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Abstract

This paper presents a new method for reconstructing curves and surfaces from unstructured point clouds, allowing
for noise in the data as well as inhomogeneous distribution of the point set. It is based on the observation that the
curve/surface is located where locally the point cloud has highest density. This idea is pursued by a differential
geometric analysis of a smoothed version of the density function. More precisely we detect ridges of this function
and have to single out the relevant parts. An efficient implementation of this approach evaluates the differential
geometric quantities on a regular grid, performs local analysis and finally recovers the curve/surface by an isoline
extraction or a marching cubes algorithm respectively.

Compared to existing surface reconstruction procedures, this approach works well for noisy data and for data
with strongly varying sampling rate. Thus it can be applied successfully to reconstruct surface geometry from
time-of-flight data, overlapping registered point clouds and point clouds obtained by feature tracking from video
streams. Corresponding examples are presented to demonstrate the advantages of our method.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Curve, surface, solid, and

object representations

1. Introduction

Surface reconstruction is an important step in generating a
three-dimensional virtual representation of real life objects.
Typical applications include the digitalization of clay proto-
types in car manufacturing, artifacts in archeology and hu-
man bodies in movie industry. Modern optical 3D scanners
acquire millions of surface points from the object within
minutes. These scanners typically produce a set of unordered
points which is unsuitable for direct visualization and further
processing.

The problem of reconstructing a surface from an unstruc-
tured set of points can be formulated as follows: Given a set
of sample points P = {py,...,Pn_1} Which have been mea-
sured from an unknown surface S € R, possibly with noise;
find a surface (usually a polygonal mesh) M which interpo-
lates resp. approximates the points from P and is topologi-
cally homeomorphic to the scanned object S.

Some methods for shape acquisition, such as shape from
motion or time-of-flight (TOF) sensors require algorithms
that are robust to noise and missing samples. We propose a
new method which can handle both situations, strong noise
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Figure 1: Surface mesh and outliers, reconstructed from a
point cloud with 2.008.414 points and 10K random outliers.
Data set courtesy of the U.C. Berkeley CAM Group.
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and highly non uniform sampling rates. Our method com-
putes a smooth density function f from the input data points
and uses ridge extraction methods to determine a connected
surface of maximal local density which will be considered
as the surface described by the noisy input samples.

Ridges of two- and three-dimensional data have been
successfully used for feature detection and image analy-
sis, face recognition and fingerprint analysis [AL0O, LLS98,
Mor95, Lin98], segmentation, registration and visualization
of medical data [SAN*04, KTW06] and geometric model-
ing [SF04,0BS04] (and references therein). In this paper we
will show that ridges are also a powerful instrument for lo-
cating surfaces in point clouds with noise.

This paper is organized as follows: In section 2, we de-
scribe related work and in section 3, an overview of our
method is presented and the basic steps will be explained.
In section 4, we describe our algorithm for reconstructing
curves from noisy point clouds in R2. In section 5, we show
how the algorithm can be extended to reconstruct surfaces
from three-dimensional data. Results are then presented in
section 6 and our method is compared to other algorithms
for surface reconstruction from noisy point clouds. Future
improvements to our algorithm are finally outlined in sec-
tion 7 and in an appendix, the mathematics of curvature and
ridges is outlined.

2. Related work

The problem of reconstructing a polygonal surface from an
unstructured point set that had been produced by highly ac-
curate 3D range sensors has gained a tremendous amount of
attention during the past decades. Many excellent algorithms
have been proposed for this problem.

Two classes of algorithms have been found to outperform
most other methods: implicit and Delaunay-based methods.

Delaunay based methods

Delaunay based methods build upon a Delaunay tetrahed-
rization of the initial point cloud. An early Delaunay based
approach are the a—shapes by Edelsbrunner and Miicke
[EM92]. Their algorithm removes all tetrahedra which have
an enclosing circumsphere smaller than o. The surface is
then obtained from the boundary triangles of the remain-
ing tetrahedra. Another idea is to label each tetrahedron
of an initial tetrahedrization either inside or outside. The
(guaranteed closed) surface is then defined by all triangle-
faces where inside and outside tetraheda meet. This idea
first appeared in [Boi84] and was later developed further
by the Powercrust [ACKO1] and the Tight Cocone algo-
rithms [DGO3]. Both algorithms provide theoretical guaran-
tees and have recently been extended to reconstruct noisy
data [MAVAFO05, DG04].

