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Abstract

In this paper we present an algorithm to compute boolean operations on free-form solids bounded by surfels using
programmable graphics hardware. The intersection, union and difference of two or more solids, is calculated on
the GPU using vertex and fragment programs. First, we construct an inside-outside partitioning using 3-color
grids and signed distance fields. Next, we use this partitioning to classify the surfels of both solids as inside or
outside the other solid. For surfels close to the boundary of the other solid, we use the distance field and its gradient
to define a clipping plane, which can be used to resample or clip the surfel. Our algorithm runs at interactive rates
on consumer-level graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1 Introduction

For many years, constructive solid geometry (CSG) has been
a useful tool in computer graphics and related areas. In the
CAD community CSG is applied to primitive objects (such
as spheres, cylinders and cubes) to construct shapes with a
more complex geometric shape. However, CSG can also be
used as an editing tool for complex free-form solids. Special
care has to be taken to maintain scalability and interactivity.
Recent work [AD03, PKKG03] has showed that, by employ-
ing a point-sampled surface representation together with a
clever acceleration structure, interactivity can be reached.

In this paper we build upon this work and increase the
performance by performing the calculations on the GPU.
The motivation behind this is that, when performing boolean
operations, the same operation, i.e. inside-outside classifica-
tion, has to be performed on all surfels. This maps well onto
the so-called single instruction, multiple data (SIMD) archi-
tecture of programmable graphics hardware.

Our algorithm works in two steps: in a first step we com-
pute an inside-outside partitioning for each solid using 3-
color grids and signed distance fields. This partitioning is
stored in texture memory which will be used as an acceler-
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ation structure in the classification step. Next, in the clas-
sification step, we classify all surfels as inside, outside or
intersecting by testing each surfel against the partitioning of
the other solid. For surfels close to the boundary of the other
solid, we use the distance field and its gradient to define a
clipping plane. This plane can be used to resample or clip
the intersecting surfel to obtain sharp edges. We perform all
calculations on the GPU, exploiting the SIMD architecture.

This paper builds on [AD03], our contribution is a method
to perform boolean operations on surfel-bounded solids en-
tirely on the GPU. To achieve this, we propose GPU-based
algorithms to construct the inside-outside partitioning, to
classify the surfels and to calculate a clipping or re-sampling
plane for intersecting surfels.

We start by giving an overview of related work in sec-
tion 2. Next, we briefly recapitulate the algorithms this work
is based on in section 3. We discuss how these algorithms
can be mapped to a GPU implementation in section 4. In
section 5 we illustrate the performance and present some re-
sults. Opportunities of future research and improvement are
given in section 6. Finally, we conclude in section 7.

2 Related Work

Point-Based Rendering. In recent years, researchers inves-
tigate the use of points to represent the surface of complex
free-form objects. Based on software implementations of
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point-based rendering algorithms (such as [PZvBG00],
[RL00], [ZPvBG01] and [ABCO∗01]), different hard-
ware accelerated implementations are proposed. Ren et
al. [RPZ02] devise an implementation of the EWA splatting
algorithm on graphics hardware. Coconu and Hege [CH02]
as well as Botsch and Kobbelt [BK03] present a different
hardware-accelerated approach to point rendering using
a new feature of graphics hardware called point sprites.
Dachsbacher et al. [DVS03] propose sequential point
trees and allow for adaptive level of detail selection on
the GPU. Recently, Zwicker et al. [ZRB∗04] introduce
perspective accurate splatting, a point rendering algorithm
which produces correct splat shapes. They also present an
extension which allows the rendering of sharp edges and
corners using clipped surfels.

Point-Based Modeling. Also, work has been published on
modeling and editing point-sampled objects. Pointshop 3D
[ZPKG02] extends 2D photo editing to 3D point clouds,
introducing painting sculpting and filtering. Reuter et
al. [RSPS04] use constructive solid texturing to interactively
paint a 3D object. Pauly et al. [PKKG03] are able to perform
large free-form deformations on point-sampled geometry.
Together they propose a method to perform boolean op-
erations on point-sampled objects. An alternative method
is proposed by Adams and Dutré [AD03]. We discuss this
approach in more detail in section 3.

