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Figure 1: The original Delaunay refinement algorithm does not terminate for constraint angles largeB4ha®ur algorithm
computes quality triangulations for constraint angles ug28. For example, when the constraint anglel® , the original De-

launay refinement chokes with bad (shaded/red) triangles (left), where as our algorithm computes a nicely graded triangulation
where all angles are larger than or equal to the constraint angle (right).

Abstract

We present two new Delaunay refinement algorithms, the second an extension of the first. For a given input domain
(a set of points in the plane or a planar straight line graph), and a threshold amgtee Delaunay refinement
algorithms compute triangulations that have all angles at leasdur algorithms have the same theoretical guar-
antees as the previous Delaunay refinement algorithms. The original Delaunay refinement algorithm of Ruppert
is proven to terminate with size-optimal quality triangulations do 20.7°. In practice, it generally works for

o < 34° and fails to terminate for larger constraint angles. The new Delaunay refinement algorithm generally
terminates for constraint angles up #42°. Experiments also indicate that our algorithm computes significantly
(almost by a factor of two) smaller triangulations than the output of the previous Delaunay refinement algorithms.

Categories and Subject Descriptgascording to ACM CCS) F.2.2 [Nonnumerical Algorithms and Problems]:
Geometrical problems and computations 1.3.5 [Computational Geometry and Object Modeling]: Geometric algo-
rithms, languages, and systems

1. INTRODUCTION gulation problem [Ede01 She02TWO0(Q]. Quality constraint

of the problem is motivated by the numerical methods used
in engineering applications where these triangulations are
heavily used. A triangle is said to hgood if its smallest
angle is bounded from below.Small size objective is crucial
for the applications as well, for obvious efficiency reasons.

We revisit the following well-known two-dimensional geo-
metric optimization problemCompute the smallest size tri-
angulation of a given two dimensional domain (collection
of points and/or segments) such that all the triangles in the
triangulation are of good qualityNaturally, we are allowed

to introduce points (called th&teiner points) additional to Several (approximation) algorithms have been suggested
the input points. This problem is also known as the simpli- for this problem. Quadtree refinement algorithms [BE{594
cial mesh generation problem, or the quality Steiner trian- and Delaunay refinement algorithms [CheR8p93Ung04
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provide similar theoretical guarantees. In general for a spe-
cific algorithm, these guarantees can be statedGasn a
two dimensional domain and a threshold angl€ vy, the al-
gorithm computes a triangulation of the input domain whose
size is within a constant factor of the optimal such that all
the angles of the triangulation are at least The angley
should be thought of as the theoretical limit of an algorithm.
The exact value of thg depends on the approach/algorithm
as well as the input type. For instance, the Delaunay refine-
ment algorithm of Ruppertqup93 is proven to compute
good triangulations foo < y = 30° on point sets and for

o < y=20.7° on planar straight line graphs.

In practice, the lack of theoretical guarantee for a mesh
refinement algorithm, whea > vy, is observed as a never-
ending refinement process. Steiner points are iteratively in-
serted until the computer reaches out of its numerical pre-
cision capacity or its memory. Shewchuk’s experimental
study revealed that in practice Delaunay refinement algo-
rithm works better than its theoretical guarant®ag96:

“Ruppert Rup93 proves that this procedure halts
for angle constraint of up to 22°. In practice, the
algorithm generally halts with an angle constraint
of 33.8°, but often fails to terminate given an an-
gle constraint of 3®°. It would be interesting to
discover why the cutoff falls there.”

There has been attempts to explain this cuttfPWO05.
Here, we take a different strategy and rather than explaining
this limitation, we remove it. We present a new Delaunay re-
finement algorithm which sets a new cut-off. Our refinement
algorithm terminates with good triangulations for constraint
angles up to 42

1.1. Previous Work
1.1.1. Delaunay refinement

Delaunay refinement method involves first computing an ini-
tial Delaunay triangulation of the input domain, and then it-
eratively adding points calleSteiner pointgo improve the
quality of the triangulation. Various types of Steiner points
are studied in the literature, which we review below.

CircumcentersCircumcenters of bad triangles, as stud-
ied by many Che89Rup93 She02, is a natural choice for
improving the quality of a (Delaunay) triangulation through
iterative refinement. Insertion of the circumcenter of a bad

triangle, surely removes the bad triangle (thanks to the empty

circle property of Delaunay triangulations.)

