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Abstract
In this paper, we present a complete computational pipeline for extracting a compact shape descriptor for curve
point cloud data. Our shape descriptor, called a barcode, is based on a blend of techniques from differential
geometry and algebraic topology. We also provide a metric over the space of barcodes, enabling fast comparison of
PCDs for shape recognition and clustering. To demonstrate the feasibility of our approach, we have implemented
it and provide experimental evidence in shape classification and parametrization.

1. Introduction

In this paper, we present a complete computational pipeline
for extracting a compact shape descriptor for curve point
cloud data. Our shape descriptor, called a barcode, is based
on a blend of techniques from differential geometry and al-
gebraic topology. We also provide a metric over the space
of barcodes, enabling fast comparison of PCDs for shape
recognition and clustering. To demonstrate the feasibility
of our approach, we have implemented our pipeline and
provide experimental evidence in shape classification and
parametrization.

1.1. Prior Work

Shape analysis is a well-studied problem in many areas
of computer science, such as vision, graphics, and pattern
recognition. Researchers in vision first introduced the idea
of using compact representations of shapes, or shape de-
scriptors, for two-dimensional data or images. They de-
rived descriptors using diverse methods, such as topolog-
ical invariants, moment invariants, morphological methods
for skeletons or medial axes, and elliptic Fourier parameter-
izations [DHS00, GW02, SKK01]. More recently, the avail-
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ability of large sets of digitized three-dimensional shapes
has generated interest in 3D descriptors [Fan90, Fis89], with
techniques such as shape distributions [OFCD01] and multi-
resolution Reeb graphs [HSKK01]. Ideally, a shape descrip-
tor should be invariant to rigid transformations and coordi-
natize the shape space in a meaningful way.

The idea of using point cloud data or PCD as a dis-
play primitive was introduced early [LW85], but did not
become popular until the recent emergence of massive
datasets. PCDs are now utilized in rendering [AA03, RL00],
shape representation [ABCO∗01, ZPKG02], and model-
ing [AD03, PKKG03], among other uses. Furthermore,
PCDs are often the only possible primitive for exploring
shapes in higher dimensions [DG03, LPM01, TdSL00].

1.2. Our Work

In a previous paper, we initiated a study of shape descrip-
tion via the application of persistent homology to tangen-
tial constructions [CZCG04]. We proposed a robust method
that combines the differentiating power of geometry with the
classifying power of topology. We also showed the viability
of our method through explicit calculations for one- and two-
dimensional mathematical objects (curves and surfaces.) In
this paper, we shift our focus from theory to practice, illus-
trating the feasibility of our method in the PCD domain. We
focus on curves in order to explore the issues that arise in the
application of our techniques. We must emphasize, however,
that we view curves as one-dimensional manifolds, and in-
sist that all our solutions extend to n-dimensional manifolds.
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Therefore, we avoid heuristics based on abusing character-
istics of curve PCDs and search for general techniques that
will be suitable in all dimensions.

1.3. Overview

The rest of the paper is organized as follows. In Section 2 we
review the theoretical background for our shape descriptor.
We believe that an intuitive understanding of this material is
sufficient for appreciating the results of this paper. Section 3
contains the algorithms for computing barcodes for PCDs
sampled from closed smooth curves. We also describe the
computation of the metric over the space of barcodes. We
apply our techniques to families of algebraic curves in Sec-
tion 4 to demonstrate their effectiveness. In Section 5, we
extend our system to general PCDs that may include non-
manifold points, singularities, boundary points, or noise. We
then illustrate the power of our methods through applications
to shape classification and parametrization in Section 6.

2. Background

In this section, we review the theoretical background neces-
sary for our work. To make the discussion accessible to the
non-specialist, our exposition will have an intuitive flavor.
However, we refer the interested reader to formal descrip-
tions along the way.

2.1. Filtered Simplicial Complex

Let S be a set of points. A k-simplex is a subset of S of
size k + 1 [Mun84]. A simplex may be realized geomet-
rically as the convex hull of k + 1 affinely independent
points in R

d ,d ≥ k. A realization gives us the familiar low-
dimensional k-simplices: vertices, edges, and triangles. A
simplicial complex is a set K of simplices on S such that
if σ ∈ K, then τ ⊂ σ implies τ ∈ K. A subcomplex of K is a
simplicial complex L ⊆ K. A filtration of a complex K is a
nested sequence of complexes ∅= K0 ⊆K1 ⊆ . . .⊆Km = K.
We call K a filtered complex and show a small example in
Figure 1.

2.2. Persistent Homology

Suppose we are given a shape X that is embedded in R
3.