Constructive Solid Geometry. Lots of research has
been performed concerning constructive solid geometry.
For an excellent overview we refer to [FvDFH96]. Interac-
tive rendering of CSG is often performed using graphics
hardware (e.g. [GHF86] and [RS97]). Next to [AD03]
and [PKKG03], various other algorithms are proposed to
construct the result of a CSG operation, employing different
boundary representations (e.g. multiresolution subdivision
surfaces [KBZ01] and level sets [MBWB02]).

Distance Fields. Frisken et al. [FPRJ00] propose to
use adaptively sampled distance fields, which can be used
to perform boolean operations. Others (e.g. [IZLM01] and
[SOM04]) use graphics hardware to construct a global
distance field using slicing techniques. However, in the
context of boolean operations, we do not need a global
distance field. We use a different approach and construct a
local distance field, only for the regions where we need it
(i.e. for the regions close to the boundary).

3 Boolean Operations on Surfel-Bounded Solids

Our GPU implementation is based on the algorithm pre-
sented by Adams and Dutré [AD03]. They construct a 3-
color octree for each solid, classifying leaf cells as interior,
exterior or boundary (see figure 1, left). Additionally, they
further partition the boundary cells using two parallel planes
(see figure 1, middle). Classification of a point as being in-

Figure 1: Left and middle: inside-outside partitioning of
a surfel-bounded solid using the technique presented in
[AD03]. Right: partitioning of the boundary cell using a
signed distance field.

side or outside is easily performed by testing in which space
the point lies. Only when the point lies in a boundary cell
between the parallel planes, there is no trivial classification.
In this case, a nearest neighbor query is performed and the
point is tested against the plane defined by its nearest neigh-
bor.

The constructed octree can also be used to test surfels in
group: if a cell of one octree does only intersect with exte-
rior (interior) cells of the other octree, all the surfels in the
former cell can be classified as exterior (interior). By per-
forming this test hierarchically, large numbers of surfels can
be classified in group. We refer to [AD03] for more details.

4 Boolean Operations Using the GPU

There are two problems when implementing the algorithm
presented by Adams and Dutré on the GPU: 1. the algorithm
is hierarchical in nature and 2. for some surfels, a nearest
neighbor query is necessary to make a classification. The
first caveat can be solved by only testing surfels individually
and not in group. Also, instead of using a 3-color octree, we
propose to use a 3-color grid as this maps better to the GPU.
The second problem is a more fundamental one. Both Pur-
cell et al. [PDC∗03] and Ma and McCool [MM02] propose
methods to perform nearest neighbor queries in 3D space on
the GPU. These methods require multiple texture fetches and
rendering passes, slowing down the algorithm. We can how-
ever circumvent the nearest neighbor query by constructing
a signed distance field for the boundary grid cells and using
this distance field and its gradient to classify surfels falling
in boundary cells.

4.1 Inside-Outside Partitioning

The space around each solid is partitioned as inside, outside
or boundary using a 3-color grid. The space inside the
boundary cells is further partitioned using a signed distance
field. Empty grid cells are classified iteratively as inside
or outside based on the distance values of the boundary cells.

Signed Distance Field for Boundary Cells

To avoid the nearest neighbor query present in the al-
gorithm of [AD03], we partition each boundary cell using a
signed distance field (see figure 1, right), instead of using
two parallel planes (see figure 1, middle). For each corner of
the cell we calculate the distance to the closest surfel in the
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Figure 2: Correspondence of the corners of a cell and the
grid cell pixels. Each cell corresponds to a square area of
3x3 pixels in the distance field texture. Each pixel (except
the middle one) corresponds to a corner of the cell.

cell. If the corner is on the negative side of the plane defined
by the closest surfel, the distance is signed to be negative,
otherwise the distance is positive. For a point within the
boundary cell, the signed distance to the surface can be
estimated by trilinear reconstruction using the distances in
the corners of the cell. The gradient of the distance field is
an approximation of the surface normal for the closest point
on the surface. So, by partitioning the boundary cells using
a distance field, we are freed from the nearest neighbor
query necessary in the algorithm presented by Adams
and Dutré. The closest point on the other surface (and its
orientation) can be found by evaluating the distance field
and the gradient of the distance field in the query point.

