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Abstract
Splatting-based rendering techniques are currently the best choice for efficient high quality rendering of point-
based geometries. However, such techniques are not suitable for large magnification, especially when the object
is under-sampled. This paper improves the rendering quality of pure splatting techniques using a fast dynamic
up-sampling algorithm for point-based geometry. Our algorithm is inspired by interpolatory subdivision surfaces
where the geometry is refined iteratively. At each step the refined geometry is that from the previous step enriched
by a new set of points. The point insertion procedure uses three operators: a local neighborhood selection operator,
a refinement operator (adding new points) and a smoothing operator. Even though our insertion procedure makes
the analysis of the limit surface complicated and it does not guarantee its G1 continuity, it remains very efficient
for high quality real-time point rendering. Indeed, while providing an increased rendering quality, especially for
large magnification, our algorithm needs no other preprocessing nor any additional information beyond that used
by any splatting technique.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing algorithms

1. Introduction

Owing to the absence of topological information, point
clouds give us a simple and powerful surface representation
for complex geometries where the accuracy mainly depends
on the number of points. However, real-time visualization of
such data sets requires additional information such as normal
vector, texture color, and an estimation of the local sampling
density. From these additional attributes, a continuous image
of the point cloud can be reconstructed using an image-based
filtering technique, by adjusting the sampling density on
the fly or by using the so-called surface splatting technique
[ZPvBG01]. In the latter case, each point is represented by
an oriented disk (a surfel) in object space [PZvG00]. Render-
ing is then equivalent to a resampling process where surfels
are blended with a Gaussian distribution in the image space.
In this paper, we call such a point cloud a surfel set. Cur-
rently, for high quality and efficient point-based rendering,
a splatting approach is doubtless the best choice since such
approaches are supported by modern GPUs [BK03, GP03].
Whereas a surfel set describes a continuous texture function
[ZPvBG01], from the geometric point of view it is a simple
set of oriented overlapping disks. Hence, in the case of an
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Figure 1: Left: rendering of an undersampled bunny with
a pure high quality splatting technique. Artifacts on silhou-
ette and specular reflexions are clearly visible. Right: same
model with our dynamic up-sampling algorithm enabled.

under-sampled surface, visual artifacts appear on the silhou-
ette and in areas of high curvature (figure 1 left). Moreover,
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effects at pixel frequency such as reflections (i.e. specular
reflections and environment maps) can not be properly han-
dled by large splats (figure 9). Thus, for high quality render-
ing, the use of a pure splatting based approach is limited to
relative small magnification.

Although a point set intrinsically describes a smooth sur-
face, the geometry itself is discontinuous. This can be com-
pared to polygonal meshes where the geometry is only C0

continuous even though we may intend the mesh to de-
scribe a smooth (G1) surface. In order to overcome the
continuity problem of polygonal meshes, several methods
have been developed. Among these, subdivision surfaces
perform the refinement of a coarse mesh into a finer one
and several iterations generate a sequence of incremen-
tally refined meshes which converges to a smooth surface
[Cla78, DS78, ZS00, WW02]. More specifically, interpola-
tory subdivision schemes [DLG90, ZSS96, Kob96] are well
suited when we desire smooth interpolation of the mesh ver-
tices. Following the same idea, a point set could be refined
in order to maintain local point density and hence improve
rendering quality. Unfortunately, owing to the lack of topo-
logical information, subdivision operators for meshes cannot
be directly applied to point sets.

On the other hand, several consolidation methods have
been proposed. By consolidation we mean the process of
extrapolating a continuous surface from the point set. Most
consolidation methods are based on an implicit representa-
tion. For example, in [HDD∗92], a triangular mesh is built
from a signed distance function defined on a volumetric grid.
Others are based on radial basis functions (RBF) that re-
construct a Cn implicit surface from a scattered point set
[CBC∗01]. However, owing to the global support of RBFs,
such approaches need an expensive preprocessing step since
the coefficients of the RBFs are computed by solving a large
linear system. This problem is partially overcome by local
approaches [OBA∗03, TRS04], but they remain too expen-
sive for real-time applications.

