Eurographics Symposium on Point-Based Graphics (2004)
M. Alexa, S. Rusinkiewicz, (Editors)

Topological estimation using witness complexes

Vin de Silva and Gunnar Carlsson®

Department of Mathematics, Stanford University, California, USA.

Abstract

This paper tackles the problem of computing topological invariants of geometric objects in a robust manner, using
only point cloud data sampled from the object. It is now widely recognised that this kind of topological analysis can
give qualitative information about data sets which is not readily available by other means. In particular, it can be
an aid to visualisation of high dimensional data. Standard simplicial complexes for approximating the topological
type of the underlying space (such as Cech, Rips, or a-shape) produce simplicial complexes whose vertex set has
the same size as the underlying set of point cloud data. Such constructions are sometimes still tractable, but are
wasteful (of computing resources) since the homotopy types of the underlying objects are generally realisable
on much smaller vertex sets. We obtain smaller complexes by choosing a set of ‘landmark’ points from our data
set, and then constructing a “witness complex” on this set using ideas motivated by the usual Delaunay complex
in Euclidean space. The key idea is that the remaining (non-landmark) data points are used as witnesses to the
existence of edges or simplices spanned by combinations of landmark points.

Our construction generalises the topology-preserving graphs of Martinetz and Schulten [MS94] in two direc-
tions. First, it produces a simplicial complex rather than a graph. Secondly it actually produces a nested family
of simplicial complexes, which represent the data at different feature scales, suitable for calculating persistent
homology [ELZ00, ZC04]. We find that in addition to the complexes being smaller, they also provide (in a precise
sense) a better picture of the homology, with less noise, than the full scale constructions using all the data points.
We illustrate the use of these complexes in qualitatively analyzing a data set of 3 x 3 pixel patches studied by
David Mumford et al [LPMO03].

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computing Methodologies]: Computer Graph-
ics [Computational Geometry and Object Modeling]

1. Simplicial Approximation In this paper we focus on the analogous topological prob-
lem: how to find a representation of the data which can be
used to compute topological invariants, robustly and effi-
ciently. For example, the figure on the left is a (noisy) circle,
and the figure on the right has three loop-shaped petals. How

Given a point-cloud dataset sampled from an underlying
space X, it is often desirable to build a simplicial complex S
approximating the geometric or topological structure of X.
For example, a laser scanning device applied to a solid ob-
ject might return the coordinates of thousands of points lying
on the objects 2-dimensional surface. A standard problem is

7 W
to build a triangular mesh from this unstructured collection £ e :
of points, perhaps for visual rendering. Such a mesh should E ,,’I.‘ o d
be a close geometrical approximation to X itself. Examples Jn
of provably successful algorithms for surface reconstruction . {
can be found in the work of Amenta et al [ACDL02, AB99]. & ;
T Both authors have been supported in part by NSF grant DMS- does one extract this kind of topological information auto-
0101364. matically and reliably? There is increasing demand for such
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techniques; for example, Carlsson et al [CCdS03] present
algorithms for automatic feature-detection which depend on
being able to make accurate topological calculations.

A natural approach is to represent the data by a sim-
plicial complex S, using the data points as vertices, and
adding edges, triangles and higher-dimensional cells accord-
ing to suitable rules. From S one can compute Betti numbers
b= bk(S); this is a standard procedure in classical algebraic
topology [Mas91] for counting the k-dimensional holes of a
simplicial complex. If S is a faithful topological representa-
tion of X, then this effectively computes the numbers b*(X),
by proxy. The figures underlying the examples shown above
are distinguished by their first Betti number b': a circle has
b! = 1, and a three-loop clover has b = 3. The goal is to
find an algorithm which produces simplicial complexes for
these data sets which have the same properties.

The distinction between geometrical and topological ap-
proximation may be seen in the following pictures. Twelve

points have been sampled from a circle. On the left is a 12-
vertex 12-edge simplicial complex which closely follows the
contours of the hidden circle. On the right is a 4-vertex 4-
edge simplicial complex which is geometrically only a crude
approximation to the circle, but it still has the correct topol-
ogy. When the goal is to calculate Betti numbers, this is a
more efficient way of getting the right answer.