Sinks.Edelsbrunner and Guo¥0] suggested insert-
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triangle may remain in the triangulation even after its sink is
inserted.

Offcenters.Ungér [Ung04 introduced another type of
Steiner points, calledff-centers as an alternative to cir-
cumcenters. Offcenters and circumcenters, differ from each
other only for “very” bad triangles (those with smallest an-
gle at mosta/2, and are the same for almost good trian-
gles (those with the smallest angle betweef2 anda. In
practice, off-center insertion algorithm results in significant
reduction in the output sizdJhg04. Off-centers are also
numerically more stable than circumcenters and facilitates
more robust software. The idea of using offcenters also leads
to the design of the first time-optimal Delanuay refinement
algorithm HPU09.

Recent years witnessed an inflation in the develop-
ment and use of Delaunay refinement algorithms some
of which are mentioned earlierC[3S06 EG01, HPU05
HMPO06,Mil04, MPWO05, She00She02Ung04. Miller et al.
proposed a time-efficient (but not time-optimal) Delaunay
refinement algorithmHMPOG6, Mil04]. Their algorithm cur-
rently lack experimental support to indicate its relevance in
practice. Collet al. [CGS0§ studied Delaunay refinement
within the context of mesh editing. However, currently the
only published version of their work contains errors (as ac-
knowledged by the authors in a recent personal communica-
tion) that make their experimental study inconclusive. These
algorithms do not address the termination problem which is
one of our primary focus in this study.

Delaunay refinement softwar€he popular mesh gener-
ation software is a robust implementation of the Delaunay
refinement methodghe94. The software used Ruppert’s
circumcenter insertion algorithm [RupPid it first four re-
leases and has been using Ungér’s offcenter insertion algo-
rithm [Ung04 in its latest two releases.

1.1.2. Other mesh refinement algorithms

Quadtree methods provide similar guarantees as Delau-
nay refinement algorithmsBEG94. However, in practice
quadtree refined meshes are significantly larger than Delau-
nay meshes. Moreover, quadtree implementations lack the
parameterization of the constraint angle.

There are other refinement strategies which are used in
conjunction with Delaunay triangulations. For instance, the
longest-edge propagation path (LEPP) methods use the mid-

ing sinksof bad triangles, which are circumcenters of acute point of the longest edge of certain triangles as the Steiner
triangles. For each bad triangle, an iterative walk in the trian- point [RH99. Theoretical bounds for these methods tend
gulation each time crossing the edge opposite to the unique to be relatively weaker than that of the Delaunay refine-
obtuse angle leads to its sink. Sinks are at the local maxima ment methods. Moreover, these methods also suffer from the
of the local feature size function. Note that the sink of a bad termination problem in practice for constraint angles even
triangle can be quite far away from the triangle. Hence, abad smaller than 32.
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1.2. Ouridea and contribution.

All existing mesh refinement algorithms, including the cir-
cumcenter and the offcenter insertion variants of the Delau-
nay refinement, suffer from a so callegtmination problem

for large values ofi. In this paper, we explore ideas to alle-
viate this problem.

We propose two simple algorithms, the second an exten-
sion of the first. The first algorithm suggests to locate Steiner
points inside a particular neighborhood of bad triangles that
are furthest away from existing vertices. One might wonder
“Are such points not circumcenters (at least for the almost
good triangles)?”. It turns out the answer is “No!”, for most
of the bad triangles in a typical Delaunay triangulation. In
Section3, we classify this Steiner point description into four
different types.

Our second algorithm incorporates a simple relocation
scheme which becomes effective especially for largeal-
ues. Before attempting to insert a Steiner point for a bad tri-
angle, we simply try fixing the bad triangle by relocating one
of its vertices (if that vertex was inserted as a Steiner point).

These two simple ideas lead to the following as the main
contributions of this paper:

e \We give a definition of Steiner points which unifies the
aforementioned Steiner point insertion strategies. The
new rule automatically selects one of the four types of
Steiner points, three of which (circumcenters, sinks, off-
centers) are previously studied.

e With the new Steiner point definition, we extend the
practical angle bound of the Delaunay refinement algo-
rithms. While the previous Delaunay refinement algo-
rithms fail to compute meshes, for constraint angles as
small as 33°, the new algorithm computes good trian-
gulations for constraint angles as high a$ 4@n aver-
age, we extend the practical constraint angle bound by
about 8.

e The key idea in our Steiner point selection method is to
stay away from the existing vertices. It turns out that cir-
cumcenters are not the best choice for this objective. In-
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large smallest angles are desired. Two reasons behind this
are explained below.