In [Lev01], Levin introduces a smooth point-based rep-
resentation called moving least squares (MLS) surface.
The surface is defined implicitly by a local projection
operator. Based on this representation, several methods
for down-sampling [ABCO∗03, PGK02] and up-sampling
[ABCO∗03, PKKG03] point sets have been proposed. How-
ever, these up-sampling methods are not suitable for real-
time applications since the computation of the local projec-
tion operator is a non-linear optimization problem. More-
over, methods used for the generation of a locally uniform
sampling are expensive to evaluate since they are based
on either a local Voronoi diagram or a particle simulation
[Tur92]. In [ABCO∗03] Alexa et al. present an interactive
rendering technique based again on the MLS surface rep-
resentation. In a preprocessing step, a bivariate polynomial
is computed for each point of the reference point set. Dur-
ing rendering, additional points can be dynamically sam-
pled from these polynomials. In addition to the need for pre-
processing, the drawbacks of this up-sampling approach are

that it does not support discontinuities or texture colors, it
requires much memory for storing the polynomials, and it
generates oversampling because of the overlapping of poly-
nomials patches.

In [SD01], Stamminger and Drettakis render complex
procedural geometry with a dynamic

√
5 sampling algo-

rithm. While their sampling scheme is fast to evaluate, its
extension to the smooth up-sampling of general point-based
geometries is difficult.

In order to increase the rendering quality of surfel sets, we
present a new up-sampling method inspired by subdivision
surfaces. The main features of our algorithm are:
• speed: real-time processing is our major constraint.
• simplicity: easy to implement and adapted to further hard-

ware optimizations.
• smoothness: the visualized surface looks smooth.
• locally uniform sampling: avoiding oversampling is a

fundamental issue, especially for hardware splatting ap-
proaches that are limited by the precision of the color
buffer.

• globally adaptive sampling: only areas that need accu-
rate sampling are refined.

• suitable for discontinuities: our method handles bound-
aries and sharp creases.

• no preprocessing: our system takes as input an unstruc-
tured point set with per point normal, texture color and
radius. This set of attributes is the minimum information
needed for all point based rendering techniques. Because
our algorithm does not need any preprocessing, it is well
suited for handling deformable models.

Note that our real-time constraint limits our choices for
the design of the interpolation methods so, while the ap-
proach presented here increasess the rendering quality of a
pure splatting technique, we cannot guarantee its G1 conti-
nuity.

2. Overview
Our algorithm takes, as input, a regular point set P0 = {pi}
defining a smooth surface. We assume that we also know, for
each point pi ∈ P, its normal ~ni, its texture color and the lo-
cal density described by a scalar radius ri. The radius, ri, of
each surfel has to be large enough to provide a splatting ren-
dering without holes, and it must be less than or equal to the
maximum distance between the ith surfel and its neighbors.
The initial point set, P0, is up-sampled by inserting addi-
tional points yielding the new set P1 with P0 ∈ P1. In a sim-
ilar fashion to subdivision surfaces, the up-sampled point set
describes a new surface that is used for the next refinement
step. At each refinement step, the number of points approx-
imately quadruples, increasing the resolution by a factor of
two (figure 2). Hence, the radius of surfels are divided by
two at each step. By repeating the refinement step we con-
struct a sequence P0,P1, . . . of point sets with Pl ⊂ Pl+1.

Our up-sampling algorithm can be described by a selec-
tion operator Ψ and an interpolation operator Φ. The selec-
tion operator (see section 3.1 and figure 4) takes a point

c© The Eurographics Association 2004.



G. Guennebaud & L. Barthe & M. Paulin / Real-Time Point Cloud Refinement

p ∈ Pl and defines the set Ψ(p) of point subsets Ψi(p)
around p from which a single new point will be inserted:

Ψ : Pl −→P(P(Pl)) (1)

Ψ : p 7−→ {Ψ0(p), ...,Ψm(p)}
with P(E) the power set of the set E: P(E) = {e|e ⊂ E}.
The operator Φ (section 3.2) inserts a single new point by
interpolation of the points of Ψi(p). Hence for each Ψi(p),
a new point is added to Pl+1:

Φ : P(Pl)−→ R
3 (2)

and the up-sampled point set Pl+1 of Pl is defined as follows:

Pl+1 = Pl ∪{Φ(Ψi(p))|Ψi(p) ∈Ψ(p), ∀p ∈ Pl} (3)

For convenience, attributes of points (normals, colors, etc)
do not appear in these definitions. As mentioned in section
4, the global subdivision process must be slightly modified
to avoid redundancy. However, before describing the global
subdivision algorithm (section 4), we first present in detail
the refinement procedure around a single point p ∈ Pl , by
describing the local operators Ψ and Φ.

