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Abstract

Point sampling is an important intermediate step for a variety of computer graphics applications, and specialized
sampling strategies have been developed to satisfy the requirements of each problem. In this article, we present a
technique to generate a stratified sampling of 3D models that is applicable across many domains. The algorithm
voxelizes the model and selects one sample per voxel, restricted to the original model’s surface. Parameters allow
control of the uniformity of the sample placement and the minimum distance between samples. We demonstrate
the effectiveness of this technique in selecting stroke locations for painterly rendering models and for producing
sampled geometry used as input to shape descriptors.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Many algorithms that take 3D models as input sample
the model’s geometry. The sampling strategy is critical for
point rendering systems [GD98, LR98] which rely exclu-
sively on sampled geometry to represent models. Some
painterly rendering systems, such as Meier’s animation
scheme [Mei96], sample the object surface in order to dis-
tribute strokes over it. Turk’s re-tiling of polygonal sur-
faces [Tur92] and Hoppe’s mesh optimization [HDD∗93] al-
gorithms are examples of mesh simplification methods that
perform sampling in an intermediate step. Many shape de-
scriptors, such as spin-images [Joh97], D2 [OFCD01], shell
histograms [AKKS99], and EGIs [Smi79], are usually im-
plemented to take sampled models as input. More recently,
Turk’s sampling technique has been used to choose surface
points where the irradiance is evaluated in order to approxi-
mate the diffusion equation needed for the efficient compu-
tation of sub-surface scattering effects [JB02].

In this article, we present a stratified sampling strategy for
3D models. Stratified sampling is a technique that generates
evenly spaced samples by subdividing the sampling domain
into non-overlapping parts and sampling independently from
each part. It has been shown to decrease the variance of the
numerical estimation of integrals in several applications, in-
cluding antialiasing of ray-traced images [Mit96]. Our tech-
nique behaves like voxelization, but generates samples on

the surface of the model. The idea is to voxelize the model
and output one sample for each voxel, chosing a position
from the part of the model surface that is contained in the
voxel’s bounding box. The sample is selected accoording to
a probability that decays as its distance to the center of the
voxel increases. We allow the user to control the sampling
resolution, the regularity of the sampling, and the minimum
distance between samples.

Most previous sampling strategies consider only sample
density over the surface area of the original model. Among
them, uniform sampling is by far the most common strat-
egy. Samples are spread such that the probability of a sur-
face point being sampled is equal for all surface points. Uni-
form sampling is popular because it is simple, efficient, and
unbiased. However, artifacts such as those seen in random
dithered images also appear in uniformly sampled models,
and for many applications, these artifacts are aesthetically
undesirable. Other applications, such as point rendering sys-
tems, demand bounded maximum or minimum distance be-
tween samples. For these applications, uniform sampling is
not an option.

Turk describes a sampling strategy that produces samples
evenly distributed over the surface area of a model [Tur92].
His technique starts from a uniform sampling of the mesh
and places a charged particle at each sampled position.
While constrained to remain on the object’s surface, these
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particles are allowed to repel each other until equilibrium is
reached. The output of the sampling is then retriangulated to
produce a simplified version of the original mesh.

Johnson created a method that goes in the opposite direc-
tion [Joh97]. His goal was to create a sampling of a model at
a given resolution for computing spin-images. For that task,
he used a mesh simplification strategy based on vertex splits
and edge collapses using a priority metric that favors edges
of a target length. When no operations can be performed that
maintain the new mesh within an envelope of the original
mesh, the process halts. The final mesh has small variance in
edge lengths, and therefore the distance (geodesic) between
adjacent vertices (the samples) is uniform.

In more recent work, Alliez describes a remeshing strat-
egy that takes advantage of halftoning techniques [AMD02].
By first splitting the input mesh into disk like patches which
can be parametrized, his technique is able to generate sam-
plings with different properties. A variety of geometry maps
(based on curvature, projected area etc.) can be computed
for each patch. These geometry maps can be dithered and
the results triangulated. Mapping the triangulation back into
the original patches and stitching them together generates
the new mesh.