The purpose of this paper is to introduce, in systematic
detail, the witness complex construction. In its simplest form,
this builds a simplicial complex from a point-cloud data set Z
and a choice of vertices L C Z called landmark points, and
no other input parameters. More precisely, the construction
depends only on the matrix D = D(L, Z) of distances between
landmark points and data points. Any suitable metric can be
used to define D, including data-dependent metrics such as
the shortest-path distances in a graph [TdSL00].

Witness complexes can be regarded as approximations to
the restricted Delaunay triangulation, but the construction
sidesteps the curse of dimensionality associated with De-
launay computations; specifically, the extrinsic dimension of
the data set plays no role in the complexity of the algorithm.
The mechanism for doing this is explained by a new theo-
rem [dS03] which gives an alternate definition of Delaunay
triangulation, equivalent to the classical definition but which
can be more easily adapted to the point-cloud data frame-
work.

In addition to the parameter-free witness complex W(D),

we also define three families of complexes W(D;R,v),
wherev =0,1,2, dependent on a “feature size” parameter R.
Any such family can be used to define persistent homology,
which combines Betti number analysis with a notion of size
(“persistence”) for the holes that are detected. Thus we can
exploit the powerful techniques of Edelsbrunner, Letscher
and Zomorodian [ELZ00] to generate so-called persistence
interval graphs for each family of complexes [ZC04]. The
topological information carried in such an interval graph is
richer and more robust than a single Betti number by itself.

Our long-term goal is to put topological data analysis on
a sound, quantifiable footing. To this end we give two ex-
amples. The first example consists of points on the 2-sphere.
We compare the performance of witness complexes to a stan-
dard construction, the Rips complex, in the task of obtaining
the correct Betti numbers for the sphere. The second exam-
ple comes from a natural image database provided by David
Mumford [LPMO03] which exhibits rather subtle statistical
behaviour. We feel that these examples vindicate the use of
witness complexes in topological data analysis.

We stress that our purpose in this paper is to provide a
detailed, motivated description of a family of constructions
we have found to be useful in deriving topological estimates
from real data. We do not address the question of theoretical
‘correctness’ in this paper, nor do we give precise compar-
isons of the behaviour of the different complexes described
here. Some of these questions seem quite difficult. That said,
we can certainly articulate some of the immediate advan-
tages of the witness complex construction.

e It produces much smaller complexes than other construc-
tions. In fact, we can determine the size of the complex by
our choice of the number of landmark points.

e Other than the number and choice of landmark points,
there are no parameters that need to be set arbitrarily, ex-
pect for an optional “neighbourhood size" parameter that
is used in one variation.

e They are defined for data sets in any metric space, not nec-
essarily in Euclidean space. This is clearly an advantage
in many settings.

e |t provides a more robust calculation for homology than
other methods, at least in the examples we have studied.

The remainder of Section 1 is taken up with background
material, including a brief discussion of persistent homol-
ogy. Section 2 motivates and describes witness complexes in
some detail. The examples are discussed in Section 3.

1.1. Abstract simplicial complexes

An abstract simplicial complex S is specified by the follow-
ing data:

e A vertex set Z.
o A rule specifying when a “p-simplex” 0 = [zgz; ... zp| be-
longs to S; here the vertices zg,z1, .. .,zp of o are distinct
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elements of Z, listed in some order which we fix once and
for all.

e Each p-simplex o has p+ 1 faces which are (p — 1)-
simplices; each face is obtained by deleting one of the
vertices zg,1, . ..,Zp. The membership rule has the prop-
erty that if o belongs to S then all of its faces belong to S.

We can compute the Betti numbers of an abstract sim-
plicial complex using a standard linear algebra recipe. The
details are not important here, so we refer the reader to any
standard text in algebraic topology, such as [Mas91].

In order to calculate the Betti numbers of X correctly from
an approximation S, the technical condition is that S has the
same homotopy type as X. We adopt this language without
further comment.

1.2. Cech, Rips and a-shape complexes

We now discuss three well-known constructions. The Cech
complex, and the closely related Rips complex, are the sim-
plest constructions of an abstract simplicial complex from a
point-cloud dataset Z. For R > 0, we define Cech(Z,R), with
vertex set Z, according to the following rule:

o the p-simplex o = [zoz1 ...2p| belongs to Cech(Z,R) iff
the closed Euclidean balls B(zj,R/2), j=0,1,...,p, have
non-empty common intersection.

