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Abstract
We present a simple method for meshing a 3D point cloud to a manifold genus-0 mesh. Our approach is based on
recent methods for spherical embedding of planar graphs, where we use instead a k-nearest neighborhood graph
of the point cloud. Our approach proceeds in two steps: We first embed the neighborhood graph on a sphere using
an iterative procedure, minimizing the tangential Laplacian. Then we triangulate the embedded points and apply
the resulting mesh connectivity to the input points. Besides meshing, spherical embedding of point clouds may also
be used for other applications such as texture mapping or morphing.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Contemporary 3D scanners produce sets of 3D data points,
sampled from the surface of a 3D object. These points
are frequently unorganized, and to use them in 3D appli-
cations requires computing a polygon (usually triangular)
mesh which best approximates the sampled surface. This
means associating a connectivity structure with the point set.

Many algorithms exist for meshing 3D point clouds
(e.g. [ACK01, FR01, HR02]). The algorithms differ in tech-
nique, assumptions made on the input, complexity, robust-
ness and reproducability. By "reproducability", we mean that
the algorithm, when fed as input the vertex set of a given 3D
mesh, will usually not reproduce the original connectivity
and not even the topology of the original 3D mesh. In fact,
only a few of the algorithms, most notably the Crust family
of algorithms [ACK01], provide conditions on the sampling
density which guarantee that the output will be close to the
original.

In this paper we make use of recent results on spherical
embedding to mesh a 3D point cloud which has been sam-
pled from a closed manifold genus-0 surface, i.e., a topolog-
ical sphere. This generalizes a method proposed by Floater
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and Reimers [FR01] for meshes with disk topologies. The
advantage of this method is its simplicity and robustness.
It guarantees that the resulting mesh will always be closed
manifold genus-0.

2. Previous Work

Floater and Reimers [FR01] proposed to mesh a 3D point
set sampled from a manifold surface with disk topology and
single boundary loop as shown in Figure 1:

FunctionM = Mesh(point setV)
1. Construct a graphG = 〈V,E〉 by connecting each

vertex to itsk nearest neighbors (kis a user param-
eter) in Euclidean space.

2. Determine which sequence of vertices will form the
boundaryB of M.

3. EmbedG in the plane such thatB forms a convex
shape andV −B are positioned at convex combi-
nations of their neighbors. Call the planar point set
V′.

4. FormG′ = 〈V′,E′〉 by triangulatingV′ (e.g. by De-
launay triangulation).

5. UseE′ to form M = 〈V,E′〉. The triangles are the
faces of the mesh.

Figure 1: The Floater-Reimers algorithm to mesh a disk-like
point set.
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This procedure works reasonably well for surfaces with
a boundary, the results depending on the specific recipe
chosen for the convex combination weights. However,
even a sophisticated choice of the weights (e.g. shape-
preserving [Flo97], harmonic [PP93], mean-value [Flo03])
will result in a significant metric distortion of the 2D em-
bedding relative to the original 3D mesh geometry if the
mesh contains significantly curved regions. The results are
also affected by the specific choice of the vertices forming
the mesh boundary, which is usually heuristic, and the con-
vex shape which the boundary is mapped to in the embed-
ding procedure. Obviously, if the 3D object has the topology
of a sphere, this method is not the most natural choice. In a
follow-up paper to [FR01] , Hormann and Reimers [HR02]
show how to mesh a spherical point cloud by segmenting it
to a number of disk-like subsets. This results in a somewhat
complicated algorithm.

Recently, researchers realized that for many mesh pro-
cessing operations it is more natural to parameterize a closed
manifold genus-0 mesh to a sphere, rather than cutting it in
various ways to reduce it to the case of a disk. The parame-
terization operation is actually an embedding. However, em-
bedding a graph on the sphere is much more difficult than
embedding in the plane, especially since the latter may be
done using essentially linear methods, and spherical em-
bedding seems to be essentially non-linear. Parameterizing
a given closed manifold genus-0 3D mesh involves embed-
ding the 3D vertices on the sphere, such that the spherical
polygons induced by the mesh connectivity do not overlap.
In the meshing application, where there is no given connec-
tivity to respect, the only requirement is that the distribution
of the points over the sphere is "similar" to their distribu-
tion in space. Essentially we would like the metric distortion
to be minimal, meaning that short-range distances should be
preserved as much as possible. Hence spherical embedding
may be viewed as a "graph-drawing" operation in our con-
text, where the edge lengths are to be preserved as much as
possible.

