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Figure 1: The original Delaunay refinement algorithm does not terminate for constraint angles larger than34◦. Our algorithm
computes quality triangulations for constraint angles up to42◦. For example, when the constraint angle is40◦, the original De-
launay refinement chokes with bad (shaded/red) triangles (left), where as our algorithm computes a nicely graded triangulation
where all angles are larger than or equal to the constraint angle (right).

Abstract
We present two new Delaunay refinement algorithms, the second an extension of the first. For a given input domain
(a set of points in the plane or a planar straight line graph), and a threshold angleα, the Delaunay refinement
algorithms compute triangulations that have all angles at leastα. Our algorithms have the same theoretical guar-
antees as the previous Delaunay refinement algorithms. The original Delaunay refinement algorithm of Ruppert
is proven to terminate with size-optimal quality triangulations forα ≤ 20.7◦. In practice, it generally works for
α ≤ 34◦ and fails to terminate for larger constraint angles. The new Delaunay refinement algorithm generally
terminates for constraint angles up to42◦. Experiments also indicate that our algorithm computes significantly
(almost by a factor of two) smaller triangulations than the output of the previous Delaunay refinement algorithms.

Categories and Subject Descriptors(according to ACM CCS): F.2.2 [Nonnumerical Algorithms and Problems]:
Geometrical problems and computations I.3.5 [Computational Geometry and Object Modeling]: Geometric algo-
rithms, languages, and systems

1. INTRODUCTION

We revisit the following well-known two-dimensional geo-
metric optimization problem:Compute the smallest size tri-
angulation of a given two dimensional domain (collection
of points and/or segments) such that all the triangles in the
triangulation are of good quality.Naturally, we are allowed
to introduce points (called theSteiner points) additional to
the input points. This problem is also known as the simpli-
cial mesh generation problem, or the quality Steiner trian-

gulation problem [Ede01,She02,TW00]. Quality constraint
of the problem is motivated by the numerical methods used
in engineering applications where these triangulations are
heavily used. A triangle is said to begood if its smallest
angle is bounded from below.Small size objective is crucial
for the applications as well, for obvious efficiency reasons.

Several (approximation) algorithms have been suggested
for this problem. Quadtree refinement algorithms [BEG94]
and Delaunay refinement algorithms [Che89,Rup93,Üng04]
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provide similar theoretical guarantees. In general for a spe-
cific algorithm, these guarantees can be stated as:Given a
two dimensional domain and a threshold angleα≤ γ, the al-
gorithm computes a triangulation of the input domain whose
size is within a constant factor of the optimal such that all
the angles of the triangulation are at leastα. The angleγ
should be thought of as the theoretical limit of an algorithm.
The exact value of theγ depends on the approach/algorithm
as well as the input type. For instance, the Delaunay refine-
ment algorithm of Ruppert [Rup93] is proven to compute
good triangulations forα < γ = 30◦ on point sets and for
α < γ = 20.7◦ on planar straight line graphs.

In practice, the lack of theoretical guarantee for a mesh
refinement algorithm, whenα > γ, is observed as a never-
ending refinement process. Steiner points are iteratively in-
serted until the computer reaches out of its numerical pre-
cision capacity or its memory. Shewchuk’s experimental
study revealed that in practice Delaunay refinement algo-
rithm works better than its theoretical guarantee [She96]:

“Ruppert [Rup93] proves that this procedure halts
for angle constraint of up to 20.7◦. In practice, the
algorithm generally halts with an angle constraint
of 33.8◦, but often fails to terminate given an an-
gle constraint of 33.9◦. It would be interesting to
discover why the cutoff falls there.”

There has been attempts to explain this cutoff [MPW05].
Here, we take a different strategy and rather than explaining
this limitation, we remove it. We present a new Delaunay re-
finement algorithm which sets a new cut-off. Our refinement
algorithm terminates with good triangulations for constraint
angles up to 42◦.