Homology is an algebraic invariant that counts the topolog-
ical attributes of this shape in terms of its Betti numbers
βi [Mun84]. Specifically, β0 counts the number of compo-
nents of X . β1 is the rank of a basis for the tunnels through
X . These tunnels may be viewed as forming a graph with
cycles [CLRS01]. β2 counts the number of voids in X , or
spaces that are enclosed by the shape. In this manner, homol-
ogy gives a finite compact description of the connectivity of
the shape. Since homology is an invariant, we may represent
our shape combinatorially with a simplicial complex that has
the same connectivity to get the same result.
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Figure 1: A filtered complex with newly added simplices
highlighted. We show the persistent interval set in each di-
mension below the filtration. Each persistent interval shown
is the lifetime of a topological attribute, created and de-
stroyed by the simplices at the low and high endpoints, re-
spectively.

Suppose now that we are also given a process for con-
structing our shape from scratch. Such a growth process
gives an evolving shape that undergoes topological changes:
new components appear and connect to the old ones, tunnels
are created and closed off, and voids are enclosed and filled
in. Persistent homology is an algebraic invariant that identi-
fies the birth and death of each topological attribute in this
evolution [ELZ02, ZC04]. Each attribute has a lifetime dur-
ing which it contributes to some Betti number. We deem im-
portant those attributes with longer lifetimes, as they persist
in being features of the shape. We may represent this lifetime
as an interval, as shown in Figure 1 for our small example.
A feature, such as the first component in any filtration, may
live forever and therefore have a half-infinite interval as its
lifetime. Persistent homology describes the connectivity of
our evolving shape via a multiset of intervals in each dimen-
sion. If we represent our shape with a simplicial complex,
we may also represent its growth with a filtered complex.

2.3. Filtered Tangent Complex

We examine the geometry of our shape by looking at the tan-
gents at each point of the shape. Although our approach ex-
tends to any dimension, we restrict our definitions to curves
as they are the focus of this paper and simplify the descrip-
tion.

Let X be a curve in R
2. We define T 0(X) ⊆ X ×S

1 to be
the set of the tangents at all points of X . That is,

T 0(X) =

{

(x,ζ) | lim
t→0

d(x+ tζ,X)

t
= 0

}

.

A point (x,ζ) in T 0(X) represents a tangent vector at a point
x ∈ X in the direction ζ ∈ S

1. The tangent complex of X
is the closure of T 0, T (X) = T 0(X) ⊆ R

2 × S
1. T (X) is

equipped with a projection π : T (X) → X that projects a
point (x,ζ) ∈ T (X) in the tangent complex onto its base-
point x ∈ X , and π−1(x) ⊆ T (X) is the fiber at x.
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We may filter the tangent complex using the curvature at
each point. We let T 0

κ (X) be the set of points (x,ζ) ∈ T 0(X)
where the curvature κ(x) at x is less than κ, and define
Tκ(X) be the closure of T 0

κ (X) in R
2 × S

1. We call the κ-
parametrized family of spaces {Tκ(X)}κ≥0 the filtered tan-
gent complex, denoted by T filt(X).

2.4. Barcodes

We get a compact descriptor by applying persistent homol-
ogy to the filtered tangent complex of our shape. That is,
the descriptor examines the connectivity of not the shape
itself, but that of a derived space that is enriched with ge-
ometric information about the shape. We define a barcode
to be the resulting set of persistence intervals for T filt(X) in
each dimension. For curves, the only interesting barcode is
usually the β0-barcode which describes the lifetimes of the
components in the growing tangent complex. We also define
a quasi-metric, a metric that has ∞ as a possible value, over
the collection of all barcodes. Our metric enables us to utilize
barcodes as shape descriptors, as we can compare shapes by
measuring the difference between their barcodes.

Let I,J be any two intervals in a barcode. We define their
dissimilarity δ(I,J) to be the length of their symmetric dif-
ference: δ(I,J) = |I ∪ J − I ∩ J|. Note that δ(I,J) may be
infinite. Given a pair of barcodes B1 and B2, a matching is
a set M(B1,B2) ⊆ B1 ×B2 = {(I,J) | I ∈ B1 and J ∈ B2},
so that any interval in B1 or B2 occurs in at most one pair
(I,J). Let M1,M2 be the intervals from B1,B2, respectively,
that are matched in M, and let N be the non-matched inter-
vals N = (B1 −M1)∪ (B2 −M2). Given a matching M for
B1 and B2, we define the distance of B1 and B2 relative to M
to be the sum

DM(B1,B2) = ∑
(I,J)∈M

δ(I,J)+ ∑
L∈N

|L|. (1)

We now look for the best possible matching to define the
quasi-metric D(B1,B2) = minM DM(B1,B2).

3. Computing Barcodes

In this section, we present a complete pipeline for com-
puting barcodes for a PCD. Throughout this section, we
assume that our PCD P contains samples from a smooth
closed curve X ⊂ R

2. Before we compute the barcode, we
need to construct the tangent complex. Since we only have
samples from the original space, we can only approximate
the tangent complex. We begin by computing a new PCD,
π−1(P) ⊂ T (X), that samples the tangent complex for our
shape. To capture its homology, we first approximate the un-
derlying space and then compute a simplicial complex that
represents its connectivity. We filter this complex by estimat-
ing the curvature at each point of π−1(P). We conclude this
section by describing the barcode computation and giving an
algorithm for computing the metric on the barcode space.