Methods to embed a planar graph on the sphere were
proposed in [Ale00, DG97, GY02, KVLS, ST98]. These re-
quire a triangular graph as input. A simpler scheme was
proposed by Gu and Yau [GY02], and by Gotsman et
al. [GGS03]. This method is a generalization of the convex
combination method of Floater [Flo97] for planar graph em-
bedding, but is non-linear. Essentially it means that instead
of each vertex being located at some convex combination of
its neighbor’s locations in the plane, the vector difference
between this convex combination and the vertex location on
the sphere has only a radial component. This method has
the physical interpretation of a spring system (a zero-length
spring corresponding to each edge). The vertices are relaxed
to their minimal energy state, subject to the constraint that
they are all located on the sphere. Computing the embedding
involves solving a system of bilinear equations, which Gu
and Yau suggest to do iteratively using the Laplace-Beltrami

operator. This somewhat slow procedure usually converges
to a local minimum of the spring energy, which Gotsman et
al. speculate form a four to six dimensional subspace.

3. Meshing using Spherical Embedding

We propose to use spherical embedding to mesh a point
cloud which is known to have spherical topology. This in-
volves eliminating step 2, replacing step 3 of the Floater-
Reimers Algorithm (Figure 1) with a spherical embedding
routine, and step 4 by a spherical triangulation routine. The
result will, by definition, be a closed triangular genus-0 man-
ifold mesh. The modified algorithm for meshing spherical
point clouds is shown in Figure 2.

FunctionM = Mesh(point setV)
1. Construct a graphG = 〈V,E〉 by connecting each

vertex to itsk nearest neighbors (kis a user param-
eter) in Euclidean space.

2. EmbedG on the sphere. Call the spherical point set
V′.

3. Form G′ = 〈V′,E′〉 by triangulatingV′ (e.g. by
spherical Delaunay triangulation).

4. UseE′ to formM = 〈V,E′〉.

Figure 2: Meshing a spherical point set.

The key step is the second one: spherical embedding. Al-
though the graphG is not planar, it may be embedded on the
sphere using the same technique as proposed by [GGS03]
and [GY02].

We now briefly describe our algorithm for spherical em-
bedding, but refer the reader to [GGS03] and [GY02] for
more details and theoretical insights. Let us denote the po-
sitions of the input points in the setV by pi and the points
embedded on the sphere byui . Gu and Yauand [GY02] pro-
posed to embed a graph on a curved surface (in particular,
the unit sphere) using the Laplace-Beltrami operator, which
is basically the tangential component of the Laplace oper-
ator. Discrete approximations of the Laplace operator at a
pointui have the form

Li = ∑
j∈Ni

wi j
(
ui −uj

)
, (1)

where Ni is the index set of the neighbors of pointi. In
our case, these neighbors are given by thek-nearest neigh-
bor graph of the input pointspi . Typically, the weightswi j
are chosen to be strictly positive. Popular options are unit
weights, i.e.,wi j = 1 for all j ∈ Ni , or inverse edge length
weights, i.e.,wi j = 1/‖pi − pj‖ for all j ∈ Ni . Other choices
are discussed in [Flo97, Flo03, FR01].

On the unit sphere, the Laplace-Beltrami operator is sim-
ply approximated by the tangential component of the dis-
crete Laplacian:

Lp
i = Li − (Li ·Ni)Ni , (2)
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whereNi = ui/‖ui‖ is the unit normal of pointui . Simi-
lar as for planar embeddings [Flo97, Flo03, FR01], Gu and
Yau [GY02] and Gotsman et al. [GGS03] showed that em-
beddings on the sphere can be obtained by solving

Lp
i = 0 for all i. (3)

This is a non-linear system of equations that we solve using
a simple iterative procedure shown in Figure 3, similar as
proposed by [Ale00, GY02, KVLS].

FunctionU = SphericalEmbedding(point setV)
1. Initializeui = pi for all i
2. Translate the pointsui such that∑ui = 0
3. Project theui onto the unit sphere
4. For alli

- ui = ui +λLp
i

- ui = ui/‖ui‖

5. Iterate from step 2. until convergence

Figure 3: Embedding a point set on the unit sphere.

Note thatλ is a damping coefficient that we set toλ = 0.5
in all our experiments.