1.1. Previous Work

1.1.1. Delaunay refinement

Delaunay refinement method involves first computing an ini-
tial Delaunay triangulation of the input domain, and then it-
eratively adding points calledSteiner pointsto improve the
quality of the triangulation. Various types of Steiner points
are studied in the literature, which we review below.

Circumcenters.Circumcenters of bad triangles, as stud-
ied by many [Che89,Rup93,She02], is a natural choice for
improving the quality of a (Delaunay) triangulation through
iterative refinement. Insertion of the circumcenter of a bad
triangle, surely removes the bad triangle (thanks to the empty
circle property of Delaunay triangulations.)

Sinks.Edelsbrunner and Guoy [EG01] suggested insert-
ing sinksof bad triangles, which are circumcenters of acute
triangles. For each bad triangle, an iterative walk in the trian-
gulation each time crossing the edge opposite to the unique
obtuse angle leads to its sink. Sinks are at the local maxima
of the local feature size function. Note that the sink of a bad
triangle can be quite far away from the triangle. Hence, a bad

triangle may remain in the triangulation even after its sink is
inserted.

Offcenters.Üngör [Üng04] introduced another type of
Steiner points, calledoff-centers, as an alternative to cir-
cumcenters. Offcenters and circumcenters, differ from each
other only for “very” bad triangles (those with smallest an-
gle at mostα/2, and are the same for almost good trian-
gles (those with the smallest angle betweenα/2 andα. In
practice, off-center insertion algorithm results in significant
reduction in the output size [Üng04]. Off-centers are also
numerically more stable than circumcenters and facilitates
more robust software. The idea of using offcenters also leads
to the design of the first time-optimal Delanuay refinement
algorithm [HPÜ05].

Recent years witnessed an inflation in the develop-
ment and use of Delaunay refinement algorithms some
of which are mentioned earlier [CGS06, EG01, HPÜ05,
HMP06,Mil04,MPW05,She00,She02,Üng04]. Miller et al.
proposed a time-efficient (but not time-optimal) Delaunay
refinement algorithm [HMP06,Mil04]. Their algorithm cur-
rently lack experimental support to indicate its relevance in
practice. Collet al. [CGS06] studied Delaunay refinement
within the context of mesh editing. However, currently the
only published version of their work contains errors (as ac-
knowledged by the authors in a recent personal communica-
tion) that make their experimental study inconclusive. These
algorithms do not address the termination problem which is
one of our primary focus in this study.

Delaunay refinement software.The popular mesh gener-
ation software is a robust implementation of the Delaunay
refinement method [She96]. The software used Ruppert’s
circumcenter insertion algorithm [Rup93] in it first four re-
leases and has been using Üngör’s offcenter insertion algo-
rithm [Üng04] in its latest two releases.

1.1.2. Other mesh refinement algorithms

Quadtree methods provide similar guarantees as Delau-
nay refinement algorithms [BEG94]. However, in practice
quadtree refined meshes are significantly larger than Delau-
nay meshes. Moreover, quadtree implementations lack the
parameterization of the constraint angle.

There are other refinement strategies which are used in
conjunction with Delaunay triangulations. For instance, the
longest-edge propagation path (LEPP) methods use the mid-
point of the longest edge of certain triangles as the Steiner
point [RH99]. Theoretical bounds for these methods tend
to be relatively weaker than that of the Delaunay refine-
ment methods. Moreover, these methods also suffer from the
termination problem in practice for constraint angles even
smaller than 34◦.
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1.2. Our idea and contribution.

All existing mesh refinement algorithms, including the cir-
cumcenter and the offcenter insertion variants of the Delau-
nay refinement, suffer from a so calledtermination problem
for large values ofα. In this paper, we explore ideas to alle-
viate this problem.