In technical language, the Cech complex is the nerve [Spa66]
of the collection of metric balls {B(z,R/2) :z € Z}. In fact,
éech(Z, R) has the same homotopy type as the union of these
balls. If Z is sampled finely from a continuous space X then
this union of balls, for a suitable value of R, often has the
same homotopy type as X, which is exactly what we want.

The related complex Rips(Z,R), with vertex set Z, has a
membership test which is much easier to evaluate:

o the p-simplex 0 = [zgz; .. .zp] belongs to Rips(Z, R) iff for
every edge [zjz], 0 < j < k < p, we have |z; —z| <R.

Rips(Z,R) is the largest simplicial complex having the same
1-skeleton (i.e. vertices and edges) as éech(Z,R). It is con-
venient to implement, because one only needs to store the
edges and vertices; a higher-dimensional simplex belongs
to Rips(Z,R) iff all of its edges belong.

Remark 1 The definition of the Rips complex makes sense
for points in an arbitrary metric space.

Both constructions tend to be extremely inefficient.
Whenever k points form a cluster of diameter at most R,
there is a corresponding (k — 1)-dimensional simplex in
éech(Z,R) and Rips(Z,R). In the language of graph the-
ory, the vertices form a clique. This can lead to prohibitively
large complexes, even when the underlying topology is very
simple. An elegant solution to the problem of large cliques
was found by Edelsbrunner [Ede95]. Each point z € Z is con-
tained in a Voronoi cell Vz in the Voronoi diagram for Z. The
a-shape complex A(Z,R), with vertex set Z, is defined by
the following rule.
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o the p-simplex o = [zgz; ...Zp] belongs to A(Z,R) iff the
convex sets B(zj,R/2)NVz, j =0,1,...,p have non-
empty common intersection.

A(Z,R) has the same homotopy type as Cech(Z,R), so we
recover the same topological information. However, the def-
inition implies that A(Z,R) is a subcomplex of the Delaunay
triangulation Del(Z). This makes it considerably less waste-
ful of simplices than Cech(Z, R). The main pitfall is that one
needs to be able to compute Delaunay triangulations. There
is a “curse of dimensionality” with respect to the space in
which the data are embedded.

The motivation behind witness complexes is to find a
construction which makes frugal use of simplices, but is
nonetheless easily computed. What we lose in the bargain
is the remarkable theoretical tractability of the Cech and
a-shape complexes; much of our current understanding of
witness complexes is heuristic. Of course, it would be nice
to have some theoretical guarantees, but that is beyond the
scope of this paper.

1.3. Persistent homology

The last piece of background knowledge, and an essential
tool in our work, is persistent homology. Each of the three
constructions in the preceding section produces a nested
family of complexes. For example, whenever R < R’, we
have an inclusion Cech(Z,R) C Cech(Z,R’). Algebraically,
we can compute persistent Betti numbers bk(R, R’) for every
pair (R,R’). The interpretation is that bX(R,R’) counts the
number of k-dimensional holes in Cech(Z,R) which remain
open when we thicken the complex to Cech(Z,R’). We can
do the same for the Rips and a-shape families of complexes.

Rapid calculation of persistent Betti numbers for all pairs
(R,R’) is possible, thanks to the definitive algorithm due to
Edelsbrunner, Letscher and Zomorodian [ELZ00]. This pro-
duces interval graphs, which, for each dimension k, consist
of a set of closed intervals lying above an axis parametrised
by R. The presence of an interval [Ro,R1] indicates that a
homology cycle (“hole”) appears for the first time when R
increases to Rg, and persists until R = R4 at which point it
closes up. Long intervals correspond to large holes, which
may be regarded as genuine features. Small intervals indi-
cate holes which close up almost as soon as they are formed;
these may be regarded as noise. An algebraic analysis of the
algorithm appears in [ZC04].

Persistent homology is undoubtedly the correct tool for
estimating topological invariants from real data sets; indi-
vidual Betti numbers by themselves are highly unstable. We
therefore take the trouble to define nested families of witness
complexes.