3.1. Algorithm Parameters

Our meshing algorithm has a number of parameters: the
number of neighborsk used to form the embedded graph
connectivity, the convex combination weight recipe used to
weight these edges, and the spherical triangulation method.

The average number of neighbors (valence) in a spherical
triangle mesh is six, so the value ofk should be at least this,
else we risk the resulting graph not being well-connected.
This can lead to degenerate solutions of the spherical embed-
ding iteration, i.e., all points collapse to the same location.
For uniformly sampled surfaces, values bigger than nine usu-
ally work fine. To compute all the results shown below, we
used a more conservative value ofk = 25.

We used weights which are either uniform (i.e. inde-
pendent of the input geometry), proportional to the inverse
edge lengths, or adaptive weights similar to those proposed
by Yoshizawa et al. [YBS04]. Surprisingly, there did not
seem to be much difference in results when uniform and
geometry-dependent weights were used. This is probably be-
cause thek nearest neighbors are more or less at the same
distance from the vertex, hence distance-dependent weights
will be close to uniform.

We were able to achieve significantly different results
with error adaptive weights [YBS04]. In this procedure, the
weights do not only depend on the geometry (pointspi), but
also on the current embedding (pointsui). Hence, we need
to update the weights after each iteration over all the points

in the spherical embedding algorithm (Figure 3). Inspired
by [YBS04], we compute adaptive weights as

wi j = ‖ui −uj‖/‖pi − pj‖ for all j ∈ N− i. (4)

As shown by Yoshizawa et al. this minimizes thestretchor
distortionof the embedding.

To triangulate the points embedded on the sphere, we used
the convex hull routineqconveximplemented in the qhull
package [qhu]. The resulting spherical triangulation is a De-
launay triangulation with relatively short edge lengths.

4. Experimental Results

We have run our meshing algorithm on a variety of 3D
point datasets, three of which are shown in Figure 4: Tweety
(19,818 points), Max (52,809 points), and Igea (134,345
points).

In Figure 5, we show triangulations of the Max and Igea
models, and the corresponding embeddings on the sphere.
We used adaptive weights andk = 25 neighbors.

Figure 8 shows results for different choices of the weights.
Figure 8(a) was generated using uniform weights, (b) using
inverse edge length weights, and (c) using adaptive weights.
The close-ups in Figure 8(d,e,f) show the differences in the
resulting meshes. The large distortion produced by uniform
and inverse edge length weights leads to very thin triangles,
while adaptive weights produce a more natural triangula-
tion. Figure 8(g,h,i) show the corresponding spherical em-
beddings. Clearly, uniform weights and inverse edge length
weights lead to much more nonuniform distributions (i.e.,
high distortion) of the vertices on the sphere than adaptive
weights. As proposed by Hormann and Reimers [HR02],
standard mesh optimization tools may be applied as a post-
process to improve the quality of the final meshes.

4.1. Complexity

Constructing thek-nearest neighbors graph onn points may
be done inO(nlogn) [Cla83]. Computing the spherical em-
bedding iteratively seems to run inO(n2). Computing the
3D convex hull requiresO(nlogn) [Ski97], so the entire al-
gorithm complexity is no more thanO(n2).

Our experimental results suggest that the spherical em-
bedding procedure does not converge to a vanishing value of
the Laplace-Beltrami operator, probably because the embed-
ded graph is not planar. In practice the iterative procedure is
stopped when it reaches a local minimum. The convergence
of the iteration with the Tweety model for different values of
k is illustrated in Figure 6. Here we plot the average length
of the tangential Laplacian over the number of iterations. We
suspect that the residual error is larger for larger values ofk
because the corresponding graph is “less planar”.

The residual error is also different for the various choices
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(a) (b) (c)

Figure 4: Sample input point clouds: (a) Tweety (19,818 points), (b) Max (52,809 points), and (c) Igea (134,345 points).

(a) (b) (c) (d)

Figure 5: (a) Triangular mesh of the Max model, (b) Embedding of the Max model on the sphere, (c) Triangular mesh of the
Igea model, (d) Embedding of the Igea model on the sphere.

of the weights. As shown in Figure 7, uniform weights lead
to a smaller error than inverse edge length and adaptive
weigths. However, adaptive weights converge faster, which
is further illustrated in Figure 9. This figure shows how the
tail of the Tweety, which generates a fold-over in the ini-
tial projection, is unfolded during the iteration. Adaptive
weights lead to a faster unfolding because they do not only
depend on the geometry, but also on the distortion produced
by the embedding [YBS04].