We propose two simple algorithms, the second an exten-
sion of the first. The first algorithm suggests to locate Steiner
points inside a particular neighborhood of bad triangles that
are furthest away from existing vertices. One might wonder
“Are such points not circumcenters (at least for the almost
good triangles)?”. It turns out the answer is “No!”, for most
of the bad triangles in a typical Delaunay triangulation. In
Section3, we classify this Steiner point description into four
different types.

Our second algorithm incorporates a simple relocation
scheme which becomes effective especially for largeα val-
ues. Before attempting to insert a Steiner point for a bad tri-
angle, we simply try fixing the bad triangle by relocating one
of its vertices (if that vertex was inserted as a Steiner point).

These two simple ideas lead to the following as the main
contributions of this paper:

• We give a definition of Steiner points which unifies the
aforementioned Steiner point insertion strategies. The
new rule automatically selects one of the four types of
Steiner points, three of which (circumcenters, sinks, off-
centers) are previously studied.

• With the new Steiner point definition, we extend the
practical angle bound of the Delaunay refinement algo-
rithms. While the previous Delaunay refinement algo-
rithms fail to compute meshes, for constraint angles as
small as 33.9◦, the new algorithm computes good trian-
gulations for constraint angles as high as 42◦. On aver-
age, we extend the practical constraint angle bound by
about 8◦.

• The key idea in our Steiner point selection method is to
stay away from the existing vertices. It turns out that cir-
cumcenters are not the best choice for this objective. In-
deed, experiments give a surprising low percentage use
for circumcenters among the four alternatives. We pick
locations that result in longer edge lengths for the trian-
gles of the mesh. As a result, the size of the output of our
method is significantly smaller than that of the previous
Delaunay refinement algorithms.

• We present a simple framework where a simple local
smoothing (point relocation) strategy is integrated into
the refinement algorithm.

2. MOTIVATION

We explore ways to improve the practical performance of
Delaunay refinement method. Existing versions of Delaunay
refinement method becomes impractical when meshes with

large smallest angles are desired. Two reasons behind this
are explained below.

2.1. Termination Problem

p

q

c

r

Figure 2: Whenα > 30◦, circumcenter insertion introduces
shorter pairwise distances than existing ones, i.e.|pc| =
|qc| = |rc| < |pq|

Termination guarantee of the Delaunay refinement algo-
rithms relies on a packing argument. This argument applies
for small values ofα, (i.e. α ≤ 30◦) where circumcenter
insertion does not gradually decrease the shortest pairwise
vertex distance. Forα > 30◦, however, the iterative refine-
ment process could introduce smaller and smaller features
and may not terminate (See Figure2.) In practice, such phe-
nomenon starts occurring forα > 34◦, regardless of the type
and distribution of input data. See Figure3 and Figure4.

Different Versions.Any refinement algorithm that makes
significant use of circumcenters is expected to suffer from
the termination problem for threshold angles not much larger
than 30◦. Majority of the points inserted by most Delau-
nay refinement algorithms are circumcenters [Che89,EG01,
Rup93,She02]. While the circumcenters are less frequently
used by the offcenter insertion algorithm [Üng04], their per-
centage is significant enough that the practical performance
bound remain roughly the same. Figure3 illustrates how
both Triangle 1.4 which is an implementation of the
circumcenter insertion, andTriangle 1.6 which is an
implementation of the offcenter insertion, suffer from the
termination problem. It is important to observe the charac-
teristic difference between these two methods as they get
caught in the never-ending refinement process. This differ-
ence is due to the order the bad triangles are handled. The
offcenter insertion algorithm works better when the bad tri-
angles with the shortest edges are handled first. [HPÜ05]. On
the other hand, the circumcenter insertion algorithm works
better when the bad triangles with the smallest angles are
handled first. When they terminate the offcenter insertion
performs better than the circumcenter insertion, that is, it
outputs meshes with fewer triangles. However, when inter-
rupted in the never-ending refinement process, the evolving
mesh of the offcenter refinement looks worse than that of the
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(a) (b) Triangle(1.4), S= 500 (c)Triangle(1.4), S= 5000

(d) Triangle(1.6), S= 500 (e)Triangle(1.6), S= 750

Figure 3: Termination problem shown for the constraint angleα = 35.5◦ on the Lake Superior data set (zoomed in). Bad
triangles are shaded (red). (a) Delaunay triangulation of the input. (b) and (c) Evolving triangulation using the circumcenter
insertion. (d) and (e) Evolving triangulation using the offcenter insertion. Neither of the two algorithms terminates. So, for this
illustration, we interrupted their execution after the insertion of S Steiner points.

