign
 Σ �.�/�0
 g� � ĝ�21 g � GΣ # �

4.2. Scoring

The amount of similarity between two shapes is measured
by first scaling them with bounding boxes and then scoring
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Figure 4: Representative points enlarged according to the
volumes of the corresponding segments.

the similarity between their signatures. In order to score the
similarity between two signatures sign
 Σ1 � and sign
 Σ2 � , we
need to align them first.

Let g� � h� be the representative points in sign
 Σ1 � and
sign
 Σ2 � , respectively, with maximum weights. We first
translate sign
 Σ2 � so thatg � � h� coincide. Then an alignment
is obtained by rotating sign
 Σ2 � so that a line segment be-
tweenh� and another point of sign
 Σ2 � aligns with a line seg-
ment betweeng� and another point in sign
 Σ1 � . Certainly,
there areΘ 
 mn� alignments possible where1 sign
 Σ1 ��13� m
and 1 sign 
 Σ2 ��14� n. Sincem� n are typically small (less than
ten), checking all alignments can be done fast.

For each alignment we compute a score based on the
matching of the weighted points. Both a similarity measure
(positive) and a dissimilarity measure (negative) are taken
into account while computing the score. The maximum of
all the scores is taken to be the amount of similarity and cor-
responding transformations give the best alignment.

5. Results and comparisons

We used the robust and fast Delaunay triangulation code of
CGAL to implement the segmentation and the matching al-
gorithms. The experiments were done on 2.8 Ghz Pentium 4
machine with 1 GB RAM. As the examples show, the seg-
mentation mostly respects the so called features. We created
a database of signatures from approximately 300 point cloud
data mostly collected from different web-sites and also cre-
ated from 3D models. Some example matching results and
segmentation timings are shown in Figure 5. Matching of a
query shape over the entire database took less than a second.
Figure 6 shows the similarity matrix for our method on ap-
proximately 200 shapes divided into 17 categories. Only the
five best scores for each query are shaded according to their
values.

We find it difficult to compare our technique with other
matching algorithms as all of them assume a surface mesh as
an input. One novelty of our algorithm is that we do not build
any extra data structure other than the Delaunay triangula-

1.00 0.75 0.7 0.68 0.67

1.00 0.7 0.68 0.65 0.64

1.00 0.7 0.68 0.65 0.64

1.00 0.78 0.74 0.71 0.58

1.00 0.76 0.66 0.65 0.55

CAD Pig Tiger Dog Boy Alien

#pts 11K 37K 44K 55K 91K 120K

sec. 19.8 23.2 39.9 47.5 104.9 145.5

Figure 5: Matching result: Models with five best scores are
shown for each query in a row. Timings for segmentation in
seconds for some models are shown.

tion of the input point set. Also, there is no costly computa-
tion such as approximating geodesic distances as by Hilaga
et al. [HSKK01]. The shape distribution method of Osada et
al. [OFCD01] assumes an input mesh. For comparisons we
adapted it to point clouds as follows. We use the D2 metric,
that is, we compute distances between pairs of randomly se-
lected points. Random selection took care of point density
to have a fair comparison. This technique is quite effective
for most of the models, however sometimes it creates some
anomalies. Figure 7 shows one such example for which our
method works properly.

6. Conclusions

In this paper we showed that a surface reconstruction tech-
nique for noisy point clouds can be combined with a topo-
logical technique for segmentation to obtain a robust method
for feature identification of shapes from their point sam-
ples possibly corrupted with noise. The entire method is di-
rect and simple in that it deals with a single data structure,
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Figure 6: Similarity matrix.
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Figure 7: In the shape distribution method the probability
distribution plot of D2 distances shows a better match be-
tween the left alien and the dynosaur. Our method matches
the two aliens better than with the dynosaur.

namely the Delaunay triangulation of the point sample, and
determines the tetrahedra to be clustered to form the feature
segments. The feature segments obtained by the method can
be used effectively for shape matching.

Some questions remain open. Our method is suitable for
segmenting and hence matching volumes. It does not work
for surfaces that have boundaries. Some applications need

partial matchings where surfaces with boundaries need to
be considered. Also, the method is not suitable for match-
ing deformable objects. For example, a crawling human will
be treated differently from the same human with no such
crawl. Notice that the segmentation will dissect the features
correctly in both cases though the matching may not com-
pensate for the deformations. We are currently investigating
these issues.