The current runtimes for the spherical embedding on a
state-of-the-art PC (2.8 GHz P4 processor with 1 GB RAM)
are reported in Table 1. For all three models, we performed
1600 iterations for these measurements.

Model Number of Points Runtime (sec)
Tweety 19,818 125
Max 52,809 424
Igea 134,345 843

Table 1: Runtime of the spherical embedding iteration (1600
iteration steps) for different models.

Preliminary results suggest that the spherical embedding
procedure can be accelerated significantly using hierarchi-
cal algebraic multigrid methods, similarly to Aksoylu et
al. [AKS04]. Triangulation of the convex hull of the embed-
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Figure 6: Convergence of the embedding iteration with uni-
form weights for different parameters k: (a) k=100, (b)
k=25, (c) k=9.
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Figure 7: Convergence of the embedding iteration for k= 25
and different choices of the weights: (a) adaptive weights, (b)
inverse edge length weights, (c) uniform weights.

ded points using qconvex [qhu] took less than five seconds
for all models.

4.2. Sensitivity to Noise

The algorithm in its basic form will always produce a closed
manifold genus-0 mesh on the entire input data set, which is
a major advantage of this particular algorithm. In the event
of noisy input, however, this mesh may intersect itself. Note
that this does not contradict the fact that the mesh is man-
ifold. It can be rectified by a post-processing smoothing
stage. It would also be desirable to eliminate outliers in the

input. This could be done in a pre-process where points too
far from the average of their neighbors are removed.

We tested our algorithm on a noisy point cloud that was
obtained by randomly perturbing the points of a smooth
model along their normal direction. We chose a range of
perturbationb relative to the average distance to thek = 25
nearest neighbors. Figure 10 shows a mesh of the Max data
set withb = 1. We also applied smoothing after meshing to
improve the quality of the result, as shown in Figure 10(c).
Figure 10(d,e,f) shows close-ups of results forb = 0, b = 1,
andb = 3.

5. Conclusion and Discussion

We have described an algorithm for spherical meshing of a
3D point cloud which is simple and efficient. As its main
advantage, it guarantees a closed manifold genus-0 result,
even for very noisy inputs. As with every other meshing al-
gorithm, a number of independent pre-processing techniques
may be applied to the input point set and post-processing
techniques to the output mesh.

Embedding the point set on the sphere has an important
side-effect: the coordinates of the embedded points on the
sphere may be used as spherical texture coordinates, or con-
verted to planar texture coordinates in a variety of standard
ways, to allow texture mapping onto the model. The embed-
ding, when viewed as a parameterization, can also be used to
establish a one-to-one correspondence between different ob-
jects, which is useful for applications such as morphing. Fur-
ther, the spherical parameterization could be used to recon-
struct a continuous surface similar as described by Zwicker
et al. [ZPKG] for points parameterized to a planar domain.

In our experiments we observed that we do not obtain
spherical embeddings with completely vanishing tangential
Laplacians. While it has been proven that it is possible to
embed planar 3-connected graphs on the sphere with vanish-
ing Laplacians [GGS03], we do not know of any result for
non-planark-nearest neighbor graphs. An in-depth analysis
of this problem seems interesting. In the future, we would
also like to investigate hierarchical techniques such as alge-
braic multigrid or geometric clustering (as in [ZPKG] for
planar embedding) to accelerate the spherical embedding it-
eration. We also plan to experiment with a graph given by lo-
cal Delaunay neighborhoods as proposed by Floater [FR01]
instead of usingk-nearest neighbors. This might improve the
convergence of the embedding procedure.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Sample results using k= 25neighbors in the graph: (a,d) use uniform weights, (b,e) inverse edge length weights, and
(c,f) were computed using the adaptive weights; (g,h,i) depict the corresponding embeddings on the sphere.
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Figure 9: Unfolding of the tail of the tweety model. (a-d) uniform weights, (e-h) adaptive weights, (a,e) initial embedding, (b,f)
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(a) (b) (c)

(d) (e) (f)

Figure 10: Triangular mesh of a noisy point cloud with b= 1: (a) Mesh, (b) Flat shaded version of (a), and (c) flat shaded mesh
after smoothing. Close-ups of some results on inputs with different amounts of noise: (d) original with b= 0, (e) b= 1, and (f)
b= 3. We used k= 25and adaptive weights. While the entire mesh is guaranteed to be manifold genus-0, self-intersections may
occur.
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