(a) (b) Triangle(1.4), S= 50 (c)Triangle(1.4), S= 1000

Figure 4: Termination problem is shown forα = 35◦ on a simple data set: a pair of points at three unit distance from each
other inside a box of side length 100 units. Bad triangles are shaded (red). (a) Delaunay triangulation of the input. (b) and
(c) Evolving triangulation using the circumcenter insertion. The refinement process does not terminate, hence the execution is
interrupted after the insertion of S Steiner points.

circumcenter refinement. This can be fixed by changing the
bad triangle handling order.

With or without (small input angle) constraints.Prior to
our work termination problem was addressed in the con-
text of small input angles [MPW05,PW05,She00]. It is im-
portant to note that in general the termination problem ex-
ists regardless of the simplicity of the input domain. See
Figure 4, where the input consists of a pair of points en-
closed by a large box. In general, for any input domain,
it is common to observe overrefinement occurring in re-
gions far away from the input features wheneverα is large.
In this paper, we do not limit ourselves to certain type of

constraints and rather address the termination problem in
general. Our analysis in Section4 focuses on point sets.
However, this work can be easily coupled with the previous
work [She02,MPW05,Üng04] that consider general planar
straight line graphs. Our experiments, on data sets that are
planar straight line graphs with small angles verify this.

2.2. Mesh Size

The output size is crucial for the efficiency of the methods
using these meshes in various applications. Also, the smaller
the number of Steiner points the faster the refinement algo-
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Figure 5: Find a point x inside the (shaded disk) petal of pq that is furthest away from all existing vertices. Such a point can be
on a Voronoi edge (left two) or a Voronoi vertex (right two).TYPE I: on the dual of pq;TYPE II : on a Voronoi edge other than
the dual of pq;TYPE III : a circumcenter other than that of pqr;TYPE IV : the cirumcenter of pqr.

rithm will be (if the Steiner point computation time is kept
the same). Simpson [Sim06] recently showed empirical ev-
idence that standard Delaunay refined meshes (through cir-
cumcenter insertion) are roughly twice the size of the opti-
mal meshes for an application he calls function approxima-
tion. Our results here complement this study as we get a size
improvement of roughly factor two compared to the previous
Delaunay refinement algorithms.

3. LOCALLY OPTIMAL STEINER POINTS

Definition 1 Given an ordered pair of points(p,q) in the
input domain. Consider the circle that goes throughp andq,
of radius 2sinα|pq| whose center is on the right side of the
directed edgepq. The disk bounded by this circle is called
thepetalof pq, denoted bypetal(pq).

Note that every edge has two petals (of interest), unless
both its endpoints are on the boundary. In a triangulation,
petals (of interest) of every edgepq must include another
vertex. Otherwise, there would be a bad triangle in the trian-
gulation incident top andq. HarPeled and Üngör [HPÜ05]
proved that the triangulation of a points set is good if and
only if petal of every pair of points contains another point.
In the following algorithm, we suggest to pick a Steiner point
inside empty petals furthest away from all existing vertices.

Algorithm 1
Compute the Delaunay triangulation of the input
while ∃ a bad trianglepqr with shortest edgepq

insert a pointx∈ petal(pq) of its shortest edgepq
which is furthest from all existing vertices

This point is either a Voronoi vertex (but not necessar-
ily the circumcenter ofpqr) or on a Voronoi edge. We clas-
sify these points into four different types in order to relate

them with the existing refinement strategies. This classifica-
tion also helps us presenting a theoretical and experimental
assessment of our method. Letpqr be a bad triangle whose
shortest edge ispq. Then, the point inside the petal ofpq fur-
thest away from all existing vertices is one of the following
types.