Figure 2: Illustration of the refinement procedure. On the
top left, the initial points (from the bunny model) are visual-
ized with large white surfels. The smaller points have been
introduced by a single refinement step. The red point comes
from the interpolation of five points. From left to right and
top to bottom, one refinement step is performed on the in-
put points (comming from the previous refinement step and
visualized with large surfels).

3. Local Up-Sampling

3.1. The Selection Operator, Ψ

Our up-sampling scheme is based on the idea of adding a
new point for each pair of neighbor samples. However, what-
ever the accuracy of the neighbor relation, this basic idea is
insufficient because a subset of k ≥ 4 points that are all in
the neighborhood of one another generates 1

2 k(k−3) points
near their center (figures 3a, 4b). In such cases, the obvious
choice is to insert only a single new point.

(a) (b)

Figure 3: (a) Four surfels are all in the neighborhood of
one another. Interpolating points two by two leads to over-
sampling and incoherency. (b) The query ball intersects two
disjoint components of the surface.

From a given point p ∈ P and its neighborhood Np ⊂ P
(section 3.1.1), the selection operator Ψ must define a set of
subsets of points in Np for which a single new point must
be inserted. This is done by building a local set of poly-
gons, called a polygon fan, from the implicit triangle fan
defined by the neighborhoods (section 3.1.2). This construc-
tion is similar to the fan cloud representation of Linsen et al.
[LP02].

Hence, the robustness of Ψ to generate a local uniform
sampling typically depends on the definition of the neigh-
borhood. To perform a complete neighbor selection, Np must
enclose the current point, and it must not select samples
which are not in the first ring neighborhood. Moreover, in
order to be sample-order independent and to be able to solve
the global duplication problem (section 4), the neighbor re-
lation must be symmetric. Hence, simple k-nearest neigh-
borhoods cannot be used. More sophisticated neighborhoods
based on the Voronoi diagram or BSP are too selective to be
used in our case since they can remove samples that are ac-
tually in the first neighborhood ring [FR01]. For these rea-
sons, we define our own neighborhood, based on distance
and minimum angle criteria.

3.1.1. Local Neighborhood

The computation of the neighborhood Np of a given point
p ∈ P, of radius r and normal ~n is performed in two steps.
First, we compute the subset Ñp ⊂ P such that each point
pi ∈ Ñp is in the sphere of center p and radius βr. In order to
avoid problems owing to fine “features” (figure 3b), we also
remove from Ñp points for which the angle between normals
~ni and~n is greater than a given crease angle threshold θ (see
section 3.2.2 for more details on creases).

Ñp = {pi ∈ P | ‖pi− p‖ ≤ βr, ~n ·~ni > cos(θ)} (4)

Since the radius r should be slightly smaller than the maxi-
mum distance between p and its neighbors, a value of β in
[1,2] ensures to find all neighbors.

In the second step, points pi are projected onto the tangent
plane of p and sorted such that their projections qi form in-
creasing angles ϕi = q̂0 pqi. Finally, we compute the subset
Np ⊂ Ñp by removing neighbors that are not close enough
to the point p. This is done by removing the farthest point
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(a) (b) (c)

Figure 4: Illustration of the local selection operator Ψ applied to a point p. (a) Computation of the neighborhood Np. After
sorting neighbors with increasing angles, the sample pi−1 is removed because it is too close to pi according to an angle-
distance criterion. (b) Computation of the polygon fan. Light lines represent the neighbor relations. (c) The result of the local
selection operator yields the insertion of 7 new points.

between pi and pi−1 if they are too close to each other ac-
cording to an angle criterion: ∇ϕi = ϕi−ϕi−1 < τ. Since
the projection onto the two-dimensional tangent plane re-
duces the angle between two consecutive neighbors, the an-
gle threshold τ must be small. Experimentation shown that
τ = π

8 is a reasonable choice.