2. Witness complexes

Witness complexes are intended to behave like Delaunay tri-
angulations computed in the intrinsic geometry of the data
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set Z. A subset L C Z of landmark points is chosen to be
the vertex set, and the remaining points play a role in deter-
mining which simplices occur in the complex. However, it
does not pay to be too pedantic about the interpretation of
“Delaunay triangulation”, particularly since we wish to de-
fine nested families for persistent homology; so the actual
definitions may not be exactly as expected.

2.1. Definition of W(D)

Let D be an n x N matrix of non-negative entries, regarded
as the matrix of distances between a set of n landmarks
and N data points. We define the (strict) witness com-
plex Woo (D), with vertex set {1,2,...,n}, as follows.

e the edge o = [ab] belongs to W (D) iff there exists a
data point 1 <i <N such that D(a,i) and D(b, i) are the
smallest two entries in the i-th column of D, in some order.

e by induction in p: suppose all the faces of the p-simplex
0 = [apay ...ap] belong to W, (D). Then g itself belongs
to W (D) iff there exists a data point 1 <i < N such
that D(ag, i),D(ay,i),...,D(ap,i) are the smallest p+1
entries in the i-th column of D, in some order.

In either case, we refer to i as a “witness” to the existence
of 0.

Analogous to the Rips complex, there is a “lazy” version
of the witness complex. We define W1 (D) 2 W (D) for-
mally as follows.

e W1 (D) has the same 1-skeleton as W (D).
e the p-simplex o = [apa; ...ap] belongs to W4 (D) iff all
of its edges belong to W1 (D).

In other words, W1 (D) is the largest simplicial complex hav-
ing the same vertices and edges as W (D). In practice we
seldom use W (D) since its computation is fussier, and we
write W(D) to mean W1(D).

Remark 2 We are free to apply this construction to any dis-
tance matrix D, using the Euclidean or any other metric. An
important alternative choice is the intrinsic graph metric Dg,
which is defined by computing shortest paths in a suitable
graph G on the set of all data points; for example the graph
representing a relation “is a close neighbour of”. In some sit-
uations this represents the intrinsic geometry of the data far
better than the original D. See [TdSLO00] for a major appli-
cation of this idea.

2.2. The weak witnesses theorem

The strict witness complex W, (D) can be motivated by
comparing it with the the Delaunay triangulation in Eu-
clidean space. A theorem is necessary to make the motiva-
tion complete.

Suppose L C RP is a collection of points. Recall that
the Delaunay triangulation Del(L) contains the p-simplex

0 = [{pl1...Lp] precisely when there exists a point x € RP
such that x is equidistant from the points ¢g,¢1,...,¢p and
has no nearer neighbour in L. We call x a strong witness to
the existence of g, with respect to L. When the set of allowed
witnesses is discrete, there is no point looking for strong
witnesses because they exist with probability 0. We say that
x € RP is a weak witness for o with respect to L iff [x—¢;| <
[x—¢| foralli=0,1,...,pand £ € L\ {€o,1,...,¢p}; in
other words, if the p+ 1 nearest neighbours of x in L are
£o,01,...,0p (in a sense that tolerates equality). Our defini-
tion of Woo (D) can be formulated in terms of weak wit-
nesses: o is a p-simplex of W (D) iff it has a weak witness
and all of its cells have weak witnesses.

Theorem 3 Suppose L  RP is a finite collection of points,
and {g, 1, ...,¢p € L. Then 0 = [¢p¢7 ... £p] has a strong wit-
ness with respect to L iff o and all its cells have weak wit-
nesses with respect to L.

In other words, instead of looking for a single strong wit-
ness, one looks for a whole constellation of weak witnesses.
The case p = 1 was discussed by Martinetz and Schulten
in [MS94], justifying the definition of the graph which forms
the 1-skeleton of the complex MS(L,Z). The general re-
sult is due to de Silva [dS03].

In the light of this theorem, the definition of W (D) is a
natural way to try to define the intrinsic Delaunay triangula-
tion for a space represented only by point-cloud data.