• TYPE I. The intersection of the Voronoi dual ofpq and
the boundary of the petal ofpq. This case happens when
the circumcenter ofpqr is outside the petal ofpq. This
type is nothing but the offcenters described in [Üng04].

• TYPE II. A point on a Voronoi edge other than the dual of
the shortest edgepq. This is a new type of Steiner point for
Delaunay refinement and should be seen as an extension
of the offcenter idea to the triangles that are almost good
(circumcenter ofpqr is inside the petal ofpq) .

• TYPE III. The circumcenter of a nearby triangle topqr.
Such a triangle must be acute. So, this type is a sink
circumcenter. However, it is not necessarily the sink of
the considered bad trianglepqr (as is the case in Figure
5). Hence, our use of sinks is somewhat different than
the original sink insertion algorithm of Edelsbrunner and
Guoy [EG01].

• TYPE IV The circumcenter of the bad trianglepqr.

We compute the location (and also the type) of the Steiner
point simply by doing a local search (breadth-first-search) on
the Voronoi graph. The angles of the visited triangles provide
guidance in this search. For instance, if the smallest angle of
the bad triangle is less thanα/2, then we know for sure that
the locally optimal Steiner point is of TYPE I (an offcenter).
In general, it is better to start the search visiting the triangle
opposite to the largest angle of the bad triangle. We elabo-
rate more on the implementation details of the algorithm in
Section6.
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4. ANALYSIS

The analysis of the Delaunay refinement algorithms relies on
lower bounds on the local feature size of the Steiner points.
It is relatively easy to extend the analysis of the standard re-
finement techniques for our algorithms, since the local fea-
ture size of the Steiner points we use are not any smaller
than that of the circumcenters. See for instance [Üng04] for
an analysis of the refinement that uses Type I and Type IV
Steiner points. Indeed, one might expect an improvement on
the angle bound. Such an improvement, however, seems dif-
ficult to prove and left as an open problem. Here, we pro-
vide some theoretical evidence on why our strategy works
for large values of threshold angleα. For this purpose, the
following lemma should be complemented with the experi-
mental results on the percentage use of each type of Steiner
points (presented in Section6).

We further classify the Type II vertices for the sake of the
analysis. Consider a Steiner point that is on the dual edge
of qr of a bad triangle with shortest edgepq. This TYPE II
Steiner point is called a TYPE II ( A) if ∠qpr≥ π/2, a TYPE

II ( B) if ∠pqr ≤ ∠qpr < π/2, and a TYPE II ( C) otherwise.

Lemma 1Given a point setΩ and a desired minimum angle
α as input, the ALGORITHM 1 does not create any feature
shorter than the existing ones while inserting a vertexx of
type

(a) TYPE I Steiner points ifα ≤ π/3 = 60◦.
(b) TYPE II ( A) Steiner points ifα ≤ π/4 = 45◦.
(c) TYPE II ( B) Steiner points ifα ≤ π/5 = 36◦.
(d) TYPE II ( C), TYPE III and TYPE IV Steiner points if

α ≤ π/6 = 30◦.