Constructing the distance field for a boundary cell re-
quires us to calculate the minimal distance of each corner
of the cell to the surfels within the cell. To achieve this using
vertex and fragment programs we lay out each grid cell and
its corners in a 2D texture: each cell occupies a 3x3 patch of
pixels with 8 of these 9 pixels corresponding to corners of
the cell (see figure 2). Note that, although neighboring cells
share corners in the 3D grid, these corners are duplicated (as
pixels) in the distance field texture. Also, as we do not know
in advance which grid cells will be boundary cells, we have
to allocate space for all cells in the distance field texture.

Vertex programs allow to route a point to an arbitrary lo-
cation in a buffer. The ability to write to a computed des-
tination address is known as a scatter operation. This prin-
ciple is also used by Purcell et al. [PDC∗03] to construct a
grid-based photon map. We use this technique to route each
surfel to the center pixel of the 3x3 square corresponding to
the grid cell where the surfel lies in. By rendering the surfel
as a 3x3 glPoint, we can cover all pixels corresponding to
the corners of the grid cell. Routing is performed in a vertex
program by computing the grid cell indices where the surfel
falls in and mapping them to 2D fragment coordinates corre-
sponding to the cell’s center pixel. The vertex program also
passes the untransformed surfel position and normal to the
fragment program.

The fragment program is responsible for computing the
distance between the surfel and the corresponding cell
corner pi. We can distinguish between each fragment of
the same glPoint by using the fragment coordinate (WPOS)

struct vertout {
float4 HPostion: POSITION;
float4 Parameter: WPOS;
float3 Position: TEXCOORD0;
float3 Normal: TEXCOORD1;

};

fragout main(in vertout IN,
uniform samplerRECT gridCoords,
uniform float diagonal)

{
fragout OUT;
float3 corner = texRECT(gridCoords, IN.Parameter.xy);
float dist = distance(corner, IN.Position);
half sign = dot(corner-IN.Position, IN.Normal)>0?+1:-1;
OUT.col = sign*dist;
OUT.depth = dist/diagonal;
return OUT;

}

Figure 3: Cg code for the fragment program for the distance
field construction for boundary cells. The signed distance is
outputted as the color values and the scaled (unsigned) dis-
tance is outputted as the depth value. Cell corner coordi-
nates are stored in the gridCoords texture for convenience.

and the transformed point coordinate. This allows us to use
a different pi for each of these fragments. If the fragment
profile does not support the WPOS input parameter, one
could also use the NV_point_sprite extension to obtain
texture coordinates for each fragment within a glPoint. The
normal of the surfel is used to check if the corner is on the
positive or the negative side of the surfel. The fragment
program scales the computed (unsigned) distance with the
inverse cell diagonal length and outputs it as the depth value
for this fragment. The unscaled signed distance is outputted
as the color for this fragment. By setting the glDepthFunc
to GL_LEQUAL, each pixel of a boundary cell patch in
the distance field texture will eventually hold the minimal
distance of the corresponding cell corner to the surfels in the
corresponding cell. There are no distances for cell corners
corresponding to non-boundary cells. Note that the distance
field construction is obtained in a single rendering pass.
Figure 3 shows Cg code for the fragment program used to
compute the distance field for boundary cells.

Classification of Empty Cells

After the distance field construction, we know which
cells in the grid are boundary cells: the cells where we
have distance values for the corner pixels. We can classify
the empty cells as interior or exterior by looking at the
distance values of common corners in neighboring boundary
cells (see figure 4, step (1)). Iterating further enables us to
classify all empty cells: empty cells take the classification
of neighboring classified empty cells (see figure 4, step
(2)). This procedure can easily be implemented on the GPU
using fragment programs. In each iteration we render a quad
textured with a 2D layed out grid texture. Each fragment
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Figure 4: Classifying the empty grid cells. After a first iter-
ation cells with a side in common with a boundary cell are
classified (1). Empty cells neighboring other empty cells take
the same classification (2).

corresponds to a cell in the 3D grid. By looking up the
classification of the left, right, bottom, top, back and front
neighbor cells we are able to classify all cells in a few
iteration steps.

Note that, without precaution, each fragment, classified or
not, is (re-)classified in each iteration step. Performance can
be increased by tiling the screen with large points instead
of with a single quad. Using the NV_OCCLUSION_QUERY
extension, we could stop drawing a tile once all the cells
covered by its pixels are finished. Purcell et al. [PDC∗03] use
this principle to decrease the convergence time in computing
a radiance estimate in a photon mapping context. However,
we did not implement this optimization.