3.1. Fibers

Suppose we are given a PCD P, as shown in Figure 2(a). We
wish to compute the fiber at each point to generate a new
PCD π−1(P) that samples the tangent complex T (X). Natu-
rally, we must estimate the tangent directions, as we do not
have the underlying shape X from which P was sampled.
We do so by approximating the tangent line to the curve X
at point p ∈ P via a total least squares fit that minimizes
the sum of the squares of the perpendicular distances of the
line to the point’s nearest neighbors. Let S be the k nearest
neighbors to p, and let x0 = 1

k ∑k
i=1 xi be the average of the

point in S. We assume that the best line passes through x0. In
general, the hyperplane P(n,x0) in R

n which is normal to n
and passes through the point x0 has equation (x−x0) ·n = 0.
The perpendicular distance from any point xi ∈ S to this hy-
perplane is |(xi−x0) ·n|, provided than |n|= 1. Let M be the
matrix whose ith row is (xi − x0)

T . Then Mn is the vector of
perpendicular distances from points in S to the hyperplane
P(n,x0), and the total least squares (TLS) problem is to min-
imize |Mn|2. The eigenvector corresponding to the smallest
eigenvalue of the covariance matrix MTM is the normal to
the hyperplane P(n,x0) that best approximates the neighbor
set S. Therefore, for a point p in two dimensions, the fiber
π−1(p) contains the eigenvector corresponding to the larger
eigenvalue, as well as the vector pointing in the reverse di-
rection.

We note that it is better to use TLS here than ordinary
least squares (OLS), as the optimal line found by the former
method is independent of the parametrization of the points.
Also, when the underlying curve is not smooth, we may use
TLS to identify points near the singularities by observing
when the eigenvalues are close.

Choosing a correct neighborhood set is a fundamental is-
sue in PCD computation and relates to the correct recovery
of the lost topology and embedding of the underlying shape.
The neighbor set S may contain either the k nearest neigh-
bors to p, or all points within a disc of radius ε. The ap-
propriate value of k or ε depends on local sampling density,
local feature size, and noise, and may vary from point to
point. It is standard practice to set these parameters empir-
ically [DG03, PKKG03, TdSL00], although recent work on
automatic estimation of neighborhood sizes seems promis-
ing [MNG04]. In our current software, we estimate k for
each data set independently. We hope to incorporate auto-
matic estimation into our software in the near future.

3.2. Approximated T (X)

We now have a sampling π−1(P) of the tangent complex
T (X), as shown in Figure 2(b) for our example. This set is
discrete and has no interesting topology. The usual approach
is to center an ε-ball Bε(p) = {x | d(p,x) ≤ ε}, a ball of
radius ε, at each point of π−1(P). This approach is based
on the assumption that the underlying space is a manifold,
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(a) PCD P (b) Fibers π−1(P) (c) Approx. T (X) (d) Complex (e) β0-barcode

κ = 0.5 4.5

Figure 2: Given a noisy PCD P (a), we compute the fibers π−1(P) (b) by fitting lines locally. In the volume, the z-axis corre-
sponds to tangent angle, so the top and the bottom of the volume are glued. We center ε-balls with ε = 0.05 at the fiber points to
get a space (c) that approximates the tangent complex. The fibers and union of balls are colored according to curvature using
the hot colormap shown. The curvature estimates appear noisy because of the small variation. We capture the topology of the
union of balls using the simplicial complex (d). We show the α-complex for the union of balls in the figure (with α = ε) as it has
a nice geometric realization. In practice, we utilize the Rips complex. Applying persistent homology, we get the β0-barcode (e).

or locally flat. Our approximation to T (X) is the union of
ε-balls around the fiber points:

T (X) ≈
⋃

p∈π−1(P)

Bε(p).

Two issues arise, however: first, we need a metric d on
R

2 ×S
1 so that we can define what an ε-ball is, and second,

we need to determine an appropriate value for ε.

We define a Euclidean-like metric generally on R
n×S

n−1

as ds2 = dx2 +ω2dζ2. That is, the squared distance between
the tangent vectors τ = (x,ζ) and τ′ = (x′,ζ′) is given by

d2(τ,τ′) =
n

∑
i=1

(xi − x′i)
2 +ω2

n

∑
i=1

(ζi −ζ′i)
2,

where ω is a scaling factor. Here, the distance between the
two directions ζ,ζ′ ∈ S

n−1 is the chord length as opposed
to the arc length. The first measure approximates the second
quite well when the distances are small, and is also much
faster computationally.