Proof Let pqr be a bad triangle with shortest edgepq.
(a) Sincex is on the Voronoi edge ofpq, its nearest neigh-
bors among the existing vertices arep andq. Observing that
|xp| < |pq| if and only if ∠pxq> π/3 completes this part of
the proof.
(b) Assume, without loss of generality, thatx is on the
Voronoi dual ofqr. So, ∠qpr is a non-acute angle. Letl
be the line the line orthogonal topq and goes throughp.
(Figure6 (top).) Lety be the other (thanp) intersection of
line l and∂petal(pq). Without loss of generality assume that
petal(pq) is unit disk. Then, the length of the arcpq is 2α
(in radians). Letx′ be the midpoint of the arcyq. This means,
the length of the arcx′q is π/2. Hence,α≤ π/4 if and only if
pq≤ x′q. Note that there is no point below the linel and out-
side thepetal(pq) that is closer tox′ thanq. So,|x′q| ≤ |xq|.
Then, we conclude that|xq| ≥ |pq| if α ≤ π/4.
(c) This part of the proof is similar to (b). Assume, without
loss of generality, thatx is on the Voronoi dual ofqr. So,
∠pqr ≤ ∠qpr < π/2. Let l be the line the line orthogonal to
pqand goes through the midpoint ofpq. (Figure6 (bottom).)
Let y be the intersection point of linel and∂petal(pq) that
is furthest frompq. Without loss of generality assume that
petal(pq) is unit disk. Then, the length of the arcpq is 2α
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Figure 6: TYPE II ( A) AND (B)

(in radians) and the length of the arcyq is π−α. Let x′ be
the midpoint of the arcyq. This means, the length of the arc
x′q is π/2−α/2. Hence,α ≤ π/5 if and only if pq≤ x′q.
Note that there is no point below the linel and outside the
petal(pq) that is closer tox′ thanq. So,|x′q| ≤ |xq|. Then,
we conclude that|xq| ≥ |pq| if α ≤ π/5.
(d) Straightforward to show.

Lemma1 suggests that if we could show that the ALGO-
RITHM 1 only uses, say TYPE I and TYPE II ( A) Steiner
points, then it would (provably) compute triangulations with
minimum angle of 45◦. Unfortunately, such a premise does
not seem plausible. Our experiments (presented in Section
6) show that all four types are employed by Algorithm 1 in
different amounts.

The following theorem follows from the above Lemma.
Its proof is similar to the results in traditional Delaunay re-
finement [Rup93,She02,Üng04] and hence omitted here.

Theorem 1 Given a planar straight line graphΩ and a de-
sired minimum angleα ≤ 30◦ ALGORITHM 1 terminates
with a correct output.

Time Complexity.A straightforward running time anal-
ysis leads to a quadratic time complexity bound for AL-
GORITHM 1 as is the case for most other Delaunay refine-
ment algorithms. However, this bound can be improved to
O(nlogn+ m), wheren is the input size andm is the out-
put size, by using a technique recently introduced [HPÜ05].
This technique employs a balanced quadtree as a data struc-
ture and takes advantage of the locality of the Steiner points
with respect to the shortest edge of bad triangles.
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5 . RELOCATION and REFINEMENT

Based on our analysis (Section4) and experiments with
Algorithm 1, we observed that the refinement process in-
troduces shorter edges than existing ones usually when a
bad triangle is almost good and also the neighbor trian-
gles are good or almost good. This suggests that it might
be easy to fix such bad triangles by a local smoothing strat-
egy. While one might explore various powerful smoothing
strategies [ABE97] in these cases, we opt for simplicity and
efficiency. We first recall couple of definitions and then de-
scribe a simple adjustment to our algorithm. Thestar of a
vertexa consists of all triangles that containa. Thelink of a,
then, consists of all edges of triangles in the star that are dis-
joint from a. A vertex is said to befree if it was inserted by
the refinement algorithm as a Steiner point. Input vertices are
not free and never relocated. For each bad triangle, we first
(one-at-a-time) attempt to relocate its free vertices. If one of
its free vertices find a new location so that all the triangles
in its (new) star become good, we perform the relocation.
Otherwise, we proceed with a new Steiner point insertion as
described in ALGORITHM 1.