Point rendering systems require that the minimum dis-
tance between samples be small enough to produce a ren-
dering with no holes [GD98]. Furthermore, for efficiency,
the number of samples should be as small as possible. Sam-
plings with such properties can be produced with three or-
thogonal layered depth images [LR98, PZvG00].

In shape matching applications, the sampling strategy
must capture the shape of the object being sampled. Uni-
form sampling is often used when properties are to be eval-
uated uniformly over the surface area [OFCD01]. Another
common technique involves rasterizing the model surface to
a voxelized grid and using the occupied voxels as samples.
Results show that the expressive power of descriptors oper-
ating on voxelized models is generally higher than those that
take uniformly sampled models as input [SKMF04].

Some techniques sample directly from implicit surface
representations [WH94, ST92]. Naturally, implicit models
can be triangulated before being sampled by methods that
operate on triangle meshes.

In the following sections we describe the algorithm, ana-
lyze its running time complexity and the quality of the re-
sults, and show its application in painterly rendering and
shape matching.

2. Algorithm description

Our algorithm is divided into three simple steps. The first
step is the voxelization of the model. The next step produces
one sample for each voxel. The final step constrains the min-
imum distance between samples by removing samples that
are too close to each other. Figure1 outlines the algorithm.

Figure 1: Algorithm overview. The solid lines represent an
octree voxelization of the model. Each dot represents a sam-
ple. Red and green samples are too close to each other and
are considered for removal. Only the red are actually re-
moved from the final sampling.

The voxelization registers all triangles that touch the inte-
rior of each voxels’s bounding box. One triangle is chosen
from each voxel and from this triangle a new sample is pro-
duced as described later in this section. The resolution of the
voxelization is specified by the user and controls the number
of samples that the algorithm produces.

Rather than choosing the point on the surface of the object
that is closest to the center of each voxel, we pick a position
according to a probability distribution. Ideally, the distribu-
tion should favor points close to the center, but allow for
a user controllable amount of variation in their placement.
Naturally, many distributions satisfy these requirements. For
the results shown in this paper, we use the exponential dis-
tribution function (λe−λd) on the distanced (relative to the
edge length of a voxel) between the sample and the center of
the originating voxel.

We use a simple integration scheme to sample according
to this distribution. Each triangle in a voxel is subdivided
until the probability density function can be considered con-
stant throughout its area. To ensure that integration happens
only within voxel boundaries, subtriangles that cross bound-
aries can be subdivided further until no edge is bigger than
a fixed length, relative to voxel edge length. The function
value at the centroid of a terminal subtriangle is multiplied
by its area and is defined as the subtriangle’s priority. A
roulette scheme is used to select a subtriangle according to
these priorities. Once a terminal subtriangle is chosen, uni-
form sampling is used to produce a sample from it. Figure2
gives an idea of the effect ofλ.
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Figure 2: The effect of the probability distribution function.
The two figures show a comparison between the distributions
of 10k samples in a large triangle around the center of a
small voxel, forλ values of 5 and 20.

The final step in the algorithm addresses the possibility
that samples generated close to the boundary between two
or more adjacent voxels can be too close to each other. For
some applications, such as mesh simplification, this is unde-
sirable. One solution is to enforce a minimum distance be-
tween samples, relative to the size of the voxel. For a given
cluster of points that are too close to each other, we would
like to keep those that better represent the cluster. We pre-
serve original sample positions and simply eliminate sam-
ples one by one until the minimum distance constraint is sat-
isfied.

Naturally, we are faced with the question of which sam-
ples to remove first. Given the minimum distancem between
samples, we define the setN(p) = {q | d(p, q) < m} for
each samplep. The candidates for removal are all points with
a non-emptyN(p). We choose for removal the candidater
for which the centroid ofN(r) is furthest fromr. After re-
movingr, we update the neighborhoods of all points inN(r)
and repeat the process while candidates remain.