Acknowledgements. This work is partially supported by
NSF CARGO grant DMS-0138456 and the ARO grant
DAAD19-02-1-0347.

References

[ABCO � 01] ALEXA M., BEHR J., COHEN-OR D.,
FLEISHMAN S., LEVIN D., SILVA C. T.:
Point set surfaces. InProc. IEEE Visualization
(2001), pp. 21–28.

[ACK01] A MENTA N., CHOI S., KOLLURI R.: The
power crust, union of balls, and the medial axis
transform. Comput. Geom. Theory Appl. 19
(2001), 127–153.

[AG96] ALT H., GUIBAS L. J.: Discrete geometric
shapes: matching, interpolation, and approxi-
mation: a survey.Tech. report B 96-11, EVL-
1996-142, Institute of Computer Science, Freie
Universität Berlin(1996).

[BM02] BELONGIE S., MALIK J.: Matching with
shape contexts.IEEE Trans. PAMI 24(2002),
509–522.

[DG04] DEY T. K., GOSWAMI S.: Provable surface
reconstruction from noisy samples. InProc.
20th Annu. Sympos. Comput. Geom.,(2004).

[DGG03] DEY T. K., GIESEN J., GOSWAMI S.: Shape
segmentation and matching with flow dis-
cretization. In Proc. Workshop Algorithms
Data Structures, LNCS 2748(2003), pp. 25–
36.

[EFL98] EDELSBRUNNER H., FACELLO M. A.,
L IANG J.: On the definition and the construc-
tion of pockets in macromolecules.Discrete
Apl. Math. 88(1998), 83–102.

[GJ02] GIESEN J., JOHN M.: The flow complex: a
data structure for geometric modeling. InProc.
14th Annu. ACM-SIAM Sympos. Discrete Al-
gorithms(2002), pp. 285–294.

[Gro93] GROVE K.: Critical point theory for dis-
tance functions. InProc. Sympos. Pure Math.
(1993), vol. 54, pp. 357–385.

c
�

The Eurographics Association 2004.

198



Dey & Giesen & Goswami / Shape Segmentation and Matching from Noisy Point Clouds

[HKR93] HUTTELNOCHER D. P., KLANDERMAN

G. A., RUCKLIDGE W. J.: Computing images
using the hausdorff distance.IEEE Trans.
PAMI 15(1993), 850–863.

[HSKK01] HILAGA M., SHINAGAWA Y., KOMURA T.,
KUNNI T.: Topology matching for fully au-
tomatic similarity estimation of 3d shapes. In
Proc. SIGGRAPH(2001), pp. 203–212.

[JH99] JOHNSON A. E., HEBERT M.: Using spin-
images for efficient multiple model recognition
in cluttered 3-d scenes.IEEE Trans. PAMI 21
(1999), 433–449.

[KT03] K ATZ S., TAL A.: Hierarchical mesh decom-
position using fuzzy clustering and cuts. In
Proc. SIGGRAPH(2003), pp. 954–961.

[LK01] L EYMARIE F., KIMIA B.: The shock scaf-
fold for representing 3d shape. InProc. 4th
Internat. Workshop Visual Form., LNCS 2059,
Springer-Verlag(2001), pp. 216–229.

[OFCD01] OSADA R., FUNKHOUSERT., CHAZELLE B.,
DOBKIN D.: Matching 3d models with shape
distribution. InProc. Shape Modelling Inter-
nat. (2001).

[PKKG03] PAULY M., KEISER R., KOBBELT L. P.,
GROSS M. H.: Shape modeling with point-
sampled geometry. InProc. SIGGRAPH
(2003), pp. 641–650.

[SKK01] SEBASTIAN T. B., KLEIN P. N., KIMIA B.:
Recognition of shapes by editing shock graphs.
In Proc. ICCV(2001), pp. 755–762.

[TC92] TAUBIN G., COOPER D.: Geometric invari-
ance in computer vision, Ch. Object Recogni-
tion Based on Moment (of algebraic) Invari-
ants. MIT press, 1992.

c
�

The Eurographics Association 2004.

199