2.3. Choosing the landmarks

We recommend obtaining the landmark set in one of two
ways: randomly, or by maxmin. Both methods seem to
give reasonable results. Maxmin is the following induc-
tive procedure. Initialise by selecting ¢1 € Z randomly. In-
ductively, if ¢1,¢,...,¢;_1 have been chosen, let ¢; € Z'\
{l1,02,...,4i_1} be the data point which maximises the
function

z+— min{D(z,¢1),D(z,¢2),...,D(z,4i_1)},

where D is the metric. Continue until the desired number of
landmark points have been chosen.

Maxmin gives more evenly spaced landmarks, but it also
has a tendency to pick out extremal points. Examples of both
are shown in the next figure: random on the left, maxmin on
the right.

The number of landmarks should be chosen by setting a
lower bound on the ratio N/n. We do not have a systematic
answer to what this lower bound should be, but N/n > 20
seems to work quite well for data sampled from a two-
dimensional surface.

Remark 4 1t may seem natural to regard the choice of land-
marks as a clustering or vector quantisation problem, and
to solve the problem using an iterative optimisation algo-
rithm such as k-means clustering [Bis95]. Our experience
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maxmin:

random:

suggests that this is the wrong point of view, for several rea-
sons. When the data set is large, this kind of optimisation
is expensive. It is not clear that it is helpful to choose land-
mark points based on the pseudo-clustering that occurs in
randomly chosen point samples, and in fact it may accen-
tuate accidental features due to variation in sample density.
On the other hand, the cheap-and-greedy maxmin algorithm
does produce landmark points which cover the space and are
locally well-separated. These seem to us to be the most per-
tinent qualities of a well-chosen landmark set.

2.4. Nested families

Suppose D is an n x N matrix of distances, as before. For
each non-negative integer v we construct a nested family of
simplicial complexes W(D;R,v), where R € [0, oc]. The spe-
cial cases v =0, 1,2 are of particular importance. The vertex
set of W(D;R,v) is {1,2,...,n}. Here is the definition.

e ifv=0,thenfori=1,2,...,N define m; =0.

e ifv >0, thenfori=12,... N define m; to be the v-th
smallest entry of the i-th column of D.

e the edge o = [ab] belongs to W(D; R, v) iff there exists a
witness i € {1,2,...,N} such that:

max (D(a,i),D(b,i)) < R+m;

e the p-simplex o = [apa; ...ap] belongs to W(D;R,v) iff
all its edges belong to W(D;R,V); equivalently iff there
exists a witness 1 < i < N such that:

max (D(ap,i),D(as,i),...,D(ap,i)) <R+m;

To relate this to the previous construction, note the identity
W(D;0,2) = W(D).

Persistent homology groups over an interval R € [0,r]
can now be computed using the algorithm from [ELZ00].
The preprocessing task is to generate a list of simplices
(up to dimension p+ 1 for p-dimensional homology). For
each simplex o, one needs to identify its faces and deter-
mine its time of appearance, which is the smallest value R =
Ro for which o € W(D,R). By definition, Rg = max{Rr :
T is an edge of g} and so we break up the task as follows:

1. Compute the n x n matrix E with off-diagonal en-
triesE(i, j) = Rjij), which records the time of appearance
of each edge.

(© The Eurographics Association 2004.

2. Generate a list of simplices which appear by time r.
3. Compute the appearance time of each simplex as the
maximum of the appearance times of its edges.

Step 1 can be expressed algebraically as a kind of ‘min-
max’ matrix product: E = D ® D*. Here © represents the
operation

[AGBI(,j) = mkin max(A(i,k),B(k, j))

which is easily implemented.

For Step 2, a list of edges which appear by time r can
be used to generate higher-dimensional cells inductively:
for example the simplex [ag...ap] occurs by time r iff the
three lower-dimensional simplices [a;...ap], [ag...ap—1]
and [apap] all occur by time r. Step 3 can be carried out
concurrently with Step 2.

