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Abstract
Given a locally uniform sample set P of a smooth surface S. We derive upper and lower bounds on
the number k of nearest neighbors of a sample point p that have to be chosen from P such that this
neighborhood contains all restricted Delaunay neighbors of p. In contrast to the trivial lower bound, the
upper bound indicates that a sampling condition that is used in many computational geometry proofs
is quite reasonable from a practical point of view.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, sur-
face, solid, and object representations

1. Introduction

Point primitives have recently become popular as a
means of surface representation in computer graphics
and geometric modeling. With an abundance of 3D
acquisition and sampling methods that create point
samples from surfaces, numerous algorithms for di-
rect processing and rendering of these data sets have
been proposed. These methods typically exploit the
structural simplicity of point clouds for compact stor-
age [KV03], fast re-sampling [PGK02], and efficient
rendering [RL00, BWK02].

In the most general case, 3D acquisition or sam-
pling methods create a finite set of points that only
sample the 3D position of the underlying surface.
However, subsequent processing or rendering algo-
rithms [ZPvG01, KV01, PKKG03] require additional
geometric information on the surface, such as surface
normals or local curvatures, which have to be com-
puted from the positional data. To obtain such local
geometric information from the point cloud itself, we

† Partially supported by the Swiss National Science Foun-
dation under the project “Non-linear manifold learning”.

need to define a neighborhood relation for every sam-
ple point. There are two objectives in obtaining such
a neighborhood. On the one hand, the computational
overhead to compute it should be as small as pos-
sible, to allow efficient processing of large data sets.
On the other hand, the neighborhood should be such
that local geometric information can be approximated
provably well. Both objectives are contradictory to a
certain extent.

Two neighborhood definitions gained popularity in
different communities, putting different emphasis on
the two objectives. The first definition considers for
every sample point its k-nearest neighbors where k is a
parameter that has to be adjusted to the point sample
and application [MN03]. k-nearest neighbors are very
popular in the graphics community, since they are effi-
cient to compute or approximate [AMN∗98] and have
proven to be sufficiently reliable for estimating local
surface properties for uniformly and densely sampled
models [PKKG03]. The second neighborhood relation
considers for every sample point its restricted De-
launay neighbors. Restricted Delaunay neighbors are
not directly accessible, since they are defined via the
unknown surface from which the point sample origi-
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nates. But they are always a subset of the Delaunay
neighbors, i.e., samples connected by a Delaunay edge,
which are computable. Even for locally non-uniform
but sufficiently dense sample sets it is possible to ap-
proximately filter the restricted Delaunay neighbors
from the Delaunay neighbors. The restricted Delau-
nay neighborhood is popular in the computational ge-
ometry community, since it is possible to prove many
geometric and topological results about it under cer-
tain sampling conditions [DGGZ02]. However, since
the Delaunay triangulation is a global data structure,
the restricted Delaunay neighborhood is not as effi-
ciently computable as the k-nearest neighbors.

It is easy to construct examples where estimat-
ing local surface properties using the k-nearest neigh-
bors will completely fail, whereas the restricted Delau-
nay neighborhood allows to estimate these properties
faithfully. Though examples where the restricted De-
launay neighborhood fails are also easily constructed,
the observation does not hold vice versa, i.e., if one
succeeds using the k-nearest neighbors, one should
also succeed using the restricted Delaunay neighbor-
hood. The common characteristic where the k-nearest
neighbors are not sufficient, but the restricted De-
launay neighbors are, is that the sample set is not
locally uniform. In practice, however, most acquired
point sets encountered in graphics applications are lo-
cally uniform. A result from Funke and Ramos [FR02]
even shows that it is always possible to get a dense, lo-
cally uniform sample from a dense sample by removing
points that are not essential for the description of the
surface. Thus it should be possible to approximate the
restricted Delaunay neighborhood from the k-nearest
neighbors for a locally uniform sample and the right
value for k.

