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Abstract
Levin’s MLS projection operator allows defining a surface from a set of points and represents a versatile procedure
to generate points on this surface. Practical problems of MLS surfaces are a complicated non-linear optimization
to compute a tangent frame and the (commonly overlooked) fact that the normal to this tangent frame is not the
surface normal. An alternative definition of Point Set Surfaces, inspired by the MLS projection, is the implicit sur-
face version of Adamson & Alexa. We use this surface definition to show how to compute exact surface normals and
present simple, efficient projection operators. The exact normal computation also allows computing orthogonal
projections.

Categories and Subject Descriptors(according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation of sur-
faces and contours I.3.5 [Computer Graphics]: Curve, surface, solid, and object representations

1. Introduction

Point sets have become an increasingly popular shape rep-
resentation, for modeling [ZPKG02, PKKG03] as well as
rendering [PZvBG00, RL00, KV01, ZPvBG02]. Most shape
processing and rendering tasks require the approximation of
a continuous surface from the point data as well as efficient
computational methods for generating points on the surface.

Levin’s projection procedure [Lev03] has gained popular-
ity as a tool for solving both problems: The projection op-
eration takes points close to an anticipated surface approxi-
mation onto this surface and the set of fix points of the pro-
jection is conjectured to be a smooth surface. Thus, the pro-
jection operator defines the surfaceandprovides the compu-
tational tool to generate points on that surface. These useful
properties for surface modeling operations in general have
been discussed in [ABCO∗01]. Pauly et al. exploit the pro-
jection operator for a wide range of practically useful mod-
eling operations [PKKG03].

An oftentimes overlooked problem of the MLS surface
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definition is that the approximating tangent frame is not tan-
gent to the surface (this has also recently been discussed
by Amenta & Yong [AK04]). Recall that the MLS projec-
tion is a two-step procedure, where the crucial properties
follow from the first step. In the first step, a local approx-
imating tangent frame for a pointp close to the surface is
computed. In the second step, a local polynomial is fitted to
the points using the tangent frame as the parameter domain.
Most follow-up works use only the first step (i.e. assuming a
constant polynomial approximation in the second step) and
assume that the normal of the approximating tangent frame
is the surface normal. We show that this is not true. As a
consequence, a projection operation based on only the first
step is not orthognal (though this has been claimed, see e.g.,
[PKKG03]).

A related definition of a smooth surface from points, ba-
sically following the ideas of Levin [Lev03] and presented
as an attempt to simplify the computation in [ABCO∗03] is
Adamson & Alexa’s implicit version [AA03]. As implicit
surfaces allow easy intersection computation with paramet-
ric curves, they have proposed ray intersection as the main
tool to compute points on the surface. In [AA04] they ex-
plain how to define surface boundaries and demonstrated
that ray surface intersection works even for unsigned im-
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plicits – yielding a way to define possibly bounded or non-
orientable surfaces with point sets.

Here, we briefly re-introduce this surface definition and
then show that the gradient of the implicit function can be
computed explicitly. This leads to accurate surface normals.
We compute these normals and compare them to normals re-
sulting from a locally weighted co-variance analysis. It turns
out that for densely sampled smooth surfaces the difference
is very small, yet non-zero. We sketch a proof showing that
the first step of the MLS projection procedure does not yield
surface normals.

As the projection operator has turned out to be a useful
primitive in many modeling situations, we introduce pro-
jection operations for the implicit surface. The properties of
ray-intersection (i.e., the surface might have boundaries and
need not be orientable) carry over to the projection. We show
that the projection operation is easy to compute and is adapt-
able to have certain features, e.g. to be orthogonal.

From the fact that the projection is orthogonal, one can
deduce that it is stationary on the medial axis. Thus the im-
plicit version of the surface could as well include the medial
axis. In future work, one might use this properties to relate
this approach to the sampling criteria developed by Amenta
et al. [ABE98, ABK98, ACK01].

2. Definition of the Implicit Surface

We assume that a set of points implicitly defines a smooth
manifold surface, possibly with boundary. More specifically,
let pointsP = {pi ∈ R3}, i ∈ {1, . . . ,N}, be sampled from a
surfaceS (possibly with a measurement noise).