In the following two sections, we analyze the time com-
plexity of each step in our algorithm. We present examples
that illustrate the effect of the parametersm andλ in the
samplings. Finally, we employ techniques developed by the
halftoning community to analyze the quality of our sam-
plings and compare it to the point distributions generated by
other methods.

2.1. Time complexity

In our implementation, the voxelization step is performed
with an octree. Assume a mesh witht triangles and areaA,
measured in multiples of the voxel face area. Define theceil
areaddAeeas the sum ofdAie for all trianglesi. Let h be the
height of the octree. Then, the worst case voxelization step
takes timeO(ddAee + ht). An O(ddAee) algorithm exists that
rasterizes all triangles directly into a regular voxel grid, but
table1 shows that for most applications theO(ddAee + ht)
approach is fast enough.

model triangles height 5 height 6 height 7

bunny 69k 1.8/0.2 2.2/1.1 2.7/5.2
(497) (2062) (8401)

elephant 157k 3.6/0.36 4.3/1.2 5.3/5.7
(417) (1731) (7021)

dragon 871k 18.6/1.3 23.1/1.6 27.7/4.8
(549) (2350) (9806)

Table 1: Running times. For tree heights 5, 6, and 7, times in
seconds are given for the octree creation and sampling steps
of the algorithm, respectively. The elimination of close sam-
ples runs in negligible time. The number of samples output
is given in parenthesis. All experiments were run on a 1GHz
PowerBook G4 laptop.

The computation of sample positions requires the integra-
tion of the probability density function over all area of the
model. In our implementation, we limit the area of the small-
est generated subtriangle to be1/r times the voxel size area
(we user = 25). Therefore, the running time for the inte-
gration isO(Ar + t). This is confirmed in table1, which
shows that the time for the sampling step is multiplied ap-
proximately by 4 every time the octree is made deeper, caus-
ing the model area (relative to voxel face area) to quadruple.

Consider that the minimum distance constraintm at the fi-
nal step is smaller than the side of a voxel (or almost no sam-
ples will be left). In addition, there is only one sample per
voxel. Therefore, using an octree and a priority queue, the
rejection of samples can be implemented inO(n + c log c),
wheren is the number of samples before rejection andc
is the original number of candidates for removal. The low
complexity makes this step run in negligible time when com-
pared to the other steps.

2.2. Quality analysis

In the 2D case, we can compare our results with those pro-
duced by halftoning methods and employ techniques de-
veloped to analyze them. Halftoning methods are usually
evaluated by their radially averaged power spectrum dis-
tributions (RAPSD) and their radial anisotropy. Intuitively,
these measure the frequency content of the spacial distri-
bution of points produced by a halftoning algorithm. The
RAPSD measures the power per radial frequency, and the
radian anisotropy gives the variance of that power per ra-
dial frequency (see [Uli88] for formal definitions and exam-
ples). These are computed for dithered constant gray level
images, considering the minority pixel positions as a point
process. We use our method to produce a sampling of a
1 × 1 square in order to compare it to halftoning methods
over images. We match our voxelization resolution with the
gray level of the input images to the halftoning methods,
producing samplings with the same expected density. Fig-
ures6 and7 were produced from periodograms computed
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Figure 3: Varying λ. From left to right, values 0, 10, and
30 produce samplings progressively more aligned with the
voxelization grid.

Figure 4: The minimum distance constraint. From left to
right, values of 0, 0.5, and 0.75 ofm produce samplings
with progressively more rejected samples. All examples use
λ = 2.

Figure 5: Dithered constant1
32

gray level images (not to
scale). From left to right, random dithering, blue noise
dithering, and stratified sampling (λ = 5, m = 0.5).

by Welch’s method [Wel67], and averaged over 20 sam-
pled512 × 512 images. We also use these plots to discuss
the effects ofm andλ.