Algorithm 2
Compute the Delaunay triangulation (DelTri) of the input
Let P denote the maintained point set
while ∃ a bad trianglepqr in DelTri(P)

relocated := FALSE

for each free vertexa of pqr
if K =

T

xy∈link(a) petal(xy) 6= ∅
and ∃b∈ K such that all triangles ofstar(b)

in theDelTri(P∪{b}−{a}) are good
then

deletea; insertb; relocated:=TRUE; break;
endfor
if relocated == FALSE then

insert a pointx∈ petal(pq) of its shortest edgepq
which is furthest from all existing vertices

endwhile

The standard analysis techniques (for proving termination
and output size optimality) that are used for the previous De-
launay refinement algorithms do not apply for ALGORITHM

2 due to the point relocation step. While proving an im-
proved bound for it is left open, we can match the earlier
bounds by a simple modification to ALGORITHM 2: apply
the relocation only when the the constraint angle is larger
than 30. This modification keeps ALGORITHM 2 still effec-
tive for large constraint angles and provably good for small
constraint angles.

6. EXPERIMENTS

We implemented the proposed algorithms and run experi-
ments on various data sets and point distributions. Figures
10and11and Table6.3summarizes our experimental study

p

q
a

b

Figure 7: Relocating a free vertex of a bad triangle pqr to
the intersection of the petals of the link of a= r.

on ALGORITHM 1 and ALGORITHM 2. Performance plots
are similar for various other data sets. We should emphasize
that while as an illustration we present several sample out-
put triangulations in Figures1, 8, and9, performance plots in
Figures10and11provide much more information regarding
the performance of the two algorithms.

6.1. Implementation

Our implementation is a fairly modest modification of the
Triangle software. Here, we explain the crucial changes.
For computing the TYPE II Steiner points, we have imple-
mented a primitive that computes the intersection(s) of a ray
and a circle. This computation is slightly more expensive
than computing circumcenters and is common to graphics
software [MST89]. A similar primitive that computes the in-
tersections of two circles is implemented for the relocation
step of ALGORITHM 2. In this step, however we avoid com-
puting the exact intersection of all petals on the link. Instead,
we use a simple sampling strategy which proves effective
and efficient. For each pair of petals, we pick a sample of
points on the line segment connecting the intersection points
of the two petals. We enumerate the petal pairs starting from
those that are furthest from each other on the link. If there
exist any petal pair with no intersection, then we terminate
the process and conclude that there is no relocation point.
Otherwise, we test for each sampling pointb whether all
triangles ofstar(b) in the Delaunay triangulation of the set
(P∪{b}−{a}) are of good quality, whereP is the evolving
point set anda is the point to be relocated. We always main-
tain the Delaunay property of the triangulation. Alternative
strategies for point relocation can be explored. We choose
this one for its simplicity end efficiency.
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α = 42◦ α = 41◦ α = 41.5◦

Figure 8: Output of theALGORITHM 2 for various data sets for various largeα values.

6.2. Data Sets.

We ran our experiments on various data sets including the
following:

1. Lake Superiorconsists of 522 points, 522 segments some
of which meet at small angles, and 7 holes.

2. Boxed Point Pairconsists of six points two of which are
located unit distance from each other and at the center of
a square of side length 100 units.

3. Boeingconsists of 30 points and 30 segments and a hole
modeling an airplane wing. The sampling around the tip
of the wing is very fine (to allow accurate simulations).

4. Random Pointsconsists of 1,000 points spread uniformly
at random inside a square box.

5. Turkeyconsists of 216 points and 216 segments and two
components.

6.3. Performance Comparison

We compare our algorithms with the previous Delaunay re-
finement implementations on three performance measures.

Angle threshold.Plots in Figure11 show that that the
original Delaunay refinement algorithm is impotent for con-
straint angles larger than 34◦. The offcenter insertion algo-
rithm of Üngör has already extended this cut-off to 35◦. On
the other hand, our ALGORITHM 1 terminates with correct
output for constraint angles up to 38.5◦. Finally, our ALGO-
RITHM 2 which is a simple extension of the first algorithm
works for constraint angles up to 42◦.