We first define a neighborhood ofP as the union of a set
of balls centered in thepi :

B = {x|dP (x) < rB}=
[
i

Bi ,Bi = {x, ||x−pi ||< rB} (1)

It is assumed thatB contains the surfaceS as well as its
approximation that we are going to define. For the defini-
tion we use two functions defined on the neighborhood: the
weighted average and the normal direction. The weighted
averagea : B→B maps each pointx in the neighborhood of
the points to the weighted average of the points, where the
weights depend on the location ofx. The normal direction
n : B → S2 assigns each point in the neighborhood of the
point set a normal, thus, establishing an approximating tan-
gent frame to the surface. For ease of notation, we identify
the directionn with a unit vectorn ∈ R3,‖n‖= 1.

Let an implicit functionf be defined as

f (x) = n(x)T(x−a(x)), (2)

then the approximating surface is

Ŝ = {x ∈ B| f (x) = 0} (3)

If we assume thata and n are continuously differentiable

x

n(x)

a(x)

f(x)

Figure 1: The surface is defined implicitly as the zero set
of a function f(x). In each pointx a local normal direction
n(x) is estimated. The implicit function f(x) describes the
distance of a weighted averagea(x) of the points along nor-
mal direction.

functions (and thatn is unique withinB) then Ŝ is a two-
dimensional surface.

For practical definitions ofa and n, a weight function
θ : R → R specifies the influence of a point. Weight func-
tions are assumed to be smooth, positive, and monotonically
decreasing (have negative first derivative).

Then, the weighted average of points at a locationx in
space could be described as

a(x) =
∑N−1

i=0 θ(‖x−pi‖)pi

∑N−1
i=0 θ(‖x−pi‖)

. (4)

We describe two ways to define normal directions in each
locationx:

1. Based on weighted covariance directions inx the normal
could be defined as the direction of smallest weighted co-
variance. This definition allows drawing a connection to
Levin’s MLS surfaces.

2. Assuming normals are supplied with the points, a normal
in x could be computed using a weighted average of the
given normals.

The direction of smallest covariance could be understand
as a least squares fit of a plane with unit normaln throughx,
i.e. the minimizer of

min
||n||=1

∑i

∥∥∥nT(x−pi)
∥∥∥2

θ(‖x−pi‖)

θ(‖x−pi‖)
. (5)

This constrained minimization problem is solved by one of
the eigenvectors of the covariance matrixW(x) = {wjk},
where

wjk = ∑
i

(
eT

j (x−pi)
)(

eT
k (x−pi)

)
θ(||pi −x||) (6)

andei , i ∈ {0,1,2} is a basis ofR3. Let{vi} be the eigenvec-
tors ofW(x) corresponding to the eigenvaluesλ0≤ λ1≤ λ2,
we setn = v0 for anyx ∈Ω.
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If each pointpi carries a normalni we can define the nor-
maln(x) using weighted averages as for the points:

n(x) =
∑N−1

i=0 θ(‖x−pi‖)ni∥∥∥∑N−1
i=0 θ(‖x−pi‖)ni

∥∥∥ . (7)

Note that the equation above should be understood in an ab-
stract sense, i.e., a reasonable way to compute weighted av-
erages of normal directions should be used. We have experi-
enced no particular problem with using a vector representa-
tion, though.

3. Gradient & Normal

It has become standard practice to use the normaln(x),x∈S
of the approximating tangent plane as the surface normal
[ABCO∗01, ABCO∗03, PKKG03]. It seems that some au-
thors assume that thisis the normal toS in x, however, it is
generally not.

In comparison to the MLS surface definition, the implicit
description allows the exact evaluation of surface normals
using the gradient off . In the following, we describe how
to compute this gradient in a pointx explicitly, i.e. without
taking finite differences. We feel this is an advantage over the
MLS definition of the surface. It will also allow constructing
an orthogonal projection operator.

In the following we first explain how to compute the gra-
dient of f , which points in normal direction to the surface.
We give a small example that, in contrast, the direction of
smallest co-variance is not necessarily in the direction of the
surface normal. Based on this observation we sketch a proof
that the normals obtained in the first step of the MLS projec-
tion procedure are not surface normals.

3.1. Computing exact surface normals

We examine the gradient off in the ortho-normal system
{ek}, i.e.

∇ f (x) =
(

∂ f (x)
∂e0

,
∂ f (x)
∂e1

, . . .

)
. (8)

The product rule for differentiating vector fields yields the
directional derivatives off :

∂ f (x)
∂ek

=
∂n(x)T

∂ek
(x−a(x))+n(x)T

(
ek−

∂a(x)
∂ek

)
, (9)

We see that the difference between∇ f (x) and the normal
directionn(x) is not necessarily in the direction ofn(x) (see
Figure 2 for an example wheren(x) is certainly not in direc-
tion of the surface normal). Computing the gradient requires
the evaluation of directional derivatives ofn(x) anda(x).