In this paper we give upper and lower bounds on the
size of k in order to well approximate the restricted De-
launay neighborhood of a sample point provided the
point sample is locally uniform. This allows efficient
approximation of the restricted Delaunay neighbors
without requiring a global structure such as the De-
launay triangulation. The bounds provide some guide-
line how to choose the value of k in theory. But more
importantly it allows to test from a practical perspec-
tive the reasonability of sampling assumptions typi-
cally made in computational geometry proofs. If the
upper bound on k that we derive under such a sam-
pling condition is far off from what is needed in prac-
tice, then also the sampling condition is likely to be
far off. It turns out that this is not the case.

The paper is organized as follows: In the next sec-
tion we provide necessary definitions on samplings and
neighborhoods. In the third section we prove our up-
per and lower bounds.

2. Definitions

In the following S always denotes a smooth surface
with or without boundary embedded in R3 and P ⊂ S
denotes a finite point sample from S. In this section
we are going to define structures derived from S and
P , respectively.

Medial axis. A ball in R3 is called empty, if it does
not contain any point from S in its interior. An empty
ball is called maximal, if it is not contained in another
empty ball. The medial axis M(S) of S is the set of all
center points of maximal empty balls in R3. Maximal
empty balls touch S in at least two points tangentially.

Local feature size. The local feature size is a func-
tion f : S → R that assigns to every point in
S its least distance to the medial axis of S, i.e.,
f(x) = miny∈M(S) ‖x − y‖. In [AB98] it is shown
that the feature size is 1-Lipschitz continuous, i.e.,
f(x) ≤ f(y) + ‖x− y‖.
ε-sample. The point sample P is called an ε-sample
of S, if every point x ∈ S has a point in P at distance
at most εf(x).

In [AB98] it is shown that for an ε-sample with
ε ≤ 0.08 it is always possible to compute a triangle
mesh from P that is homeomorphic to S. The algo-
rithm that does so is based on the Delaunay triangu-
lation of P . The proof of homeomorphy makes use of
a result obtained by Edelsbrunner and Shah [ES94]
that states that the Delaunay triangulation of P re-
stricted to S is homeomorphic to S provided its dual,
the restricted Voronoi diagram, fulfills the so-called
closed ball property. We are now going to define these
concepts.

Voronoi diagram. The Voronoi diagram V (P ) of P
is a cell decomposition of R3 in convex polytopes. Ev-
ery Voronoi cell corresponds to exactly one sample
point and contains all points of R3 that do not have
a smaller distance to any other sample point, i.e., the
Voronoi cell corresponding to p ∈ P is given as

Vp = {x ∈ R3 : ∀q ∈ P ‖x− p‖ ≤ ‖x− q‖}.
Closed facets shared by two Voronoi cells are called
Voronoi facets, closed edges shared by three or more
Voronoi cells are called Voronoi edges and the points
shared by four or more Voronoi cells are called Voronoi
vertices. The term Voronoi object can denote either a
Voronoi cell, facet, edge or vertex. The Voronoi dia-
gram is the collection of all Voronoi objects.

Delaunay diagram. The Delaunay diagram D(P ) of
P is the dual of the Voronoi diagram. It is a cell com-
plex that decomposes the convex hull of the points
in P . The convex hull of four or more points in P
defines a Delaunay cell, if the intersection of the cor-
responding Voronoi cells is not empty and there exists
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no superset of points in P with the same property.
Analogously, the convex hull of three or two points de-
fines a Delaunay face or Delaunay edge, respectively,
if the intersection of their corresponding Voronoi cells
is not empty. Every point in P is a Delaunay vertex.
The term Delaunay object can denote either a Delau-
nay cell, face, edge or vertex. If there are no five or
more points whose corresponding Voronoi cells have
a non-empty intersection, then all Delaunay cells are
tetrahedra and the Delaunay diagram is called Delau-
nay triangulation.

Restricted diagrams. The Voronoi diagram VS(P )
of P restricted to S consists of the common inter-
section of the Voronoi objects with S. The restricted
Voronoi diagram fulfills the closed ball property, if ev-
ery restricted Voronoi object is homeomorphic to a
closed ball. The dimension of this ball has to be one
less than the dimension of the original Voronoi object.
The Delaunay diagram DS(P ) of P restricted to S
is defined via the restricted Voronoi diagram in the
same way the Delaunay triangulation is defined via
the Voronoi diagram.