The choice of the scaling factor ω in our metric depends
on the nature of the PCD and our goals in computing the tan-
gent complex. A large value of ω will spread the points of
π−1(P) out in the angular directions. This is useful for seg-
menting an object composed of straight pieces, such as the
letter ‘V’. However, too much separation can lead to errors
for smooth curves with high curvature regions, such as an
eccentric ellipse. In such regions, the angular separation at
neighboring basepoints changes rapidly, yielding points that
are further apart in π−1(P). In these cases, a smaller value of
ω maintains the connectivity of X , while still separating the
directions enough to compute the barcodes for T (X). Setting
ω = 0 projects the fibers π−1(P) back to their basepoints P.

There is, of course, no perfect choice for ε, as it depends

not only on the factors described in the previous section, but
also on the value of the scale factor ω in the metric. We need
to choose ε to be at least large enough so that the basepoints
are properly connected when ω = 0. When ω is small, then
the starting ε is usually sufficient. When ω is large, the union
of ε-balls is less connected, which may be precisely what
we want, such as for the letter ‘V’. We have devised a rule
of thumb for setting ε. Recall that curvature is defined to be
κ = dϕ

ds , where ϕ is the tangent angle and s is arc-length along
X . Then, two points that are ∆x apart in a region with cur-
vature κ have tangent angles roughly ∆ϕ ≈ κ∆x apart. Since
the chord length ∆ζ approximates the arc length ∆ϕ on S

1

for small values, the squared distance between neighboring
points in π−1(P) is approximately ∆x2(1+(ωκ)2). So,

ε ≈
√

∆x2(1+(ωκ)2)

2
. (2)

3.3. Complex

We now have an approximation to the tangent complex as
a union of balls. To compute its topology efficiently, we re-
quire a combinatorial representation of this union as a sim-
plicial complex. This simplicial complex T (P) must have the
same connectivity as the union of balls, or the same homo-
topy type.

A commonly used complex in algebraic topology is the
Čech complex. For a set of m points M, the Čech complex
looks at the intersection pattern of the union of ε-balls:

Cε(M) =

{

convT | T ⊆ M,
⋂

t∈T
Bε(t) 6= ∅

}

.

Clearly, the Čech complex is homotopic to the union of
balls. Unfortunately, it is also expensive to compute, as
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we need to examine all subsets of the pointset for poten-
tially ∑m

k=0
(m

k
)

= 2m+1−1 simplices. Furthermore, the com-
plex may have high-dimensional simplices even for low-
dimensional pointsets. If four balls have a common inter-
section in two dimensions, the Čech complex for the point
set will include a four-dimensional simplex.

A common approximation to the Čech complex is the
Rips complex [Gro87]. Intuitively, this complex only looks
at the intersection pattern between pairs of balls, and adds
higher simplices whenever all of their lower sub-simplices
are present:

Rε(M) = {convT | T ⊆ M, d(s, t) ≤ ε, s, t ∈ T} .

Note that Cε/2(M)⊆Rε(M) for all ε, and that the Rips com-
plex may have different connectivity than the union of balls.
The Rips complex is also large and requires O

((m
k
))

time for
computing k-simplices. However, it is easier than the Čech
complex to compute and is often used in practice.

Since we are computing β0-barcodes in this paper, we
only require the vertices and edges in T (P). At this level, the
Čech and Rips complexes are identical. For higher dimen-
sional PCD such as points from surfaces, however, we will
need triangles and, at times, tetrahedra, for computing the
barcodes. We are therefore examining methods for comput-
ing small complexes that represent the union of balls. A po-
tential approach utilizes α-complexes, subcomplexes of the
Delaunay complex, the dual to the Voronoï diagram of the
points [dBvKOS97, Ede95]. These complexes are geomet-
rically realizable, are small, and their highest-dimensional
simplices have the same dimension as the embedding space.
We may view our metric R

n × S
n−1 as a Euclidean metric

by first scaling the tangents on S
n−1 to lie on a sphere of

radius ω. Then, we may compute α-complexes easily, pro-
vided we connect the complex correctly in the tangent di-
mension across the top/bottom boundary. Figure 2 displays
renderings of our space with the correct scaling as well as
an α-complex with α = ε. A fundamental problem with this
approach, however, is that we need to filter α-complexes by
curvature. Currently, we do not know whether this is pos-
sible. An alternate but attractive method is to compute the
witness complex. This complex utilizes a subsample of land-
mark points to compute small complexes that approximate
the topology of the underlying ball-set [dSC04].

3.4. Filtered Tangent Complex

We next need to filter the tangent complex using the cur-
vature at the basepoint. Recall that the curvature at a point
x ∈ X in direction ζ is κ(x,ζ) = 1/ρ(x,ζ), where ρ is the
radius of the osculating circle to X at x in direction ζ. We
need to estimate this curvature at each point of π−1(P), in
order to construct the filtration on T (P) required to compute
barcodes. We then assign to each simplex the maximum of
the curvatures at its vertices.