The parameterλ provides control over how far away the
samples are likely to move from the center of their origi-
nating voxels (restricted to the surface of the model). Small
values ofλ turn the algorithm into a jittered sampling. Large
values turn it into regular voxelization. In between, there is
a continuum of options, shown in figure3.

Figure5 shows 1

32
gray level images produced with ran-

dom dithering, Floyd-Steinberg [FS76] error diffusion with
50% random weights processed on a serpentine raster (this
method displays blue noise properties [Uli88]), and with
our method. Figure6 shows the corresponding RAPSD and
radial anisotropy plots. As expected, the random dithering
(which is closely related to uniform sampling) displays a
flat power spectrum. Both the blue noise dithering and our
method have peaks at the target frequency, and most of the
remaining power is moved to higher frequencies. This pro-
duces a visually pleasant pattern, since higher frequencies
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Figure 6: RAPSD and radial anisotropy plots correspond-
ing to figure5. Although the radial power spectrum for the
stratified sampling is similar to blue noise, the spectrum is
anisotropic.
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Figure 7: RAPSD for samplings of figure4. Increasing val-
ues ofm produce patterns with better blue noise properties.
The decrease in power is due to the increase in the number
of rejected samples.

are naturally filtered by our visual system. Notice, however,
that the sampling produced by our method has a second
peak. This is an artifact of the alignment to the rectangle
grid, which enforces frequencies corresponding to horizon-
tal/vertical as well as diagonal alignments. These peaks are
more evident in the radial anisotropy plot, which shows that
our method performs worse than the blue noise dithering ex-
actly in the two main modes.

Figure4 shows the samples produced with different val-
ues ofm, which controls the minimum distance between
samples. Figure7 shows that higher values ofm produce
RAPSDs with increasing blue noise properties. However,
since the number of samples drop, the plots show a corre-
sponding decrease in the total power of the distribution. The
RAPSD for the stratified sampling of figure6 does not show
a significant power loss because the higherλ causes fewer
samples to be rejected.

Figure 8 shows samplings of the model of a lion. The
highly detailed mane takes 81% of the surface area of the
104k triangles in the model. Models of this class are a prob-
lem for most sampling strategies, and were one of the main
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Figure 8: The top right lion shows vertex positions of a the
lion model after simplification by Garland’s quadric error
metric. The bottom left lion was sampled uniformly, while
the bottom right lion was sampled with our algorithm (1k
samples for both).

motivations behind this work. The complex mane unduly in-
fluences methods guided by area or by vertices. As far as our
method is concerned, the mane is just a region of space with
a high triangle count.

When the input mesh is smooth (like the bunny mesh),
simplification algorithms such as Garland’s quadric error
metric [GH97] generally produce high quality simplified
models. Models like the lion, however, present a harder
problem. We can create a simplified mesh from our sam-
pling, using either the ball-pivoting algorithm [BMR∗99] or
the topology preserving method described by Turk [Tur92].
For smooth meshes, Garland’s method outperforms our ap-
proach by an order of magnitude in Hausdorff distance to the
original mesh, as computed by Metro [CRS98]. For mod-
els like the lion, however, the situation is reversed. Figure9
shows the result of triangulating a stratified sampling of the
lion, and the same model simplified by Garland’s method,
both with the same triangle count. The output of the ball-
pivoted lion could be simplified even further by traditional
methods.

3. Results and applications

As mentioned in the introduction, the stratified point sam-
pling is useful across a variety of applications. For point-
rendering systems, it provides a sampling with a constrained
maximum distance between samples, allowing for a render-
ing with no holes. For painterly rendering, it provides evenly
spread samples that can be used to stroke the model. For
shape matching, it avoids oversampling high frequency de-
tails and captures the overall shape of the model. We present
results for painterly rendering and shape matching.

Figure 9: Simplified lion. The top figure was simplified from
104k faces down to 2.6k starting from a stratified sampling
with 1.4k samples. The bottom model was simplified using
the quadric error metric to the same number of faces.