4.2 Inside-Outside Classification

After constructing a distance field for the boundary cells,
and an inside-outside classification for the empty cells (for
both solids), we are able to construct the result of a boolean
operation. To increase performance, we lay out the positions
of the surfels in a floating point texture. Rendering a quad
covered with this texture enables us to fetch the surfel po-
sition in a fragment program using the texture coordinates.
Next, we can index the grid texture (containing the classifi-
cation of the cells) and the distance field texture (containing
the distance values for the corners of the boundary cells),
by converting the surfel position to a 3D grid index. If the
surfel lies in an empty grid cell, it takes the classification
of this empty grid cell. Otherwise, trilinear reconstruction of
the signed distance values of the grid cell corners is used to
classify the surfel.

We can increase performance by using a two-pass algo-
rithm. In a first pass we test the surfels against the 3-color
grid. Surfels falling in empty cells can be trivially classified.
We mark these surfels as classified by writing a depth value
z1 to the depth buffer for the corresponding fragment. For
surfels falling in a boundary cell, we set the depth value to
z2 with z1 < z2. In a second pass, we disable depth writ-
ing and render the same textured quad, but now at a depth z
with z1 < z < z2. In this pass we perform trilinear reconstruc-
tion to classify surfels falling in boundary cells. By setting
glDepthFunc to GL_LEQUAL we ensure only surfels which
correspond to unclassified surfels by the first pass are classi-
fied in the second pass. If the graphics board supports early z
culling, this two-pass algorithm increases performance sig-

Figure 5: Left: two surfels on the intersection curve. Middle:
clipping to obtain sharp edges. Right: resampling to obtain
sharp edges.

nificantly, because most of the surfels are classified in the
first pass.

4.3 Clipping or Resampling Plane

As discussed in [AD03] and [PKKG03], care has to be taken
for surfels close to the surface of the other solid. Pauly et
al. propose to clip the surfel against the plane defined by the
closest surfel of the other solid (see figure 5, middle). Adams
and Dutré propose to replace intersecting surfels by 1 to 5
smaller surfels along the intersection chord with the closest
surfel of the other solid (see figure 5, right). Both approaches
use the plane defined by the position and normal of the clos-
est surfel. We approximate this plane by using the distance
to the surface provided by the distance field and the gradient
of the distance field. We use the analytic gradient resulting
from the trilinear reconstruction similar to [FPRJ00]. These
calculations are performed in a fragment program for all sur-
fels lying in a boundary cell close to the other surface. The
resulting clipping planes are stored in a texture and can be
used to resample or clip the surfels during rendering (e.g. us-
ing the rendering algorithm of [ZRB∗04]).

5 Results

All of the algorithms presented are written in Cg [MGAK03]
and compiled with cgc version 1.1 to native fp30 and vp20
assembly code. We did not optimize the code by hand. The
results are obtained under Linux on a 1.6Ghz PC with a
GeForce FX 5600 graphics board. The distance field con-
struction uses a vertex program of 18 instructions and a frag-
ment program of 22 instructions. The 3-color grid construc-
tion uses a fragment program which compiles to 56 instruc-
tions. Finally, the two classification steps use fragment pro-
grams of 50 instructions and 56 instructions respectively.

We start by analyzing the time required to construct the
inside-outside partitioning. Table 1 gives timings for the
distance field construction for different numbers of surfels.
These timings are independent of the grid resolution. Table 2
gives timings for the 3-color grid construction for different
grid resolutions. Note that this step is independent of the
number of surfels.

number of surfels 60k 170k 250k 370k
time 37ms 98ms 142ms 220ms

Table 1: Timings for the distance field creation step for dif-
ferent numbers of surfels. This time is independent of the
number of grid cells.
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grid size 103 203 303 403

time 3ms 22ms 104ms 214ms

Table 2: Timings for the 3-color grid creation step for dif-
ferent numbers of grid cells. This time is independent of the
number of surfels.