The advantage of most Delaunay based methods is that

they produce watertight triangulations. The drawback is that
they seek to interpolate the given point set, which is - espe-
cially in the presence of noise - not always desirable.

Implicit methods

Implicit or zero-set methods usually reconstruct the surface
from a distance function f : R? — R which assigns each
point in space a signed distance to the surface S from which
the points have been sampled. A polygonal model of the ob-
ject is then obtained by extracting the zero-set of f using
a contouring algorithm. Thus the problem of reconstructing
a surface from an unordered point cloud can be reduced to
that of finding an appropriate function f which is zero at
the sample points and non-zero everywhere else. Many dif-
ferent methods for computing the distance function f have
been proposed. Hoppe et. al. [HDD*92] used a discrete func-
tion f. In [CBC*01], polyharmonic Radial Basis functions
are fitted to the initial point set. More recently, Ohtake et.
al. [OBA*03] fit piecewise quadratic functions locally to the
data which they then blended globally. Other approaches
include the moving least squares [SOS04, FCOS05], basis
functions with local support [WSC06, MYC*01], Poisson
based reconstruction [KBHO6] and the method of Curless
and Levoy [CL96] which is designed to construct a surface
from several range images.

The drawback of implicit methods is that usually normal
vectors have to be assigned to all points. These normal vec-
tors can be computed by fitting a plane to the local neighbor-
hood of a point, however, only if the point cloud is sampled
sufficiently uniformly and free of noise.

The work which is most closely related to our approach is
the algorithm presented in [HKO06]. Hornung et. al. compute
an unsigned distance function and extract the surface from
the minimum cut of a weighted spatial graph structure.

Point cloud filtering

A popular approach to handle noisy point clouds is to fil-
ter the point cloud in a pre-processing step to remove out-
liers and reduce noise (see [SBS05, OBS05] and references
therein). The surface may then be reconstructed from the
noise reduced point cloud using one of the standard meth-
ods mentioned above.

3. Overview of the ridge based approach

A point v € P that has been sampled from a surface S by
an imperfect device does not represent one distinct point v
on the surface S. It is rather the center of a probability dis-
tribution describing the location of the point v. Summing up
all the point distributions gives a probability distribution of
the location of the surface S. For example, if the point set
‘P is a noisy sampling of the circle in R?, the correspond-
ing probability distribution is a crater like set and the initial
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Figure 2: The algorithm in R2: ( left) noisy point set. (middle left) the density function f generated by placing Gaussian kernels
at the sample points. (middle right) the ridges of [, red lines mark ridges, green lines valleys and blue lines spurious ridge
lines. (right) the ridges projected back onto the plane of the point set.

contour can be recovered approximately as the ridge of this
crater (see Fig. 2)

Our method can be separated into three distinct steps. In
the first step, we consider a smooth version of the density
distribution of the point set.

In the second step, we compute the ridges of this density
function which can be interpreted as the curve/surface we are
looking for. Ridges of a bi-variate function f can be charac-
terized geometrically as follows. Consider the graph of the
density function f as a surface in R3. Then a surface point
(x,y, f(x,y)) belongs to the ridge, provided that the gradient
of f and the direction of largest absolute curvature are per-
pendicular and the curvature at (x,y) is negative (details and
mathematical definitions are given in the appendix).

Due to noise and outliers, the density functions will ex-
hibit local ridges, points that formally fulfill the ridge condi-
tion, but do not belong to the principal ridge. The removal of
these points requires an additional cleaning step. The clean-
ing is done by starting at the absolute maximum and tracing
the ridge from there. Thus we assume that the surface to be
reconstructed is one connected patch.