3.1. Painterly rendering

A simple technique that produces interesting painterly ren-
dered models is described by Meier [Mei96]. The main idea
is to sample the geometry of a model and use the sampled
positions to stroke textured images on it. Different choices
of stroke images can produce renderings similar to impres-
sionist paintings or animal fur, among others.

Taking advantage of the graphics hardware widely avail-
able in current personal computers, it is possible to imple-
ment a similar technique that runs in real-time. The mesh is
initially rendered to the depth buffer with a small depth off-
set. For each visible sample point, a rectangle is drawn into
the color buffer, with opacity determined by a stroke tex-
ture. The viewing direction and surface normal can be used
to control different stroke properties, such as color, opacity
and which of several stroke textures to use.

Strokes are alpha-blended on top of each other, creating
the illusion of seamless integration between adjacent strokes.
For this step, stroke size and sampling density need to agree
so that strokes are evenly distributed over the object surface.
Too many samples might produce overly saturated regions
whereas too few samples may leave regions without strokes.

Although Meier obtained good results with uniform sam-
pling, care must be taken or the inherent lack of local con-
trol on the sample distances will produce poor results. As
an example, the two pictures in figure10 were produced
from samplings of the bunny model, painted with fur-like
strokes. The strokes in the first image were placed by uni-
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Figure 10: Two furry bunnies at 7.5k strokes. The left figure uses uniform sampling, the right uses stratified sampling. Both
figures use the same number of samples. The stroke positions are shown in the cut away region.

form sampling. The second bunny was produced with the
same number of strokes and the same parameters, but us-
ing the stratified stroke positions. Unless the goal of the
artist was to depict a bunny with uneven fur, it is clear that
the stratified sampling produces better results. The irregu-
lar spacing created by the uniform sampling causes some
regions to receive too many strokes (too dark) and other
regions to receive too few strokes (not painted). Stratified
sampling greatly reduces these artifacts. For a model like
the bunny, techniques that spread samples evenly over the
model’s surface area [Tur92, Joh97] would show similar im-
provements. For models like the lion in figure8, our method
or LDIs [LR98] would perform better.

3.2. Shape Matching

In the field of shape matching, there has been a great deal
of recent research on shape descriptors as a basis for mea-
suring the similarity of two models. Comparing models di-
rectly is an ill posed problem, so a common technique is
to create a description of the shape and then compare de-
scriptors directly. A shape descriptor is generated by ana-
lyzing properties of a model and creating a feature vector
of property values, and the difference between two models
is described as the difference between their respective fea-
ture vectors. Shape descriptors are favored over other shape
matching techniques such as graph matching when compu-
tational time must be minimized for an interactive search ap-
plication. Shape matching research is surveyed in [TV04].

Many shape descriptors sample properties of a model
on selected points of its surface [Joh97, OFCD01, BMP00].
Choosing samples uniformly on the surface area has been
shown to help make shape descriptors robust to small er-
rors commonly found in models downloaded from the Inter-
net [OFCD01]. As shown in figure8, the 3D model of a lion
has an enormous number of triangles representing the mane
(81% of the surface area). Uniform sampling on the surface
leads to a sparse sampling of the rest of the model. Arguably,
the legs and tail are important features of the lion that should
be better represented in the shape descriptor for matching
against other quadrupeds. In order to show fine detail in the
model, though, a large percentage of the surface area may be
used on what is a small portion of the volume of the model.