3.1.2. Local Polygon Fan

Remember that the basic principle of our up-sampling
method is to add a new point for each pair of neighbors.
However, before adding a point for each edge (p, pi) with
pi ∈ Np we must detect whether any other pair (p j, pk) ∈
Np

2 is in interaction with the current edge (p, pi) as illus-
trated in figures 3a and 4b. Hence, in this section we explain
how to compute the polygon fan around the point p from its
neighborhood Np = {p0, ..., pm}.

We consider the current subset H0 = {p, p0}. A polygon
is built from this subset by adding iteratively into H0 the
successors p j of p0 while p j is a neighbor of all points of
H0. At the end of this insertion, the set H0 = {p, p0, ..., pl}
describes a polygon which is the first of the polygon fan. We
restart the construction with H1 = {p, pl} and it is repeated
until all neighbors are taken into account. This procedure
produces a polygon fan (figure 4b) that completely defines
the selection operator Ψ(p). Note that these polygon fans
can contain holes and degenerated polygons (edges). Finally,
the set Ψ(p) = {Ψi(p)} is the union of all polygons Hk such
that |Hk| ≥ 4 and all {p, p j} such that (p, p j) is an edge
of the final polygonal fan (figure 4c). Hence a new point is
inserted for each outgoing edge from p and each polygon
that have a minimum of 4 vertices.

3.2. The Interpolation Operator, Φ

We have designed our interpolation operator to be as effi-
cient as possible without the need for preprocessing. Most
smooth interpolation methods need a relatively large neigh-
borhood but, in our case, computing a neighborhood larger
than one ring is too expensive. Hence we choose to perform

interpolation only with the small input set S = Ψi(p) given
by the selection operator. Even though the simple set S is not
enough to perform a globally smooth interpolation, we can
still interpolate the points of S locally with a cubic curve or
a bicubic patch, using their normal information. This allows
us to insert a new point which lies on this curve or patch.

We decompose the interpolation operator Φ as an inser-
tion operator inserting a new point at the center of gravity
(Cog) and a smoothing operator Φ̃k such that:

Cog({p0, ..., pk}) =
1
k

k

∑
i=0

pi (5)

Φ(S) = Cog(S)+ Φ̃|S|(Cog(S),S) (6)

where |S| denotes the cardinality of the set S. Since the new
point is inserted at the center of gravity of the set S, the tex-
ture color of the new sample is calculated as the simple av-
erage of the texture colors of all points in S. After describing
the smoothing operator Φ̃k in the next subsection we discuss
discontinuity issues in section 3.2.2.

3.2.1. Normal Based Smoothing, Φ̃k

As mentioned above, our interpolation method is based on
the construction of a local surface made up of bicubic Bézier
patches (triangular and quadrilateral) with the help of the
given normals. Our construction is similar to PN triangles
of Alex Vlachos [VPBM01]. However, the construction of
such a surface with G1 continuity is too expensive for our
real-time constraint. In fact, we do not need to build an ex-
plicit set of Bézier patches since only a few new points are
added. For instance, no sample are inserted into triangles.
Moreover, the computation of all patches at each step com-
pensates partially the fact that adjacents patches are only C0

continuous. Our method provides good results with only a
few computations. Let k = |S| be the number of points from
which a new sample is interpolated. Depending on the value,
k, we have different cases:

• k = 2: interpolation by a cubic Bézier curve
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• k = 3: owing to the refinement operator, no new point is
inserted in a triangle (figure 4c)