Rather than estimating the osculating circle, we estimate

the osculating parabola as it is computationally more effi-
cient. Two curves y = f (x) and y = g(x) in the plane have
second order contact at x0 iff f (x0) = g(x0), f ′(x0) = g′(x0)
and f ′′(x0) = g′′(x0). So, if X admits a circle of second-
order contact, then it also admits a parabola of second-order
contact. Consider the coordinate frame centered at x ∈ X
with vertical axis normal to X . Suppose the curvature at
x is κ = 1/ρ, that is, the osculating circle has equation
x2 + (y − ρ)2 = ρ2. This circle has derivatives y′ = 0 and
y′′ = 1/ρ at x. Integrating, we find that the parabola which
has second-order contact with this circle, and hence with X ,
has equation y = x2/2ρ, as shown in Figure 3.

X
x

(0,ρ)

(0,ρ/2)

Figure 3: The osculating circle and parabola to X (dashed)
at x. The circle has center (0,ρ), the parabola has focus
(0,ρ/2). The curvature of X at x is κ = 1/ρ.

We again approximate the shape locally using a set of
neighborhood points for each point in P. To find the best-
fit parabola, we do not utilize the TLS approach as in Sec-
tion 3.1, as the equations that minimize the perpendicular
distance to a parabola are rather unpleasant. Instead, we use
OLS which minimizes the vertical distance to the parabola.
Naturally, the resulting parabola depends upon the coordi-
nate frame in which the points are expressed. Fortunately,
we have already determined the appropriate frame to use in
computing the fibers in Section 3.1. Once we compute the
fiber at p, we move the nearest neighbors S to a coordinate
frame with vertical axis the TLS best-fit normal direction.
We set the origin to be x0 in this coordinate frame (the aver-
age of the points in S) although we do not insist that the ver-
tex of the parabola lies precisely there. We then fit a vertical
parabola f (x) = c0 +c1x+c2x2 as follows. Suppose the col-
lection S of k neighbor points is S = {(x1,y1), . . . ,(xk,yk)}.
Let

A =













1 x1 x2
1

1 x2 x2
2

...
...

...
1 xk x2

k













,

C = (c0,c1,c2)
T ,

Y = (y1, . . . ,yk)
T .
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If all points of S lie on f , then AC = Y ; thus η = AC−Y is
the vector of errors that measures the distance of f from S.
We wish to find the vector C that minimizes |η|. Setting the
derivatives of |η|2 to zero with respect to {ci}, we solve for
C to get

C = (ATA)−1ATY.

The curvature of the parabola f (x) = c0 +c1x+c2x2 at its
vertex is 2c2, and this is our curvature estimate κ at p. We
use this curvature to obtain a filtration of the simplicial com-
plex T (P) that we computed in the last section. This filtered
complex approximates T filt(X), the filtered tangent complex
described in Section 2.3. For our example, Figure 2(b) and
2(c) show the fibers π−1(P) and union of ε-balls colored ac-
cording to curvature, using the hot colormap.

3.5. Metric Space of Barcodes

We now have computed a filtered simplicial complex that
approximates T filt for our PCD. We next compute the β0
barcodes using an implementation of the persistence algo-
rithm [ZC04]. Figure 2(e) shows the resulting β0-barcode
for our sample PCD. As expected, the barcode contains two
long intervals, corresponding to the two persistent compo-
nents of the tangent complex that represent the two tangent
directions at each point of a circle. The noise in our PCD
is reflected in small intervals in the barcode, which we can
discard easily.

To compute the metric, we modify the algorithm that we
gave in a previous paper [CZCG04] so it is robust numer-
ically. Given two barcodes B1,B2, our algorithm computes
the metric in three stages. In the first stage, we simply com-
pare the number of half-infinite intervals in the two barcodes
and return ∞ in the case of inequality. In the second stage,
we compute the distance between the half-infinite intervals.
We sort the intervals according to their low endpoints and
match them one-to-one according to their ranks. Given a
matched pair of half-infinite intervals I ∈ B1,J ∈ B2, their
dissimilarity is δ(I,J) = | low(I) − low(J)|, where low(·)
denotes the low endpoint of an interval.

In the third stage, we compute the distance between
finite intervals using a matching problem. Minimizing
the distance is equivalent to maximizing the intersection
length [CZCG04]. We accomplish the latter by recasting the
problem as a graph problem. Given sets B1 and B2, we de-
fine G(V,E) to be a weighted bipartite graph [CLRS01].
We place a vertex in V for each interval in B1 ∪ B2. Af-
ter sorting the intervals, we scan the intervals to com-
pute all intersecting pairs between the two sets [ZE02].
Each pair (I,J) ∈ B1 × B2 adds an edge with weight |I ∩
J| to E. Maximizing the similarity is equivalent to the
well-known maximum weight bipartite matching problem.
In our software, we solve this problem with the function
MAX_WEIGHT_BIPARTITE_MATCHING from the LEDA

graph library [Alg04, MN99]. We then sum the dissimilarity
of each pair of matched intervals, as well as the length of the
unmatched intervals, to get the distance.