We chose to investigate shape retrieval using strati-
fied sampling versus uniform sampling on the 907 mod-
els of the test set of the Princeton Shape Benchmark
(PSB) [SKMF04]. This set of models is partitioned into
131 human-generated classes representing a variety of com-
mon 3D graphics models. We evaluated the following eight
shape descriptors, representing a variety of techniques in
the literature, using both stratified and uniform samples:
D2 Shape Distribution (D2) [OFCD01], Shape Histogram
Shells [AKKS99], Shape Histogram Sectors [AKKS99],
Shape Histogram Sectors and Shells (SecShells) [AKKS99],
Spherical Extent Function (Ext) [SV01], Radialized Spher-
ical Extent Function (RExt) [Vra03], Gaussian Euclidean
Distance Transform (GEDT) [KFR03], Spherical Harmonic
Descriptor (SHD) [KFR03], and Voxel. The last is a uniform,
axis-aligned,64×64×64 voxel grid, representing the binary
condition of whether surface area intersects each voxel.
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Shape Uniform Increase Stratified Increase Voxel
Descriptors DCG (%) DCG (%) DCG

Shells .378 7.7 .407 5.4 .386
Sectors .521 3.8 .541 2.3 .529
SecShells .538 4.3 .561 2.9 .545
D2 .445 2.7 .457 2.7 .445
Ext .556 1.3 .563 0.2 .562
RExt .583 2.7 .599 -0.3 .601
GEDT .582 1.4 .590 1.0 .584
SHD .588 1.2 .595 1.9 .584
Voxel .538 2.0 .549 1.1 .543

Table 2: Comparing 9 shape descriptors on the PSB base
classification. For nearly all descriptors, stratified sam-
pling outperforms uniform sampling and voxelization of the
model.

Models were normalized for translation and rotation and
shape descriptor parameters were configured as described
in [SKMF04]. This selected set of shape descriptors is not
intended as a full evaluation of shape descriptor research but
provides a breadth of techniques for comparison.

We performed a leave-one-out experiment, where every
model in the database is used as a query model, and the
resulting models are ordered by similarity of their descrip-
tors. To measure the performance, we used the discounted
cumulative gain (DCG) metric defined in [JK00], which is
logarithmically weighted by matches appearing towards the
front of the retrieval list. Scores range from[0, 1], and values
closer to one indicate better performance.

Table 2 demonstrates that across all shape descriptors,
stratified sampling has better performance than uniform
sampling. As indicated in figure8 with the lion, uniform
sampling can underrepresent important features of a model
when the surface area is not evenly distributed over the
model. Since many shape descriptors are based on sampling
the surface, stratified sampling can offer improvement that
seems to be generalizable across descriptors with a variety
of properties.

Stratified sampling is clearly useful when a portion of the
algorithm involves selecting data points, but most of these
descriptors (except D2) can incorporate full polygons from
the mesh as opposed to point samples. The polygons are ras-
terized and occupied voxels are determined. Table2 shows a
comparison of the same set of descriptors using both strati-
fied samples and the voxelized models. D2 is defined based
on point samples, and the uniform sampling results were re-
peated for completeness. Across nearly all descriptors, strat-
ified sampling has better performance than using the vox-
elized models for shape matching. Both experiments indi-
cate that using that stratified sampling is a valuable tech-
nique for shape matching.

4. Conclusion

We described a new technique for stratified sampling of 3D
polygonal meshes. A continuum of samplings can be gener-
ated, from highly jittered to highly regular. The samplings
can be made to satisfy maximum and minimum distance
constraints between adjacent samples and display blue noise
properties. The method runs sufficiently quickly to be used
as a preprocessing step to a variety of algorithms. We have
shown that stratified sampling is useful in several domains,
presenting results in shape matching and painterly rendering.

For shape matching, stratified sampling outperforms uni-
form sampling, possibly because of uneven sampling over
the model, and is competitive with previously published re-
sults that rasterize polygons to a voxel grid. For painterly
rendering, we have shown that the aesthetic results are
highly dependent on the sampling and that stratified sam-
pling does a good job of evenly covering the surface a model.

An area of future research involves the use of non-cubic
grids in an attempt to generate samplings with better radial
isotropy. Another useful extention would be the computation
of adaptive samplings that concentrate on features that the
user might wish to preserve, such as high curvature regions.
It would be also interesting to investigate multi-resolution
applications of this technique.
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