2.5. Commentsonv =0,1,2

We make some brief observations on the three different
classes of persistent witness complex, v = 0,1,2.

v = 0: The family of complexes W(D; R, 0) is closely re-
lated to the family Rips(L;R). Specifically, there are inclu-
sions:

W(D;R,0) C Rips(L;2R) C W(D;2R,0)

Relations between the persistent homology groups of the
two families can be deduced. In practice, we find that the
interval graphs for W(D; R,0) and Rips(L;R) look similar to
one another.

v = 1: In some ways this is the best motivated of the three
families, since it can be interpreted as arising from a fam-
ily of coverings of the space X by Voronoi-like regions sur-
rounding each landmark point, which overlap increasingly
asR — oo.

v = 2: Although the persistent family is not as well moti-
vated as in the previous case, we do have the following iden-
tityat R =0:

W(D;0,2) = W(D)

In practice v = 2 families seem to give very clean persistent
interval graphs, with surprisingly little “noise”. The expla-
nation suggested by this identity is that the complex is es-
sentially already correct at R = 0; or at any rate only a small
increase in R is necessary.

3. Examples
3.1. The sphere $? c R®

We applied several simplicial complex approximations to the
task of recovering the correct Betti numbers of the sphere
$2 ¢ R3. In each trial, 500 points were generated uniformly
randomly on the unit sphere, by sampling points from a
spherically symmetric Gaussian distribution and projecting
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radially onto the unit sphere. From these, 12 landmark points
were chosen randomly and by maxmin. Seven constructions
were applied to each of these data sets: the Rips complex (on
the landmark points alone), and witness complexes for the
Euclidean and graph metrics, for each of v=0,1,2. The cal-
culation was organised so as to determine the Betti numbers
b®, bt and b?, for all possible values of the feature-size pa-
rameter R. No persistent homology groups were computed.

How often was the correct profile (b° bt b%) = (1,0,1)
obtained? A selection of statistics is presented in Figure 1.
We ran 100 trials for each method of generating the land-
marks. For each trial and each construction, we determined
four constants Ry, Ry, Ko and Kj. These are defined as fol-
lows. Rg and R are chosen so that (b°,b*,b?) = (1,0,1) for
R € [Ro,R1), agreeing with the 2-sphere; but (bo,b17b2) #
(1,0,1) for R > Ry and for R = Rp — €. In other words,
[Ro,R1) is the rightmost contiguous interval over which the
homology of $?is correctly recovered. At R = Ky the Betti
profile changes permanently to (1,0,0), indicating that the
data have coalesced into a single contractible blob. Finally,
R = Ky marks the time when the complex becomes the com-
plete simplex on 12 vertices; all possible cells have been in-
cluded.

In the tables, “% success” indicates the number of trials
(out of 100) where the homology of $? s correctly recov-
ered for some interval of values of R, no matter how small.
For each successful trial, relative dominance and absolute
dominance are defined to be (R1 —Rp) /Ko and (R1—Rp) /K1
respectively. Relative dominance compares the lengths of the
successful interval [Rg,R1) and the interval [0, Ko] of homo-
logical activity. Absolute dominance compares the success-
ful interval with the interval [0,K;] of cellular activity. If
either of these quantities is large (that is, close to 1), this in-
dicates that the Betti profile (1,0, 1) can be taken seriously a
priori, and not just because we know the correct answer.

The last three rows of the tables give median values of
these statistics, and of the total number of cells (up to dimen-
sion 3) at R = Rq. The median is taken over successful trials
only. For unsuccessful trials Rg and R4 are not defined; al-
though both dominances may be taken to be 0 in those cases.

We make several observations.

1. The Rips construction can be grouped with the v = 0 wit-
ness complexes; their behaviour is very similar.

2. Choosing landmark points by maxmin is enormously bet-
ter than random choice forv = 0. Forv = 1,2 there is still
an improvement, but it it much less significant. In a sense,
these latter constructions have a built-in robustness to ir-
regular sampling.

3. High dominances indicate stable results. Thev =1,2 al-
gorithms considerably outperform the v = 0 algorithms.

4. A mystery: the v = 2 cases have extremely high rela-
tive dominances, but much lower absolute dominances.
Which should be taken more seriously? The underlying
cause of the difference is that Ko/Ky is small; in other

words homological activity dies down long before cellu-
lar activity, as R increases. A more sophisticated under-
standing is called for.

The overall message is reasonably clear: the v =1, 2 wit-
ness complexes give topological approximations which are
more reliable, use fewer cells, and are statistically more de-
fensible than Rips complexes.

3.2. Natural image statistics

In this section we demonstrate one approach to studying the
topological features of a noisy point-cloud data set. We ap-
ply our techniques to an example derived from natural image
data, provided by David Mumford, which has a known topo-
logical feature that we seek to identify. Our methods detect
this feature, as well as some secondary features.