4. Algebraic Curves

Having described our methods for computing the metric
space of barcodes, we examine our shape descriptor for
PCDs of families of algebraic curves. Throughout this sec-
tion, we use a neighborhood of k = 20 points for computing
fibers and estimating curvature.

4.1. Family of Ellipses

Our first family of spaces are ellipses given by the equa-
tion x2

a2 + y2

b2 = 1. We compute PCDs for the five ellipses
shown in Figure 4 with semi-major axis a = 0.5 and semi-
minor axes b equal to 0.5, 0.4, 0.3, 0.2, and 0.1, from top
to bottom. To generate the point sets, we select 50 points
per unit length spaced evenly along the x- and y-axes, and
then project these samples onto the true curve. Therefore,
the points are roughly ∆x = 0.02 apart. We then add Gaus-
sian noise to each point with mean 0 and standard deviation
equal to half the inter-point distance or 0.01. For our met-
ric, we use a scaling factor ω = 0.1. To determine an appro-
priate value for ε for computing the Rips complex, we uti-
lize our rule-of-thumb: Equation (2) from Section 3.2. The
maximum curvature for the ellipses shown is κmax = 50, so
ε≈ 0.02

√
1+52/2≈ 0.05. This value successfully connects

points with close basepoints and tangent directions, while
still keeping antipodal points in the individual fibers sepa-
rated.

4.2. Family of Cubics

Our second family of spaces are cubics given by the equation
y = x3 −ax. The five cubics shown in Figure 5 have a equal
to 0, 1, 2, 3, and 4, respectively. In this case, the portion of
the graph sampled is approximately three by three. In order
to have roughly the same number of points as the ellipses,
we select 15 points per unit length spaced evenly along the
x- and y-axes, and project them as before. The points of P
are now roughly 0.06 apart. We add Gaussian noise to each
point with mean 0 and standard deviation half the inter-point
distance or 0.03. For our metric, we use ω = 0.5, primar-
ily for aesthetic reasons as the fibers are then more spread
out. The maximum curvature on the cubics is κmax ≈ 8, and
our rule-of-thumb suggests that we need ε ≈ 0.4. However,
ε = 0.2 is sufficient in this case.

5. Extensions

In Section 3, we assumed that our PCD was sampled from
a closed smooth curve in the plane. Our PCDs in the last
section, however, violated our assumption as both families
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κ = 0 50

Figure 4: Family of ellipses: PCD P, fibers π−1(P) colored
by curvature, and β0-barcode.

had added noise, and the family of cubics featured bound-
ary points. Our method performed quite well, however, and
naturally, we would like our method to generalize to other
misbehaving PCDs. In this section, we characterize several
such phenomena. For each problem, we describe possible so-
lutions that are restrictions of methods that work in arbitrary
dimensions.

5.1. Non-manifold points

Suppose that our PCD P is sampled from a geometric object
X that is not a manifold. In other words, there are points in
the object that are not contained in any neighborhood that
can be parametrized by a Euclidean space of some dimen-
sion. In the case of curves, a non-manifold point appears at
a crossing, where two arcs intersect transversally. For ex-
ample, the junction point of the letter ‘T’ is a non-manifold
point. We would like our method to manage nicely in the
presence of non-manifold points.

κ = 0 8

Figure 5: Family of cubics: PCD P, fibers π−1(P) colored
by curvature, and β0-barcode.

Our approach is to create the tangent complex for P as be-
fore, but remove points for which there is no well-defined
linear approximation due to proximity to a singular point
in X . Such points are identified by a relatively large ratio
between the eigenvalues of the TLS covariance matrix con-
structed for computing fibers in Section 3.1. The point re-
moval effectively segments the tangent complex into pieces.
With appropriately large values of ε and ω, we can still
connect the remaining pieces correctly. Figure 6 shows a
PCD for the letter ‘T’. Near the non-manifold point, the tan-
gent direction (height) and curvature (color) estimates de-
viate from the correct values, and the fiber over the cross-
ing point appears as two rogue points away from the main
segments. By removing all points whose eigenvalue ratio is
greater than 0.25, we successfully eliminate both rogue and
high-curvature points. The gap introduced in the fibers over
the crossbar of the ‘T’ is narrower than the vertical (angular)
spacing between components. With a well-chosen value of
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ε, the ε-balls will bridge this gap yet leave four components,
as desired. For the images here, we perturbed points 0.01
apart by Gaussian noise with mean 0 and standard deviation
0.005 – half the inter-point distance. The tangent complexes
are displayed with angular scaling factor ω = 2. Balls of ra-
dius ε = 0.1 give the correct T (P).