Taking directional derivatives ofa(x) along the basis di-
rectionsek is straightforward and yields

∂a(x)
∂ek

= 2
∑pi

eT
k (x−pi)θ′

i
‖x−pi‖ ∑θi −∑piθi ∑ eT

k (x−pi)θ′
i

‖x−pi‖

(∑θi)
2 , (10)

Figure 2: An illustration ofn(x) defined as the directions of
smallest weighted co-variance. Random points on the zero-
set contour have been chosen and the direction of smallest
covariance is depicted as a line. Note that in the upper area
n(x) is not normal to the contour.

whereθi = θ(‖x−pi‖) andθ′i = θ′(‖x−pi‖). If the normal
n(x) is defined as a weighted average as well, the compu-
tation can be performed in the same manner. Note that we
assume the derivative of the weight functions can be com-
puted analytically, which is certainly true for the typically
used piecewise polynomial functions.

Computing the derivatives of the direction of smallest co-
variance is slightly more complex but, nevertheless, can be
performed explicitly. Let the covariance beW(x) and its
smallest eigenvalue beλ0(|x) as before. The eigenvector of
W(x) corresponding toλ0(x) is n(x), i.e.

n(x)TW(x) = λ0(x)n(x)T. (11)

Taking directional derivatives on both sides yields

∂n(x)T

∂ek
W(x)+n(x)T

∂W(x)
∂ek

=
∂λ0(x)

∂ek
n(x)T+λ0

∂n(x)T

∂ek
.

(12)
In the Appendix we show that for our definition ofW (in-
cluding the assumption thatn(x) is unique and, thus,λ0 is
a single eigenvalue) the directional derivative of the eigen-
value is

∂λ0(x)
∂ek

= n(x)T
∂W(x)

∂ek
n(x) (13)

which can be used to compute the directional derivative of
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Figure 3: A comparison of using the direction of smallest co-variancen and∇ f for image synthesis. The images have been
generated by ray tracing the surface. The left image is shaded usingn and appears slightly smoothed in areas of high complexity
as compared to the center image, which has been generated using∇ f for shading. The right images illustrates the difference
by color coding the scalar productnT∇ f/‖∇ f‖.

n(x) as

∂n(x)T

∂ek
= n(x)T

(
∂λ0(x)

∂ek
I − ∂W(x)

∂ek

)
(W(x)−λ0I)−1

(14)

For easy re-implementation we give the coefficients of the
directional derivative ofW explicitly:

∂wjm

∂ek
= ∑

i

(
eT

j ek

)(
eT

m(x−pi)
)

θi

+
(

eT
j (x−pi)

)(
eT

mek

)
θi

+
(

eT
j (x−pi)

)(
eT

m(x−pi)
) eT

k (x−pi)θ′i
‖x−pi‖

.

(15)

Figure 3 illustrates the difference of using the gradient or
directions of smallest co-variance for shading a ray traced
image.

3.2. MLS surface normals

We show that the normals of approximating tangent frames
in the MLS projection are not surface normals. Recall that
the approximating tangent frame for a pointx is computed
as the local minimum of

eMLS =
N

∑
i=1

(
nT(pi −x− tn)

)2
θ(‖pi −x− tn‖) (16)

with smallestt. The projection ofx is q = x+tn is a point on
the surface and typically serves as the origin of the tangent
frame.

Let x = q project onto itself (i.e.t = 0) and define a local
frame byq andn. Note that in contrast to the minimization
n is now fixed and it points into the direction of smallest

weighted co-variance inx. We construct a locally weighted
constant approximationa to the points using in the fixed
frame (i.e.a denotes the (constant) height of the fit over the
tangent plane) by minimizing

N

∑
i=1

(
nT(pi −q−an)

)2
θ(‖pi −q‖) , (17)

which is solved bya satisfying

0 =
N

∑
i=1

2
(

nT(pi −q−an)
)(

nTn
)

θ(‖pi −q‖) . (18)

It seems most authors assume thata = 0 has to be the solu-
tion becauseqhas been defined so thateMLS is minimized for
t = 0. Note that this is not necessary because the two min-
imization functionals differ in the argument to the weight
functionθ. The partial derivative ofeMLS w.r.t. t is

∂eMLS

∂t
=−

N

∑
i=1

2
(

nT(pi −x− tn)
)

nTnθ(‖pi −x− tn‖)+

(
nT(pi −x− tn)

)2
θ′ (‖pi −x− tn‖) nT(pi −x− tn)

‖pi −x− tn‖ .