The data set in question is described by Lee, Pederson
and Mumford in [LPMO3]. They extracted 4.2 x 108 high-
contrast 3 x 3 optical image patches from van Hateren’s
still image collection [vHvdS98]. Each patch is normalised
twice: first by subtracting the mean intensity, then by rescal-
ing to unit length in a suitable metric. After these normal-
isations, the data can be represented by points on the unit
sphere in RE. For our analysis, we randomly selected a much
smaller subset of 5 x 10% points and regarded that as our pri-
mary source.

A edge feature in a natural image can be idealised as a per-
fectly straight boundary between two homogeneous regions
of different brightness levels. Within a single patch, the fam-
ily of edge features can be parametrised by angle and dis-
tance from the center. Here are some examples, before (top
row) and after (bottom row) pixelisation:

HEPENN
TR

The parametrisation by angle and distance implies that the
family of idealised edges has the topology of an annulus.
This annulus is naturally embedded in the unit sphere of RS,
where the normalised patches live. Since edges are common
feature of high-contrast regions in natural images, one ex-
pects to find a strong concentration of data points on or near
this annulus. See [LPMO03] for a detailed discussion.

Can we detect this annulus using topological methods
only? A direct application of simplicial complex approxi-
mation to the 5 x 10* data points is destined to fail, since
there are points distributed all over the sphere and not just in
the high-density regions. To extract a high-density sample,
we threshold on a simple density function

PK (%) = X = x|

(© The Eurographics Association 2004.
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12 LANDMARK POINTS CHOSEN RANDOMLY

Rips  Witness: Euclidean metric ~ Witness: graph metric

v=0 v=1 v=2 v=0 v=1 v=2

% success 54 51 99 99 53 100 97

in cases where a successful reconstruction exists for some R

median relative dominance 0.038 0.059 0.620 0.808 0.062 0.600 0.798

median absolute dominance  0.034 0.047 0.347 0.163 0.046 0.318 0.152

median number of cells 208 199 86 94 208 92 92

12 LANDMARK POINTS CHOSEN BY SEQUENTIAL MAXMIN

Rips  Witness: Euclidean metric ~ Witness: graph metric

v=0 v=1 v=2 v=0 v=1 v=2

% success 100 100 100 100 100 100 100

in cases where a successful reconstruction exists for some R

median relative dominance  0.184  0.215

0.752 0924 0216 0.744 0.922

median absolute dominance 0.161  0.162

0519 0252 0.153 0.466 0.209

median number of cells 74 78

66 79 82 66 80

Figure 1: Recovering the homology profile of the sphere S?cRr® using 14 different constructions

where xk is the K-th nearest neighbour of x, for some K.

The choice of K affects the results qualitatively, as can
be seen in Figure 2, which shows different cuts of the data
projected onto the first two coordinates of R®. The nine
panels show the 10%, 20% and 30% of points having the
smallest values of pis5, p1oo and pspp. The 30% cut with
K =300 appears to be concentrated entirely on an annulus.
With K = 15, on the other hand, there is a cross-like feature
that is already present once the cut is large enough for the
annulus to be fully formed.

Remark 5 This kind of behaviour can be explained by the
following simple model. Suppose that the data are concen-
trated along various strata of different dimensions, with a
uniform density within each stratum. For a point x in a stra-
tum of dimension d, we have the approximate behaviour
PK (X) K/d_ 1t follows from this formula that small val-
ues of K emphasise lower-dimensional strata, whereas large
values of K emphasise higher-dimensional strata.

Figure 3 shows the persistence interval graphs for Betti 1,
computed for witness complexes having 50 vertices chosen
by maxmin, using the Euclidean metric. The number of long
intervals in each of the bottom six graphs matches what we
see in the 2-dimensional plots. In the cases with cut = 10%,
there is an interval near the end of the range for R. This arises
when the four clusters link up, briefly, to form a ring. The

(© The Eurographics Association 2004.

ring gets filled in very quickly as R increases, so the interval
is short.