• k = 4: interpolation by a bicubic Bézier patch
• k ≥ 5: irregular case

Cubic Point-Normal Interpolation, Φ̃2

The smoothing operator displaces the inserted point c =
Cog(S) on an interpolation curve. As suggested in [Far02],
the interpolation of two oriented points pi0 , pi1 (S =
{pi0 , pi1}) with normals~ni0 ,~ni1 is based on the construction
of a cubic Bézier curve B(u). We take B(0.5) for the position
of the inserted point, i.e. the smoothing operator is defined
as Φ̃2(c,{pi0 , pi1}) = B(0.5)− c (figure 5). The extremities
b0,b3 of the curve are pi0 and pi1 and we must take b1 (resp.
b2) in the tangent plane of pi0 (resp. pi1 ). Since there are an
infinite number of solutions, we take one which is both con-
venient to compute and of reasonable shape. Let b′1 be the
projection of the point pi1 into the tangent plane of pi0 . We

take b1 such that −−→b0b1 = ν
−−→
b0b′1. The ν scalar defines the ve-

locity of the curve and it must be close to 1
3 for visually good

results [VPBM01]. Let Ti be the projection operator:

Ti(q) = ν∗ (q− ((pi−q) ·~ni)~ni) (7)

Hence we have:

Φ̃2 (c,{pi0 , pi1}) =
3
8

(Ti0(pi1)+Ti1(pi0)) (8)

In order to compute the normal ~n of the new point p =
Φ̃2 (c,{pi0 , pi1}) we first compute the curve tangent Ḃ(0.5)
and we take a perpendicular vector. Again, there are an infi-
nite number of solutions, and a reasonable choice is to take
the normal which is in the plane of normal~nplan :

~nplan = (~ni0 +~ni1)∧ (pi1 − pi0)

~n =~nplan∧ Ḃ(0.5) (9)

Bicubic Point-Normal Interpolation, Φ̃4

When a point has been inserted from four surfels, its dis-
placement can be computed from a bicubic Bézier patch
B(u,v). Again, we take Φ̃4(c,{pi0 , ..., pi3}) = B(0.5,0.5)−
c as the smoothing displacement vector. The position of the
4 corner Bézier points are pi0 , ..., pi3 . The 8 control points at
the boundary of the patch are computed as in the previous
case. For the 4 interior Bézier points the simpler solution is
to take the zero twists method [Far02]. We have, for the cor-
ner point pi0 :

b00 = pi0

b01 = b00 +Ti0(pi1)

b10 = b00 +Ti0(pi3)

b11 = b00 +Ti0(pi1)+Ti0(pi3)

= b00 +2Ti0(
pi1 +pi3

2 )

This zero twists solution makes the evaluation of B(0.5,0.5)
very efficient since, after simplifications, we do not need to

Figure 5: Contruction of a cubic Bézier curve from two ori-
ented surfels. One sample is added at the middle of the curve.

compute the position of the boundary Bézier points:

Φ̃4(c,{pi0 , ..., pi3}) =
3

16

3

∑
j=0

2Ti j (
pi j+1 + pi j+3

2
) (10)

The normal is given by the cross product of the two tangents
of the Bézier patch.

Generalised Point-Normal Interpolation, Φ̃k,k ≥ 5

While it is possible to construct patches with an arbitrary
number of edges [Far02], we propose here a simpler method.
Indeed, such irregular cases appear only during the first re-
finement step and with a small frequency. By extension to the
regular two previous cases, we compute the displacement of
the inserted point c from the interpolation of k surfels, with
k ≥ 5, as follow:

p = Φ̃k(c,{pi0 , ..., pik}) =
3
4k

k

∑
j=1

2Tik (c) (11)

The computation of the normal cannot be generalized in the
same manner. A reasonable solution is to take the average of
the k normals resulting of the k cross products: (pi j−1− p)∧
(pi j − p).

While we give a generalized case for polygons with k≥ 5
edges, in practice we never met cases with k > 5. This is
principally due to both the minimum angle criterion in our
neighborhood definition that forces the selection of mostly
regular polygons and the regularity of the input point set. In-
deed, we notice that the robustness of our method directly
depends of the sampling regularity. It is also possible to
avoid such cases by splitting polygons into triangles and
quads, but by doing so, several points will be inserted in the
polygon, yielding to a less uniform sampling. Moreover, this
can introduce more oscillations since all vertices do not par-
ticipate equally in the interpolation. The refinement of a such
case is illustrated figure 2.