For undeformable objects, the inside-outside partitioning
needs to be computed only once, e.g. at the beginning of
an editing session. Inside-outside classification of the sur-
fels needs to be re-computed each time the position or ori-
entation of one of the objects changes. Table 3 gives timings
for the inside-outside partitioning and classification for the
head-helix example (see figure 6) given in [AD03] for differ-
ent numbers of surfels. The time required for inside-outside
classification does not depend on the number of grid cells.
This table also gives a comparison between our GPU im-
plementation and the software implementation provided by
[AD03]. Timings are run on the same PC. The GPU algo-
rithm for inside-outside partitioning is a factor 3 to 7 faster
than the software algorithm. Classification using the GPU is
a factor 9 to 17 faster.

Another example (taken from [PKKG03]) is given in fig-
ure 7. Inside-outside partitioning for one dragon took 700ms,
computing the classification and clipping planes took 122ms
per dragon. Each dragon consists of 650k surfels and we
used a grid of resolution 363 for this example.

Note that the timings given in this paper do not include
the rendering of the resulting solid. The result of the classifi-
cation is written to a texture. For surfels close to the surface
of the other solid (i.e. surfels within a distance smaller than
their radius) we also write the intersection plane to the same
texture. This texture can be used as a lookup texture during
rendering or can be read back to host memory to obtain the
geometry of the resulting solid. In our implementation, ren-
dering is performed by projecting the surfels as GL_POINTS
and discarding fragments by looking up the classification in
a fragment program.

6 Discussion and Future Work

Using a regular grid for the inside-outside partitioning has a
few limitations. First, in order to be able to capture very fine

Figure 6: Head-helix difference computed and rendered us-
ing only the GPU.

head helix inside-outside inside-outside
partitioning classification

30k 60k 245ms [720ms] 19ms [330ms]
90k 170k 351ms [1980ms] 49ms [490ms]
200k 250k 492ms [3500ms] 80ms [720ms]

Table 3: Comparison between our GPU implementation and
the software implementation of [AD03] (bracketed numbers)
for the head-helix difference for different numbers of surfels.
For the GPU implementation, grids of size 323 are used, for
the software implementation, we used octrees of depth 5.

Figure 7: Boolean operations on two dragons computed and
rendered using only the GPU.

detail using a distance field, a sufficiently high grid resolu-
tion is required. Figure 8 illustrates this with the difference
of two cubes. The distance field is not able to represent the
corners of the cube accurately when using a 3-color grid with
53 cells. Further subdivision of the grid to 203 cells solves
this problem. However, this fine grid resolution is not re-
quired to capture the straight edges. Clearly, adaptive refine-
ment similar to [FPRJ00] would be more appropriate. We
are currently investigating how to map this on the GPU.

Second, as discussed in section 4.1, we have to allocate
space in the distance field texture for all cells, not only
for the boundary cells. This limits the grid resolution. For
example, if we allow distance field textures of resolution
1024x1024, the number of grid cells is limited to 483 as each
grid cell occupies a patch of 3x3 pixels in the distance field
texture. For most examples, this resolution is sufficient to
capture all geometric detail. However, most of the space in
the distance field texture is wasted for empty grid cells.

Also, similar to [AD03], we are exploring ways to classify
surfels in group. We believe that this is possible by testing
bounding boxes of groups of surfels against the 3-color grid
and by only testing surfels individually when the bounding
box intersects with a boundary cell. This could be done by
identifying vertex ranges in a vertex array and by only clas-
sifying points individually within the selected ranges.
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Figure 8: Difference of two cubes. Left: using grids of size
53. The distance field for the boundary cells is too coarse to
represent the corners. Right: using grids of size 203.

Finally, our current implementation uses multiple p-
buffers and therefore there are a lot of context switches. By
combining multiple buffers into one buffer, we believe sig-
nificant improvements are possible.

7 Conclusion

We have proposed a method to calculate the result of boolean
operations on surfel-bounded solids, entirely on the GPU. In
a first step, we build an inside-outside partitioning for each
solid using a 3-color grid and a signed distance field per
boundary cell. Next, we use a fragment program to classify
the surfels as inside or outside the other solid. Along with
this classification we use the distance field and its gradient
to compute an approximate clipping plane for surfels close
to the surface of the other solid. The result is stored in a tex-
ture on graphics memory and can either be used to render the
result of the boolean operation or can be read back to host
memory to obtain the geometry of the resulting solid.
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