4. Reconstructing curves in R?

In this section, we describe how our method can be used
to reconstruct curves from two-dimensional scattered points.
The method will then be extended to extract surfaces from
three-dimensional sample points in the next section.

The first step of our algorithm consists of defining a
smooth density function f which results from the convolu-
tion of the discrete Dirac distribution of the (p = 2-dimen-
sional) point cloud with a Gaussian kernel:

1 (= lx=yli2y
f(x)= ®v*Go)(X) = ——+—— e 2 (D)
v;’; ' (2m)2/re? v§7’3
the first and second derivative of f are then given by
-1 (= lx=yii2y
Vfx)= (x—v)-e 2 (2)
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(2m)¥/rct S,
(3)

In a second step, we compute the ridges of the density
function f. A point p on f lies on a ridge if f has a local
maximum in the direction of maximum curvature at p. (i.e.
(Vf,e1) =0and x| <0, cf. Appendix). To compute the zero
setof (Vf,eq), we sample V f and H(f) on a regular grid G
with grid size 8. At each vertex we perform an eigenvector/-
value analysis to determine k; and e;. Since the eigenvec-
tors e are only determined up to a scaling factor (if ey is an
eigenvector of M, so is —ej also an eigenvector of M), we
need to establish a consistent orientation of the e;’s in each
cell. This can be obtained by retaining one of the cells e; and
inverting the remaining ey ; if they point in the opposite di-
rection, i.e. if <e1,e17i> < 0 (for more sophisticated methods
to solve the orientation problem see [Mor95, CFPR06]). A
simple contouring algorithm is then applied to compute the
zero crossings of (V f,ey) in the current cell. As you can see
from figure 2(c), this approach does not only detect ridge and
valley lines, but also some so called spurious ridges (blue
lines) in regions where the curvature direction varies.

H(f)(x) =

Finally, the curve described by the noisy point set is ex-
tracted by tracing the ridge line starting at the line segment
where the density f is maximal, following the line segments
where K| is negative; valleys and spurious ridges are thereby
removed.

The steps of the algorithms for reconstructing curves from
two-dimensional point clouds are depicted in figure 2. Fig-
ure 2(a) shows a point set sampled from a circle with noise.
In figure 2(b), the density function f, sampled on a regu-
lar grid, is shown. Figure 2(c) shows the ridges, valleys and
spurious ridges of f as computed and classified in the sec-
ond step of our algorithm. The reconstructed curve together
with the input data is shown in figure 2(d).

5. Reconstructing surfaces in R3

The extension of our algorithm to reconstruct surfaces from
point clouds in R is straightforward. Hence, we will focus

).
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Figure 3: The algorithm in R3: (left) a noisy point set. (middle left) the 3D density function f. (middle right) all ridges of f,
including valleys and spurious ridges. (right) surface reconstructed by tracing the maximum ridge.

on some methods to improve the basic algorithm presented
in the previous section. Figure 3 shows the steps analogously
to the method in two dimensions.

The exact computation of the gradient V f and the Hessian
matrix H(f) requires us to sum up over all kernel functions,
one for each point in P. Computing these sums for each cell
of a reasonable grid with dimension 5007 leads to an enor-
mous computational effort. To reduce computation time we
propose to only sum up over the kernel functions which have
a reasonable impact on the computation of f, Vf and H(f).
Therefore we omit all kernel functions fy that would add
values less than a threshold € to the density function, its gra-
dient and its Hessian. (The € used for our implementation
ranges from 0.0005 for the angel data set to 0.1 for the TOF
data set). Given € and the variance G of the Gaussian kernels,
a range of interest d can be computed. In order to evaluate
the function and its derivatives at a particular grid point X,
we estimate all points p; € P that lie within distance d from
x. This search can be efficiently implemented by using a kD-
tree in which the point cloud P is stored. The density f is
then computed from

fx) = )y Fv(x).

{veP . [x—v|*<a*}

The formulas (2) and (3) for computing V f and H(f) are
modified accordingly.