3.2.2. Discontinuities
Discontinuities such as boundaries and creases can be han-
dled easily by our approach. Indeed, boundaries do not need
special treatment if we assume that the boundary lines pass
through the exact centers of the boundary surfel. Creases can
be handled in the same way by using an explicit crease line
representation as in [PKKG03]. Sharp features are handled
by pairs of half-surfels with the same position but different
normals along the crease line. Hence, the crease angle θ used
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(a) (b) (c) (d) (e)

Figure 6: Illustration of our algorithm on the Triceratops models.(a) Rendering of the given point cloud (16k points).(b) A close
view without refinement.(c) Illustration of the refinement.(d) The same close view after three refinements. (e) A global view of
the Triceratops with up-sampling enabled.

in the neighborhood definition (section 3.1.1) discards sur-
fels that are in the other face and the crease case is the same
as the boundary case. More details on the rendering of sharp
features can be found in [PKKG03, ZRB∗04].

However, if creases are not explicitly represented by two
half-surfels in the reference point cloud geometry, it is pos-
sible to detect such creases in the first subdivision step using
the crease angle θ and generate two half-surfels at the in-
tersection of the tangent planes instead of using our normal
based interpolation. It is also possible to use, in a prepro-
cessing step, a more robust and automatic feature detection
algorithm [PKG03].

4. Global Up-Sampling Algorithm
In the previous section we have shown how a given point
neighborhood is refined into several points with local uni-
formity. However, the direct subdivision of a point set Pl to
Pl+1 with the basic formulation (equation 3) generates mul-
tiple duplicated samples: points generated from k samples
appear k times in Pl+1. In order to avoid these duplications,
we first remove from Pl the current processed point. Hence,
Pl+1 is computed as follow:

for each p ∈ Pl do
Pl+1← Pl+1∪{Φ(Si)|Si ∈Ψ(p)}
Pl ← Pl−{p}

done

Another problem is the overlaping polygons (figure 7) which
is inherent to the independance of the neighborhood compu-
tations. Such overlaping polygons can also appear when pro-
cessed surfels have been removed from the neighborhood of
the current surfel. Overlaping polygons yield to the insertion
of very closed samples and hence a non-uniform sampling.
We solve this problem by storing for each point p a black list
L of indices containing the list of wrong neighbors. This list
L is used during the local neighborhood compution of the
point p by removing from the coarse neighborhood Ñp the
list of points indexed by L:

Ñp← Ñp−{p j ∈ P| j ∈ L}
These black lists are updated as points are processed. After
sorting Ñp with the angle criterion, we update the black list
of each neighbor p j ∈ Ñp by adding all pk ∈ Ñp into L j if

and only if the edge (pk, p j) is into the polygon defined by
Np and pk is not the successor or the predecessor of p j . To be
efficient, the black lists must be as short as possible. Hence,
we had two other simple conditions: pk must be into Ñp j and
j < k (if we assume that points are processed along their in-
dex). The number of selected neighbors thus decreases dra-
matically during the refinement procedure, significantly in-
creasing the performance.

Note that neighbor lists are not all stored into memory.
The neighborhood is computed for a given surfel only when
this surfel is refined and deleted straight away. During the
refinement procedure, the main memory comsumption is due
to the black lists (an average of 3 indices by surfel).

5. Real-Time Rendering

Our refinement procedure has been designed to improve the
rendering quality of point based geometry in the context of
real-time applications. Our rendering method is simple and
our refinement process is added on top of a hardware ac-
celerated EWA splatting algorithm [GP03]. We assume that
the point set is stored into a simple octree that allows classi-
cal optimizations such as hierarchical visibility culling and
multiresolution rendering. In the case of magnification, all
points of visible cells are refined with our algorithm while
the density is not high enough. A more accurate selection
of visible areas could be done using the method presented
in [GBP04]. In order to improve performance, the result
of each refinement is stored in a cache and cells are sub-

Figure 7: Left: the point p is refined and 4 new points are
inserted while the red triangle overlaps two other polygons.
Right: the point p is removed and the points p0 is refined.
A wrong new point is inserted between p0, p2. Then, p1 is
refined and another wrong point is inserted between p1, p3.
This problem is solved during the refinement of p by insert-
ing p2 into the black list of p0 and p3 into the black list of
p1.
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divided only if the desired level does not already exist in
the cache. Hence, owing to temporal and spatial coherency,
only a few samples need to be refined at each frame and
real-time can be achieved. Since the splatting process can be
entirely performed by the graphics hardware [GP03], GPU
and CPU tasks can be efficiently organized. So, we recom-
mend that the rendering of available surfels starts before the
up-sampling procedure, hence absorbing a large part of the
up-sampling overhead.