5.2. Singularities

Our PCD may be sampled from a non-smooth manifold.
For curves, a non-smooth point typically appear as a “kink”,
such as in the letter ‘V.’ We say a corner is a singular point in
the PCD. If the goal is simply to detect the presence of a sin-
gular point, then our solution to non-manifold points above
– to snip out those points with bad linear approximation –
works quite well here, as Figure 7 displays for the letter ‘V’
and parameters as above.

Sometimes, however, we would like to study a family
of spaces that contain singular points to understand shape
variability. Since our curvature estimates at a non-smooth
point are large, they are included in the filtered tangent com-
plex relatively late, breaking the complex into many com-
ponents early on. Moreover, the curvature estimates corre-
late well with the “kinkiness” of the singularity, and enable
a parametrization of the family, as an example illustrates in
the next section. This method extends easily to higher di-
mensions with higher-dimensional barcodes.

5.3. Boundary points

We may have a PCD sampled from a space with bound-
ary. Counting boundary points of curves could be an ef-
fective tool for differentiating between them. Currently, our
method does not distinguish boundary points, but simply al-
lows them to get curvature estimates similar to their neigh-
boring points in the PCD, as seen for the shapes in Fig-
ures 5, 6, and 7. We propose a method, however, that dis-
tinguishes boundary points via one-dimensional relative ho-
mology. Around each point p, we may construct Bε(p) with
its boundary Sε(p). For a manifold point, the relative ho-
mology group H1(Bε(p),Sε(p)) has rank 1. Around non-
manifold points, the group has rank greater than 1. At a
boundary point, the group has rank 0. This strategy would

Figure 6: PCD for the letter ‘T,’ all fibers in π−1(P), and
fibers with eigenvalue ratio less than 0.25.

Figure 7: PCD for the letter ‘V,’ all fibers in π−1(P), and
fibers with eigenvalue ratio less than 0.25.

empower our method, for example, to distinguish between
the letters ‘I’ and ‘J’ with serifs. We plan to implement this
strategy in the near future.

5.4. Noise

Finally, our PCD samples may contain noise, which affects
our method in two different ways:

1. Noise may effectively thicken a curve so that it is no
longer a one-dimensional object. Once the curve is thick
enough, it becomes significantly difficult to compute re-
liable tangent and curvature estimates.

2. Noise may also create outliers that disrupt homology cal-
culations by introducing spurious components that result
in long barcode intervals that are indistinguishable from
genuine persistent intervals.

We resolve the first problem in part by averaging the esti-
mated curvature values over neighborhoods of each point.
This has the effect of smoothing the curvature calculations.
However, this does not fix incorrect tangent estimates which
can result in a mis-connected tangent complex. For some
real-world data sets, for example the scanned-in numbers in
the MNIST database of handwritten digits [LeC], our tech-
nique sometimes has trouble with the tangent estimates. See
Figure 8 for an example of how this affects the tangent com-
plex.

We may resolve the second problem by considering the
density of points in the point cloud, and preprocessing the
PCD by removing points with low density values. Another

Figure 8: Two examples of hand-written scanned-in dig-
its ‘0’ from the MNIST Database. We successfully construct
T (P) on the left, but the misshapen left side of the right ‘0’
is too thick, resulting in tangent estimate errors and an in-
correct T (P).
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strategy which shows promise is to postpone including a
point in the filtration of T (P) until it is part of a compo-
nent with at least k points, for some threshold size k. Not
only does this omit singleton outliers, but it also reduces the
number and size of the noisy short intervals we see for small
κ in our barcodes.

6. Applications

In this section, we discuss the application of our work to
shape classification and parametrization. We have imple-
mented a complete system for computing and visualizing
filtered tangent complexes, and for computing, displaying,
and comparing barcodes.

6.1. Classifying Shapes

To demonstrate the power of our technique for shape classifi-
cation, we apply it to a collection of hand-written scanned-in
letters of the alphabet. Our aim is not to outperform existing
OCR techniques, but present an illuminating example. We
may partition the alphabet into three classes based on the
number of holes. The letter ‘B’ has two holes, ‘A’, ‘D’, ‘O’,
‘P’, ‘Q’, and ‘R’ have one hole, and the remaining letters
have none. This topological classification is clearly unable
to distinguish between the letters. However, when we look at
the topology of the tangent complex, we glean more infor-
mation. For example, the letters ‘U’ and ‘V’ are homotopy
equivalent, but ‘U’ is smooth while ‘V’ has a kink. This sin-
gularity splits the tangent complex for ‘V’ into four pieces
as in Figure 7, compared to two pieces for the tangent com-
plex for ‘U’. In turn, the components become half-infinite
intervals in the β0-barcodes of for the letters: four for ‘V’,
and two for ‘U’. Similarly, while ‘O’ and ‘D’ have the same
topology, they are distinguishable by the number of half-
infinite intervals in their barcodes, with the singularities in
‘D’ generating two additional intervals. Although ‘D’ and
‘V’ have similar tangent spaces, recall that we may distin-
guish them easily through their topology. Even when the let-
ters are both smooth, we may use the curvature information
to distinguish between them. For example, the difference in
curvature between the letters ‘C’ and ‘I’ results in different
low endpoints for the half-infinite intervals in their barcodes.
Finally, the letters ‘A’ and ‘R’ have tangent complexes that
split into six components. But again, the curved portion of
‘R’ results in a different low endpoint for a pair of intervals,
and hence a different barcode than for ‘A’.