The approach presented in the previous section evaluates
the function uniformly on a regular grid, even in regions that
are of little interest because they are far away from being tra-
versed by a ridge surface. The subsequent ridge extraction
step however, only considers the cells which are traversed
by the maximum ridge. We propose to start the iso-surface
extraction at a significant local maximum of f. To find such
a local maximum we sample f at a low resolution and deter-
mine the cell containing the largest value of f.

We then use a modified marching cubes [LC87] algorithm
which takes care of the orientation of the curvature vectors
e; to extract the zero set of (Vf,ey). The algorithm starts at
the previously detected maximum. Only cells containing the

zero set are visited by pushing solely the appropriate neigh-
boring cells onto a stack. To skip valleys and spurious ridges
(figure 3(c)), we only add those triangles to the reconstruc-
tion that are connected to the extracted ridge so far.

The variable ¢ should be chosen such that the sum of
two neighboring Gaussian kernels forms one common max-
imum. Let the distance between two points be d. The ra-
dial kernel functions centered at the points do then form one
common maximum, if ¢ > (d/+/2). From this observation
we can derive a rough rule for choosing 6 > (p/+/2) if the
spacing p between two neighboring points in P is known.

5.1. Anisotropic kernel functions

Using radial kernel function works well for point sets that are
disturbed by a constant level of noise. Though it has prob-
lems at sharp features and areas where the object is thin.
Figure 4 shows an example where the reconstruction using
spherical kernel functions fails. The ears of the bunny model
are quite thin. If ¢ is too large, the density function f will be
maximal in between the actual surface sheets. This results in
one ridge for the ear instead of one ridge for either side. To
overcome this problem, we recommend using kernel func-
tions that describe the probability distribution of the points
better. Let the neighborhood Ny be the k—nearest neighbors
of v (k typically lies between 20 and 100). If the neighbor-
hood Ny is completely flat then the probability that v was ac-
tually sampled from that plane should be high. To get such
an anisotropic probability distribution, we compute the co-
variance matrices

Cv= ) (p—V)®([p—v)
ijNv
of the neighborhoods Ny for each point v € P. The
anisotropic probability distribution for the point v is then
given as:
(x—v)TCv*l(va)

ooy det(Cyh) (=T
fv(X) = (27'5)2/3(52 e( >
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Figure 4: Head of the stanford bunny; (1) radial kernel func-
tions fy (2) anisotropic kernel functions fy colored accord-
ing to their anisotropy; (3) reconstruction using radial ker-
nels; (4) reconstruction using anisotropic kernels.

The first row of figure 4 visualizes the kernel functions
that were used to reconstruct the bunny model in the lower
row. The left image shows isotropic kernel function while
the right image shows kernel functions that have been scaled
and rotated according to the neighborhoods of the points.

6. Results

We have employed our algorithm to reconstruct the sur-
faces from point clouds which were generated using differ-
ent methods for shape acquisition. The reconstructed sur-
faces and the input point clouds are shown together in fig-
ure 5. The parameters used for reconstruction and the time
of computation required to reconstruct the models on a Pen-
tium IV 3.4 GHz are listed in table 1.

In figure 5(1), the model of a gall bladder is shown. The
point cloud has been generated from a video sequence cap-
tured by an endoscope using shape from motion technique.
The point cloud suffers from both, strong noise and vary-
ing sample density. Figure 5(2) shows a cooling fan in a
room corner. The point cloud has been generated by reg-
istering 10 overlapping depth maps acquired by a time-of-
flight camera. Due to the distortion introduced by the time-
of-flight camera, the single depth maps are not congruent
and the point cloud therefore contains multiple tiers. The

(© The Eurographics Association 2007.