Figure 8: A close view of the cameleon model (90k pts). Left:
EWA splatting. Right: after two refinement steps.

6. Implementation and Results
We have implemented an experimental point-based render-
ing system based on our hardware accelerated EWA splatting
algorithm presented previously in [GP03]. A critical time-
consuming part of our up-sampling algorithm is the search
of the neighborhood Ñp (section 3.1.1). Fast closest-points
queries are classically performed using a kd-tree data struc-
ture. However, in our case, a simple 3D grid is well suited
since it is faster to compute and update. Indeed, we have
shown that we have to remove the current processed point
from the current point set (section 4), but in fact we only re-
move its index from the query grid data structure. Moreover,
the reduction of the number of elements in the grid increases
the speed of the search.

We have tested our unoptimized implementation on a
2GHz AMD Athlon system with 512Mb of memory and
a nVidia GeforceFX 5900 graphic card. Some results of
our up-sampling method are shown figures 1,6 and 8. Both
of these images show the low quality of a fully optimized

Figure 9: Left, splatting with reflexion lines from a spher-
ical environment map on the bunny model (3k pts). Right,
same model with our dynamic up-sampling algorithm en-
abled (187k pts).

splatting technique on the model’s silhouette and on under-
sampled geometry. Images rendered after multiple refine-
ments show a real improvement in quality. Our interpola-
tory method is visually compared to the modified butterfly
scheme figure 10. Whereas our method can provide some lo-
cal normal discontinuities, it generates less oscillations than
the butterfly [ZSS96].

Figure 10: An implicit surface sampled with 300 pts (cen-
ter) is visualized after five refinement steps with the modified
butterfly algorithm (left) and our method (right).

Table 1 shows the raw performance of our up-sampling
method. We are able to process approximately 250k points
in one second, yielding a point generation performance of
1M points per second (because each iteration quadruples the
number of points). Such performance is sufficient for the
rendering algorithm described above. Indeed, due to spatial
and temporal coherency, the number of samples which have
to be refined per frame rarely exceeds 15k, and hence we
can keep the frame rate above 25 fps. With regard to the cost
of each part of our algorithm, searching the grid takes ap-
proximately 40% of the time while interpolation takes 30%.
The remaining 30% is used for the rest of the processing,
essentially for sorting and selecting neighbors.

Bunny Triceratops
# iter. # points Time (s) # points Time (s)

0 3k - 16k -
1 11k 0.01 63k 0.07
2 46k 0.039 256k 0.28
3 187k 0.160 1M 1.05
4 750k 0.79 — —
5 3M 2.9 — —

Table 1: Raw performances of our up-sampling algorithm
on two complete models.

7. Conclusions and Future Work
We have presented a fast and easy to implement up-sampling
algorithm for oriented point-clouds. We present both a
refinement scheme and a smoothing operator. While the
smoothing operator is not G1 continuous, our results show
that we significantly improve the quality of pure splatting
techniques.

Our method is also useful in less time-critical applica-
tions. Because the refinement and smoothing are totally in-
dependent, for such less time-critical applications, it would

c© The Eurographics Association 2004.
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be possible to use more robust existing interpolation meth-
ods. For instance, we could use the projection procedure
of the MLS surface representation as the smoothing oper-
ator. An alternative would be to use the gradient of a pre-
computed RBF implicit surface.

As future work we will further optimize our software
implementation and try a partial hardware implementation
with GPU features available in upcoming graphics cards.
The simplicity of our interpolation method is a good starting
point. We will also attempt to improve the quality by mak-
ing our smoothing operator more robust and G1 continuous.
Finally, it would be interesting to integrate a more sophisti-
cated selection of points that have to be refined by taking into
account, in addition to the local density, the local curvature
and the silhouette.
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