(19)

This is identical zero fort = 0 by our assumptions anda= 0
would lead to

0 =
N

∑
i=1

(
nT(pi −q)

)2
θ′ (‖pi −q‖) nT(pi −q)

‖pi −q‖ , (20)

which is not necessary.

For this reason we consider the following two cases for
the comparison of MLS surface normals with the gradient of
the implicit version:

1. For everyx = q we find a = 0: The weighted average
of points is contained in the tangent frame, which is the
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x

local frame

n(x)

a(x) x'

x

local frame

n(x')

a(x')

x'

x''

Figure 4: The basic projection procedure. In each step the
current approximationx′ is updated by moving in direction
n(x′) so that f(x′) = 0.

necessary condition for points to be part of the implicit
surface as defined above. Thus, the MLS surface is con-
tained in the implicit surface. As we have already shown,
the direction of smallest co-variance is not normal to the
surface, so this would also be true for the MLS surface.

2. There existx = q for which a 6= 0: By definition of the
MLS surface, the pointsx = q as well as the points
x′ = q + an form a surface. These two surfaces share
the same gradient field (n), which cannot be: Assuming
∇x =∇q = n leads to∇x′ = n + a∇n 6= n because (as
shown before)∇n is non-zero anda is not everywhere
zero by assumption.

4. Projection operators

Let n(x) anda(x) define a tangent frame with origin ina(x)
and let the projection ofx onto the tangent be

Q(x) = x−n(x)T(a(x)−x)(a(x)−x). (21)

The definition of projection operators follows from the fol-
lowing

ObservationQ(x) = x⇐⇒ x ∈ S.

Proof: If x ∈ S thenn(x)T(a(x)−x) = 0 and, thus,Q(x) =
x. On the other hand, ifQ(x) = x, then n(x)T(a(x) −
x)(a(x)−x) = 0, so that alson(x)T(a(x)−x) = 0 and, thus,
x ∈ S.

4.1. The basic projection procedure

Consequently, the idea for a projection operation is to repeat-
edly applyQ(x) to a position in space until‖Q(x)− x‖ < ε

x

local frame

n(x)

a(x)
.
x'

x

local frame

n(x')

a(x').

x'
x''

Figure 5: The first two steps of an ’almost’ orthogonal pro-
jection of a pointx onto the surface. In each step the cur-
rent approximationx′ is used to build an orthogonal tangent
frame usingn(x′) anda(x′), onto whichx is projected to get
an new approximation.

for a givenε. This idea is illustrated in Figure 4. More specif-
ically, for a given pointx∈B the following simple procedure
yields a projected pointx′ on the surface:

1. Computea(x) and setx′ = a(x).
2. Computen(x′), a(x′), and setx′ = x′−n(x′)T(a(x′)−

x′)(a(x′)−x′)
3. If ‖n(x′)T(a(x′)−x′)‖> ε go back to 2.

It is clear that if this iteration converges it yields a point on
S. It is interesting to note, however, that even though this it-
erative procedure minimizes the number of projection steps,
the Euclidean distance betweenx and its final projection
x′ = Q(x′) is not minimized. In other words: the projection
is not orthogonal.

4.2. An ’almost’ orthogonal projection

We can adapt the projection procedure to make it ’almost’
orthogonal. By almost orthogonal we mean that the projec-
tion is in direction ofn(x′), if x′ is the projection. There is
only one change to the basic procedure: The projection al-
ways considers the original pointx and not the intermediate
pointsx′. More specifically, the following procedure com-
putes an orthogonal projection ofx:

1. Setx′ = x.
2. Computea(x′) andn(x′).
3. Setx′ = x−n(x′)T(a(x′)−x)(a(x′)−x).
4. If ‖n(x′)T(a(x′)−x′)‖> ε go back to 2.

The procedure is illustrated in Figure 5. When terminated
x′ is a point on the surface, becausef (x′) = n(x′)T(a(x′)−
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x

local frame

n(x)

a(x) x'

∇f(x)

Figure 6: One step of the orthogonal projection procedure.
Orthogonality is achieved in the limit becausex is projected
in the direction of∇( f x′). Note that the difference ofn(x′)
and∇ f (x′) has been exaggerated.

x′)≈ 0. Moreover, sincex′ = x−n(x′)T(a(x′)−x)(a(x′)−
x) is the orthogonal projection ofx onto the frame defined
by n(x′) anda(x′), x′−x is in direction ofn(x′).