Figure 5: Results for point sets acquired from different de-
vices: (1) Gall bladder; (2) TOF Scene; (3) Hand; (4) Dis-
posable tip.

name # of pts G | grid | time (sec)
gall bladder 1.904 0.04 | 100° 6.1
TOF scene 230.400 0.03 | 100° 653.1
hand ridges 38.219 0.02 | 200° 172.9
hand valleys 38.219 0.03 50° 22.1
disposable tip 70.052 0.01 | 100° 11.2
angel 2.018.414 | 0.002 | 500° 1089.4

Table 1: Computation time and parameters for the data sets
shown in figure 5 and figure 1

hand in figure 5(3) was scanned by Polhemus FastSCAN.
The polygonal surface model was reconstructed using rela-
tive small grid spacing and anisotropic kernel functions to
recover small features and thin areas. Also depicted are the
valleys of the density function (red). Valleys occur where
the density of a point cloud is minimal; hence they can be
understood as a medial structure of the object. Figure 5(4)
shows a fraction of a disposable tip that has been scanned
using white light interferometry. The dataset is composed of
7 individual range scans and contains natural noise and non-
uniform sample density.

Figure 1 shows a mesh reconstructed from a point cloud
with 2 million points and 10.000 randomly added outliers.
The point samples are very non uniformly distributed and
the point cloud contains natural noise. Our reconstruction
captures even fine detail, yet it leaves holes in areas where
no samples were available.

To demonstrate the noise robustness of our method we
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Figure 6: Comparison to other reconstruction algorithms. From left to right: Initial point cloud with 1 percent gaussian noise;
reconstruction using Powercrust [ACKOI ], Robust Cocone [DG04], QPoly [OBS05] and our method.

have tested it with several synthetic data sets (figure 7).
Gaussian noise with a variance of x percent of the point
cloud’s diagonal length was added to the male data set. The
noisy point clouds were then reconstructed using different
smoothing parameters 6. As you can see from the bottom
row in figure 7, we can still produce reasonable results even
if there is an enormous amount of noise. You can also see
that the variable ¢ used for smoothing the point distribution
does not only depend on the noise level but also on the sam-
ple density of the point cloud. The denser the point cloud is
sampled the smaller the sigma may be chosen.

Comparison with other algorithms for noisy point clouds

‘We have further tested our method against some popular sur-
face reconstruction algorithms for point clouds without nor-
mals. The results are shown in figure 6.

The input point cloud does clearly not fulfill the sample
requirements of the Powercrust algorithm [ACKO1], the
surface could therefore not be reconstructed appropriately.
Some of the problems associated with noise have been re-
solved in [MAVdFO05] and [KSOO04]. But because of the in-
terpolation property of these methods the resulting surfaces
still look very crinkled.

The Robust Cocone algorithm [DGO04] is able to restore
a rough approximation of the initial shape. However the
method tends to increase the volume of the reconstructed
surface.

The results produced by the QPoly algorithm [OBSO05] are
better than the previous ones, yet the surface is very coarse
and not two-manifold.

Our algorithm yields the best results. The reconstructed sur-
face is two-manifold with boundaries and we could recover
more detail than the methods discussed above.

The method of Hornung et. al. for reconstructing surfaces
from point clouds without normals in [HKO06] looks quite
promising in terms of results and computation time. Yet it
is unclear how robust their algorithm is to large magnitude
noise and outliers. Another limitation of their approach is the
fact that they can only reconstruct closed surfaces. Surface
sheets like the two shown in the top row of figure 5 are not
appropriate for being reconstructed as closed surfaces.

Conclusion and future work

We have presented a new method for reconstructing curves
and surfaces from unorganized point clouds with noise and
outliers. We showed that extracting the ridges of a density
function defined by the point set is a simple and efficient way
to reconstruct an approximating curve/surface from scattered
data. Our algorithm does not require any point normal in-
formation and can successfully handle noise which is more
than one order stronger then Delaunay based methods for
noisy point clouds. We think that our algorithm is therefore
an interesting option for reconstructing point clouds with a
large amount of noise that have been generated by inaccurate
techniques for shape acquisition.

Our method is currently not able to reconstruct sharp crest
lines from sparsely sampled point sets. We think that an a
priory detection of crest lines [DVVRO07] and a special treat-
ment for crest points (i.e. using special kernel functions, e.g.
superquadrics, for these points) would improve the ability to
reconstruct sharp features.