Theorem 1 [Edelsbrunner, Shah] If VS(P ) fulfills the
closed ball property, then DS(P ) and S are homeo-
morphic.

This theorem stresses the importance of the re-
stricted Delaunay diagram though it is in general not
accessible since S is unknown. Here we are not inter-
ested in the global restricted Delaunay diagram but
only in the restricted Delaunay neighbors of a sample
point p ∈ P . These neighbors are sample points in P
connected to p by a restricted Delaunay edge and are
also not directly accessible. But two observations help
to at least approximate the set of restricted Delaunay
neighbors. First, by definition, the restricted Delau-
nay neighbors are a subset of the Delaunay neighbors.
Second, it was shown by Giesen and Wagner [GW03]
that the restricted Delaunay neighbors cannot be too
far away from p. This allows to filter the Delaunay
neighbors just by their distance to the sample point p.
Note that the filtered set in general still is a superset of
the restricted Delaunay neighbors. This is due to the
existence of flat tetrahedra called slivers in the Delau-
nay triangulation. But at least the filtered set gives a
reasonable local neighborhood. Since we will need it
later on, we restate the lemma by Giesen and Wagner
here. The lemma bounds the extent of the restricted
Delaunay neighborhood.

Lemma 1 [Giesen, Wagner] Let P be an ε-sample
of S with ε < 1

2
. If p, q ∈ P and pq is a restricted

Delaunay edge, then

‖p− q‖ ≤ 2ε

1− ε
min{f(p), f(q)}.

medial axis

query ball

d = εr 

r = f(x)

d/k 

Figure 1: An ε-sample of a cylinder, where the k-
nearest neighbors do not adequately represent the sur-
face patch intersected by the query ball.

Figure 2: A rotational laser scan of vase exhibits a
very similar sampling pattern as the one shown in Fig-
ure 1.

It can be easily seen that an ε-sample is not suf-
ficient to obtain a good neighborhood from taking
the k nearest neighbors of a sample point (see Fig-
ures 1 and 2). A remedy is to strengthen the sam-
pling condition. In [DGGZ02, FR02] the notion of an
(ε, δ)-sample has been introduced.

(ε, δ)-sample. A subset P ⊆ S is called an (ε, δ)-
sample of S, if it is an ε-sample, and ‖p− q‖ ≥ δf(p),
for all p, q ∈ P .

The ε-criterion gives a lower bound on the sampling
density, while the δ-criterion provides a corresponding
upper bound and controls the positions of the sample
points to ensure a certain uniformity of the sampling.
A drawback of this definition is that a very uniform
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sample that is denser than allowed by the δ-criterion
is ruled out though it should be very well suited for
all theoretical and practical purposes. On the other
hand from a theoretical point of view the δ-criterion is
not a severe limitation since Funke and Ramos [FR02]
presented an algorithm that computes in almost lin-
ear time an (ε′, δ)-sample from a given ε-sample using
point removal. Points that are not essential for the
description of the surface are discarded, i.e., the re-
dundancy of an ε-sample is diminished.

In the following we assume that we are given an
(ε, δ)-sample and want to derive bounds on k such that
the k-neighborhood contains the restricted Delaunay
neighborhood.

3. Bounds

We first give an upper bound on k in order for the
k-neighborhood of a sample to contain its restricted
Delaunay neighborhood. The statement of the lemma
might be confusing at a first glance, since k seems to
be bounded from below which does not look like an
upper bound. The correct way to read the lemma is,
k has to be at most as large as the stated bound to
guarantee that the statement of the lemma holds.

Lemma 2 Let P be an (ε, δ)-sample of S. Choosing

k ≥ (δ(1 + w) + w)2

δ2(1− w)2 − w4
,

where w = 2ε
1−ε

, guarantees that the k nearest neigh-
bors of a sample point p include all its restricted De-
launay neighbors.