4.3. Computing orthogonal projections

Making the projection orthogonal, i.e. projecting into direc-
tion of ∇ f (x′), is slightly more complex. For the above
procedure we have used the fact that any pointx′′ pro-
jected onto the frame defined byn(x′) and a(x′) yields
n(x′)T(a(x′)−x′′) = 0 so that in the case of convergence the
point is part of the surface. Thus, simply replacingn(x′) with
∇ f (x′) wouldn’t work because then the result would satisfy
∇ f (x′)(a(x′)−x′) = 0, which is not identical tof (x′) = 0.

We keep the idea of projecting onto a tangent plane de-
fined byn(x′) anda(x′), however, the projection has to be
in direction of the gradient off . Strictly, an intermediate pro-
jectionx′′ should satisfyn(x′)T(a(x′)− x′′) = 0 (i.e.x′′ is
on the tangent plane) andx′′ + g∇ f (x′′) = x (i.e. x is pro-
jected in the direction of the gradient inx′′) simultaneously.
Thus, we would have to solve

n(x′)T
(
a(x′)−x+g∇ f (x′′)

)
= 0 (22)

to find the next point in the iteration. This is equation is dif-
ficult to solve and might not have a unique solution. We use
the same approach as before and assume the situation in the
limit, i.e.

n(x′)T
(
a(x′)−x+g∇ f (x′)

)
= 0, (23)

which means projectingx onto the tangent frame defined by
n(x′) anda(x′) in the direction of∇ f (x′). The step-by-step
procedure looks as follows:

1. Setx′ = x.
2. Computea(x′), n(x′), and∇ f (x′).

3. Computeg = n(x′)T(a(x′)−x)
n(x′)T∇ f (x′) to setx′ = x−g(a(x′)−x).

4. If ‖n(x′)T(a(x′)−x′)‖> ε go back to 2.

The illustration in Figure 6 shows the concept by exaggerat-
ing the typical deviation betweenn(x) and∇ f (x).

5. Remark on a manifold surface definition

Note that the gradient off for points on the medial axis
is not defined properly. Furthermore, points on the surface,
for which∇ f = 0 are non-manifold. With the possibility to
compute the gradient exactly one might define the surface
simply as:

Ŝ = {x| f (x) = 0∧∇ f (x) 6= 0} (24)

Then, Ŝ is necessarily a (collection of) smooth manifolds,
possibly with boundary (provided thatn(x) and a(x) are
smooth, as before).

6. Conclusions

We explicitly consider the normals of Point Set Surfaces and
its variants. We demonstrate that the normal to the approxi-
mating tangent frame is not the surface normal. Based on an
implicit version of the surface description we show how to
compute exact surface normals. These exact surface normals
allow computing orthogonal projections. We feel that these
tools help to solidify the computational framework of Point
Set Surfaces.

Is is well known that the stationary points of orthogonal
projections on surfaces include points on the surface as well
as points on the medial axis. This gives rise to the hope that
a sampling theory in the spirit of Amenta and co-workers’
can be established in the near future.
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= Tr(Ad j(λI −W)). (25)

Now, in our case we take directional derivatives andλ and
W are dependent variables, which means we have apply the
chain rule to get

∂pW(λ)
∂ek

= Tr

(
Ad j(λI −W)

(
∂λ
∂ek

I − ∂W
∂ek

))
. (26)

Note thatnT andn are the left and right eigenvalues ofλ0I−
W corresponding to eigenvalue 0. Therefore,(nnT)(λ0I −
W) = 0 and becausennT is rank one (assuming thatλ is
single eigenvalue, which we may in our setting) it is the ad-
jugate ofλ0I −W. Further, note thatnTn = 1 6= 0.

Taking derivatives on both sides ofpW(λ0) and using the
mentioned identities leads to the following derivation

0 = Tr

(
Ad j(λI −W)

(
∂λ0

∂ek
I − ∂W

∂ek

))
= Tr

(
nnT

(
∂λ0

∂ek
I − ∂W

∂ek

))
= Tr

(
nnT ∂λ0

∂ek
I −nnT ∂W

∂ek

)
= nTn

∂λ0

∂ek
−nT ∂W

∂ek
n

=
∂λ0

∂ek
−nT ∂W

∂ek
n.

(27)
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