Output size.The number of triangles in a triangulation is
a simple linear function of the number of points in it. Hence,
the plots in Figure11reflect on the number of triangles in the
output. We observed significant improvement on the output
size of the two refinement algorithms proposed here. This
improvement is particularly impressive when the threshold
angle is large. (See Figure9 also.)

Running time.The primitives we use for computing the
proposed locally optimal Steiner points is slightly more ex-
pensive than those used for computing circumcenters. How-
ever, we insert fewer Steiner points. Overall, ALGORITHM

1 runs faster than the previous algorithms, where as ALGO-
RITHM 2 has comparable running time. (See Figure10.) Af-
ter the optimization of our code, we expect more significant
speed up on both algorithms.

10
1

10
2

10
3

10
4

 30  32  34  36  38  40  42

Angle Threshold

Turkey
T

im
e 

(m
il

li
se

co
n

d
s)

 -
 l

o
g

sc
al

e

Triangle 1.4
Triangle 1.6
Algorithm 1
Algorithm 2

Figure 10: Plot of the running time vs. the constraint angle
α for the Turkey data set shown in Figure1.

7. DISCUSSIONS

The termination and size complexity bounds given for the
previous Delaunay refinement apply for our algorithms, for
constraint angles up to 30◦, as we are more cautious in in-
troducing short features. It would be interesting to prove the
same theoretical (termination and size-optimality) bounds
for α > 30◦. It would be also interesting to further improve
the practical performance angle bounds say forα ≥ 45◦.
This would imply generating non-obtuse/acute angle trian-
gulations. Ours is a first Delaunay refinement result breaking
the constraint angle barrier of 34◦, which survived over ten
years. In achieving this, its important to note that we kept the
simplicity of the algorithm. This in turn, enabled us to design
an efficient and effective implementation. Alternative (more
powerful but perhaps more expensive) mesh optimization al-
gorithms can be integrated within our framework.
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Triangle(1.4) (circumcenter) Triangle(1.6) (offcenter) ALGORITHM 2

Figure 9: Output size comparison on the Boeing data set. Forα = 30◦, the new algorithm inserts62Steiner points, almost half
as many as the118 Steiner points inserted by the offcenter algorithm which is in turn half as many as the236Steiner points
used by the circumcenter insertion algorithm.
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Figure 11: Plot of the number of Steiner points vs. the constraint angleα.

The standard Delaunay refinement algorithms are prone to
significant round-off errors, e.g., computation of the circum-
center of a triangle with a very large angle. Since we limit
ourselves to petal regions, we avoid such round-off errors.
Hence, the algorithms and implementation presented in this
work are numerically stable.

Delaunay refinement is a popular technique for comput-
ing surface triangulations also [Dey06]. We foresee that our
algorithms can be easily extended for computing high qual-
ity and small size triangulations of two manifolds. Extension
of method to three dimensions is also a natural research di-
rection and is currently under study.
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Circumcenter Offcenter Algorithm 1 Algorithm 2
Data Set α TypeIV TypeI TypeIV TypeI TypeII TypeIII TypeIV TypeI TypeII TypeIII TypeIV Relocation

Superior 30 803 182 455 136 152 176 7 145 133 127 6 76
Superior 34 2350 323 787 185 228 237 10 193 203 164 5 79
Superior 38 ∞ ∞ ∞ 269 379 381 24 254 316 253 14 101
Superior 41 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 384 567 331 68 206
Boeing 30 233 59 103 34 42 12 0 39 29 8 0 7
Boeing 34 16309 88 154 50 57 20 3 48 55 12 1 5
Boeing 41 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 95 152 47 8 47
Random 30 3519 593 1380 445 426 508 30 446 421 458 24 58
Random 34 ∞ 1076 2770 677 666 802 70 675 644 672 43 141
Random 41 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 3853 5857 5038 1344 2744

Table 1: Number of different type of Steiner points used by four different Delaunay refinement algorithms.
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