Proof We want to derive this bound from a packing
argument. From Lemma 1 we know that all restricted
Delaunay neighbors of p are contained in a ball B of
radius at most wf(p) centered at p. An upper bound
on the number of sample points that we can pack into
B immediately gives us the desired upper bound on
k. The δ-criterion makes sure that the sample points
cannot be packed arbitrarily densely into B. In fact, a
sample point q contained in B does not have another
sample at distance less than δf(q). Just packing such
δ-balls into B would give worse bounds than the ones
stated above. Thus we are going to exploit another
fact proven by Giesen and Wagner [GW03] which
allows us to go from a three dimensional to a two
dimensional packing problem, see Figure 3.

Fact. Let q be a point in the wf(p) neighborhood
of p. Then the distance of q from its orthogonal
projection q′ onto the tangent plane at p is bounded
by w2f(p), i.e., ‖q − q′‖ ≤ w2f(p).

This fact implies that the ball of radius δf(q) cen-
tered at q intersects the tangent plane in a disk whose

squared radius r2 is at least δ2f2(q)−w4f2(p). Making
use of the Lipschitz continuity of the local feature size,
i.e., f(p) ≤ f(q) + ‖p− q‖, we get f(q) ≥ (1−w)f(p).
Plugging this into the formula for r2 we get

r2 ≥ (δ2(1− w)2 − w4)f2(p).

Thus we only have to consider packing disks of radius
r non-overlapping into a disk of radius at most R =
(δ(1 + w) + w)f(p) in the tangent plane at p. The
additional term of δ(1 + w)f(p) in the definition of R
accounts for the fact that the δ-ball for sample points
at distance wf(p) need not completely lie inside B.
We get an upper bound on the packing number by
dividing the area of a disk with radius R by the area
of a disk with radius r. Thus the packing number can
be bounded by

R2

r2
=

(δ(1 + w) + w)2

δ2(1− w)2 − w4
.

By construction this packing number also gives an up-
per bound on the number of sample points in B which
itself is an upper bound on the number of restricted
Delaunay neighbors of the sample point p. ¤

Figure 3: Reducing the three dimensional packing
problem to a two dimensional packing problem in the
proof of Lemma 2.

Note that the bound in Lemma 2 is not tight since
dividing the two surface areas should give only a
rough estimate on the packing number. Choosing δ =
3w/8 ' 3ε/4 which seems to be a reasonable choice
gives the following upper bound on k:

(11 + 3w)2

9− 18w − 55w2

In many computational geometry proofs ε is smaller
than 0.08, i.e., w is smaller than 0.175. Plugging
this into the bound gives that k has to be at most
32 which lies close to the range of k-values that are
used in practice. See for example [PGK02, PKKG03],
where values of k between 8 and 15 are successfully
employed (our formulas yield k ≤ 15 for ε ≤ 0.019).
Note though that the bound on k also depends on
the ratio δ/w = δ(1 − ε)/2ε. Larger ratios are more
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restrictive on the sampling but lead to smaller values
for k.

The lower bound on k is the minimal number of re-
stricted Delaunay neighbors for any point in P . This
number trivially follows from Theorem 1.

Lemma 3 If P is an ε-sample of S with ε < 0.08,
then every sample point has at least three restricted
Delaunay neighbors.

Proof It was shown in [AB98] that for ε < 0.08 the
restricted Voronoi diagram fulfills the closed ball prop-
erty. That is, by Theorem 1 the restricted Delaunay
triangulation of P is a simplicial surface homeomor-
phic to S. Since the minimum degree of a vertex in a
simplicial surface is three also the minimum number
of restricted Delaunay neighbors of any sample point
has to be three. ¤

4. Conclusion
We derived upper and lower bounds on the k-
neighborhood size such that this neighborhood con-
tains the restricted Delaunay neighborhood for every
sample point. We derived these bounds under a sam-
pling condition which is common in many computa-
tional geometry proofs. For reasonable values of sam-
pling parameters we obtained that some value of k
between 3 and 50 should provide a k-neighborhood
that allows to faithfully approximate local geometric
surface properties provided the sampling is locally uni-
form. That is, properties that can be proven for the
restricted Delaunay neighborhood should also hold for
the k-neighborhood. These bounds on k are in good
accordance with the values for k that are used in prac-
tice.
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