Using an adaptive octree for the computation of the den-
sity function and the subsequent ridge extraction could fur-
ther help to close holes due to missing samples in the point
cloud (cf. figure 1). As a positive side effect it would also im-
prove the speed and memory requirements of our algorithm.
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Figure 7: Choice of the variable G; in each row from left to right: noisy point cloud with 63393 points, reconstructed surfaces
with 6 = 1%, 6 = 2%, 6 = 4% and 6 = 8% of the point clouds bounding box diagonal.
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Appendix: Mathematics of ridges

In topography ridges are defined as watersheds that sepa-
rate between regions where water flows in different direc-
tions. Although heavily studied for more than 150 years, re-
searcher still do not agree on a precise mathematical defini-
tion of ridges. Intuitively, ridges of a two-dimensional func-
tion f(x,y) = z can be understood as the connected locus of
maximum value.

In order to give a rigorous mathematical definition for
ridges we have to fix some notation. The gradient and Hes-
sian of a smooth scalar function f(x,...,x;) are given by

aif oif - diaf
Vi={ [ HO=| + .
daf darf -+ Oaaf
Here 0;f and 0;; f denote the partial derivatives of first and
second order respectively. To determine curvature and curva-

Figure 8: Gradient V f (left) and direction of maximum cur-
vature ey (middle) of a bivariate function f. The rightmost
image shows both vector fields.

ture direction we need the first and second fundamental form
of the d-dimensional hyper surface (xi,...,xg, f(x1,...xg))
embedded in R4*!. These are given by d X d matrices.

(o) with o J 1O =
If*(g’f) with g”*{aifajf it izj @

1
m, = (h,.j) abvciny (3i;/) (5)

A principal curvature ¥; and the corresponding principal cur-
vature direction e; satisfy the condition

eri = KiIfei (6)

Thus one has to perform an eigenvalue/-vector analysis of

the Weingarten map 1 f_llI - There are precisely d pairwise
orthonormal principal curvature directions ¢; (i = 1...d)
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with corresponding principal curvatures k;, (i =1...d). We
assume that k| > [io| > - > |y

Definition: A point X is a ridge point provided that at x we
have

K1 <0 and €1 1L Vf (@)

The direction of largest negative curvature is also called the
direction of maximal concavity (see [Har83]).

Equation 7 states that the function f : R? — R has a ridge
at x iff f has a local maximum in the direction of maximum
curvature ey at x. Analogously, all points at which f takes
on a local minimum in direction e; are called valley points.

The points which satisfy equation 7 form a hypersurface
of R”, i.e. the ridges of two-dimensional functions are lines
and the ridges of three-dimensional functions are surfaces.
Higher dimensional ridges (d-k dimensional hypersurfaces)
can be defined by extending equation 7 such that the gradient
V f of a function f is required to be orthogonal to the first k
curvature directions [FP98, Ebe96]:

Ki<0 and ¢ L VS, i=1...k
In the two-dimensional case, the determination of ridges

can be simplified. At a ridge point we have e; L V f hence
e, || Vf. Thus det(IL;V f,1,V f) = 0 which simplifies to

\/det(Iy) det(y /det(I) TV £,V f) = 0. ®)

Thus we obtain

(011 /91 f +012f02f)02f — (021 f1.f + 02202 f)01 f = 0.
Thus ridges satisfy the relation

(011f —022f)01f02f +012f(022—91f2) =0.  (9)

The problem with this simple characterization is that not
only ridge points but many others also satisfy this relation.
All points where the gradient is perpendicular to one princi-
pal curvature direction, regardless of whether it is minimal
or maximal, positive or negative. An extraction based on this
formula requires a more detailed cleaning process to sepa-
rate spurious crest lines from ridges.

For d-dimensional functions a similar characterization is
possible. More precisely, at a ridge point the determinant

det(M§'Vf,.. .M,V f, V) 10)

is zero. Again this condition is satisfied not only for ridge
points, but also if V f is perpendicular to an arbitrary princi-
pal curvature direction

Note that the ridge formulation used in this paper is differ-
ent to another definition of ridges frequently used for detect-
ing creases and sharp features on two-dimensional manifolds
embedded in R, which classifies surface points as ridge
points iff the curvature «; along one of the points principal
curvature directions e;j is maximal [OBS04].