Each of the persistence graphs for K = 15 has five inter-
vals of noticeable length. At the 30% cut these intervals are
long enough to be regarded, without any doubt, as stable fea-
tures. This is not evident from the two-dimensional projec-
tion, which appears to show four holes. Guided by the evi-
dence that b = 5, we are led to the following ‘three circles’
model shown in the figure. The data are clustered along three

circles in RS, namely the unit circles in the e;—e5, e;—e3 and
eo—e4 planes. There are four points of intersection; the sec-
ond and third circles do not intersect at all. Once we have
it, it is comparatively easy to verify this interpretation by a
closer inspection of the data.

To understand the significance of these clusters, we con-
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K = 15,cut = 10%

K = 15,cut = 20%

K =15,cut = 30%

K =100, cut = 10%

~r

b

K =300, cut = 10%

sult the basis vectors themselves. The e;—e» circle corre-
L] (1]
I‘T L]
e1 62 ea e4 eS e5 e7 88

sponds to linear gradients, parametrised by angle. Each lin-
ear gradient can be regarded as the mean of a family of edge
features sharing the same angle, and located nearby in patch
space. The two fainter circles indicate the prevalence of ver-
tically symmetric and horizontally symmetric patches, re-
spectively. It is unclear whether this is more an artifact of the
choice of localisation (square patches with vertical and hori-
zontal sides) than a symptom of the bias for vertical and hor-
izontal features observed in natural image statistics [CY03].
It is likely that both factors play a part.

Remark 6 In constructing the witness complexes for these
examples, we have taken v = 1. In practice, the three choices
v =0,1,2 lead to persistence interval graphs of quite dif-
ferent visual character, even if they convey the same mes-
sage. Figure 4 illustrates the three different cases for a fixed
cut, consisting of the 25% of points having the lowest values
of pyo5. The case v = 0 typically presents the most ambi-
guity; the “true’ long interval does not appear immediately,

K =100, cut = 20%

K =300, cut = 20%

K =100, cut = 30%

K =300, cut = 30%

v Q) (

Figure 2: First two coordinates of the Mumford data: different cuts

and there are several short ‘noise” intervals which appear at
different values of R. The case v = 1 is clear-cut; there is
a much larger number of noise intervals at R = 0, but these
disappear en masse very quickly. When v = 2 the picture is
shockingly clean; this supports our claim that the weak wit-
ness complex W(D;0,2) = W(D) is immediately a good ap-
proximation to the underlying space. We find that these traits
are quite consistent across different data sets, and certainly
they invite further investigation.

4. Concluding remarks

Modern statistical analysis increasingly calls for the use of
nonlinear techniques, capable of resolving the underlying
structure of a data set. The modern theory of nonlinear di-
mensionality reduction (NLDR) gives several examples of
such techniques [TdSL00O, RS00]. These tend to be restricted
to data manifolds whose topology is comparatively simple.
On the other hand, it is clear that many naturally occuring
data sets exhibit non-trivial topology. We believe that the es-
timation of topological invariants is a necessary part of the
analysis of such data sets. In other areas of research, there
is a growing body of algorithms which exploit topological

(© The Eurographics Association 2004.
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K =15, cut = 10% K = 15,cut = 20% K =15,cut = 30%
K =100, cut = 10% K =100, cut = 20% K =100, cut = 30%

K =300, cut = 10% K =300, cut = 20% K = 300, cut = 30%

Figure 3: Betti 1 persistence intervals of witness complexes for the Mumford data: varying the cut, and keeping fixed 50 vertices,
Euclidean metric, v = 1.

Figure 4: Betti 1 persistence intervals of witness complexes for the Mumford data: varying v, and keeping fixed K = 125, cut
= 25%, 50 vertices, intrinsic graph metric (with k = 125).

(© The Eurographics Association 2004.
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information carried in point-cloud data. Rapid topological
profiling is an essential tool in these developments.

In this paper we present a robust, efficient tool for carrying
out these tasks. Witness complexes have several advantages
over existing methods; they are easily computed, they are
adaptable to arbitrary metrics, they use only a small number
of cells, and they do not suffer from curse of dimensionality.
As shown by the examples, the combination of witness com-
plexes with persistent homology is highly effective in prac-
tice, even on noisy data. There is a long way to go before
we have truly flexible and robust tools for topological data
analysis. We hope that this paper represents a useful step in
that direction.
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