We scan ten hand-written copies of each of the eight let-
ters discussed and compute the distance between them us-
ing the barcode metric of Section 3.5. Figure 9 displays the
resulting distance matrix, where black corresponds to zero
distance. The letters are grouped according to the number of
components in T (P). The distance between letters from dif-
ferent groups is infinite, reflected in the large white regions
of the matrix.

Figure 9: Distance matrix for the letters ‘A’, ‘R’, ‘D’, ‘V’,
‘U’, ‘I’, ‘C’, and ‘O’. We scan in ten hand-written instances
of each of these eight letters. We map the distance between
each pair to gray-scale, with black indicating zero distance.
The letters are grouped according to the number of compo-
nents in T (P). The distance between letters from different
groups is infinite, reflected in the large white regions of the
matrix.

6.2. Parameterizing a Family of Shapes

The two families of shapes we saw in Section 4 may
be easily parametrized via barcodes. For a family of el-
lipses x2

a2 + y2

b2 = 1 with parameters a ≥ b > 0, we can
show mathematically that the β0-barcode consists of two
half-infinite intervals

(

b
a2 ,∞

)

and two long finite intervals
(

b
a2 , a

b2

)

[CZCG04]. For fixed a and decreasing b, the in-
tervals should grow longer, and this is precisely the behav-
ior of the barcodes in Figure 4. Similarly, for a family of
cubics with equation y = x3 − ax parametrized by a, the
barcode should contain two half-infinite intervals and four
long finite ones, with the exact equations being rather com-
plex [CZCG04]. As the parameter a grows in value, the
length of the finite intervals should increase. Once again, the
barcode captures this behavior in practice as seen in Fig-
ure 5.

An interesting application of shape parametrization is to
recover the motion of a two-link articulated arm, shown in
Figure 10. Suppose we have PCDs for the arm at angles
from 0 to 90 degrees in 15 degree intervals, and we wish
to recover the sequence that describes the bending motion
of this arm. As the figure illustrates, sorting the PCDs by
the length of the longest finite interval in their β0-barcodes
recovers the motion sequence. The noise in the data creates
many small intervals. The intrinsic shape of the arm, how-
ever, is described by the two infinite intervals and the two
long finite ones. To illustrate the robustness of our barcode
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Figure 10: A bending two-link articulated arm. The β0-barcodes enable the recovery of the sequence, and hence the motion.

Figure 11: Distance matrix for the two-link articulated arm
in Figure 10. We have ten copies of each of the seven artic-
ulations of the arm. We map the distance between each pair
to gray-scale, with black indicating zero distance.

metric, we compute ten random copies of each of the seven
articulations and compute the distance between them. Fig-
ure 11 displays the resulting distance matrix, where distance
is mapped as before. Pairs whose matrix entry is near the
diagonal of the matrix are close in the sequence, and conse-
quently have close articulation angles. They are also close in
the barcode metric, making the diagonal of the matrix dark.
We generate each arm placing 100 points 0.02 apart, and
perturbing each by Gaussian noise with mean 0 and stan-
dard deviation 0.01. We use ω = 0.1 and ε = 0.005 as for
the ellipses in Figure 4. In addition, we utilize the curvature
averaging strategy of Section 5.4 using the twenty nearest
neighbors to cope with the noise.

7. Conclusion

In this paper we apply ideas of our earlier paper to pro-
vide novel methods for studying the qualitative properties of
one dimensional spaces in the plane [CZCG04]. Our method
is based on studying the connected components of a com-

plex constructed from a curve using its tangential infor-
mation. Our method generates a compact shape descriptor
called a barcode for a given PCD. We illustrate the feasi-
bility of our methods by applying them for classification
and parametrization of several families of shape PCDs with
noise. We also provide an effective metric for comparing
shape barcodes for classification and parametrization. Fi-
nally, we discuss the limitations of our methods and possi-
ble extensions. An important property of our methods is that
they are applicable to any curve PCD without any need for
specialized knowledge about the curve. The salient feature
of our work is its reliance on theory, allowing us to extend
our methods to shapes in higher dimensions, such as fam-
ilies of surfaces embedded in R

3, where we utilize higher-
dimensional barcodes.

Our work suggests a number of enticing research direc-
tions:

• Implementing density estimation techniques to remove
spurious components arising from noise,

• A systematic study of the thickness problem of scanned
curves,

• Implementing the strategy for identifying boundary
points, further strengthening our method,

• Applying our methods to surface point cloud data.
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