2.1. Termination Problem

Figure 2: Whena > 30°, circumcenter insertion introduces
shorter pairwise distances than existing ones, jpg| =

ac) = |rc| < |pdq|

Termination guarantee of the Delaunay refinement algo-
rithms relies on a packing argument. This argument applies
for small values ofa, (i.e. a < 30°) where circumcenter
insertion does not gradually decrease the shortest pairwise
vertex distance. Fom > 30°, however, the iterative refine-
ment process could introduce smaller and smaller features
and may not terminate (See Fig¢ In practice, such phe-
nomenon starts occurring far> 34°, regardless of the type
and distribution of input data. See FigiBand Figures.

Different VersionsAny refinement algorithm that makes
significant use of circumcenters is expected to suffer from
the termination problem for threshold angles not much larger
than 30. Majority of the points inserted by most Delau-
nay refinement algorithms are circumcent€28¢89EGO01,
Rup93 She02. While the circumcenters are less frequently
used by the offcenter insertion algorithfirjg04, their per-
centage is significant enough that the practical performance
bound remain roughly the same. Figudllustrates how
both Tri angl e 1.4 which is an implementation of the

deed, experiments give a surprising low percentage use circumcenter insertion, andlr i angl e 1. 6 which is an

for circumcenters among the four alternatives. We pick
locations that result in longer edge lengths for the trian-
gles of the mesh. As aresult, the size of the output of our
method is significantly smaller than that of the previous
Delaunay refinement algorithms.

e We present a simple framework where a simple local
smoothing (point relocation) strategy is integrated into
the refinement algorithm.

2. MOTIVATION

We explore ways to improve the practical performance of
Delaunay refinement method. Existing versions of Delaunay

implementation of the offcenter insertion, suffer from the
termination problem. It is important to observe the charac-
teristic difference between these two methods as they get
caught in the never-ending refinement process. This differ-
ence is due to the order the bad triangles are handled. The
offcenter insertion algorithm works better when the bad tri-
angles with the shortest edges are handled f#RLJ03. On

the other hand, the circumcenter insertion algorithm works
better when the bad triangles with the smallest angles are
handled first. When they terminate the offcenter insertion
performs better than the circumcenter insertion, that is, it
outputs meshes with fewer triangles. However, when inter-
rupted in the never-ending refinement process, the evolving

refinement method becomes impractical when meshes with mesh of the offcenter refinement looks worse than that of the

(© The Eurographics Association 2007.
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(d) Tri angl e(1.6), S= 500
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(e)Tri angl e(1.6), S= 750

Figure 3: Termination problem shown for the constraint angle= 35.5° on the Lake Superior data set (zoomed in). Bad

triangles are shaded (red). (a) Delaunay triangulation of the input. (b) and (c) Evolving triangulation using the circumcenter
insertion. (d) and (e) Evolving triangulation using the offcenter insertion. Neither of the two algorithms terminates. So, for this
illustration, we interrupted their execution after the insertion of S Steiner points.

@

(b) Tri angl e(1.4), S=50

(c)Tri angl e(1.4), S= 1000

Figure 4: Termination problem is shown far = 35° on a simple data set: a pair of points at three unit distance from each
other inside a box of side length 100 units. Bad triangles are shaded (red). (a) Delaunay triangulation of the input. (b) and

(c) Evolving triangulation using the circumcenter insertion. The refinement process does not terminate, hence the execution is

interrupted after the insertion of S Steiner points.

circumcenter refinement. This can be fixed by changing the
bad triangle handling order.

With or without (small input angle) constraintBrior to
our work termination problem was addressed in the con-
text of small input anglesMPWO05 PWO05 She0qQ. It is im-
portant to note that in general the termination problem ex-
ists regardless of the simplicity of the input domain. See
Figure 4, where the input consists of a pair of points en-
closed by a large box. In general, for any input domain,
it is common to observe overrefinement occurring in re-
gions far away from the input features whenewes large.
In this paper, we do not limit ourselves to certain type of

constraints and rather address the termination problem in
general. Our analysis in Sectighfocuses on point sets.
However, this work can be easily coupled with the previous
work [She02MPWO05, Ung04 that consider general planar
straight line graphs. Our experiments, on data sets that are
planar straight line graphs with small angles verify this.

2.2. Mesh Size

The output size is crucial for the efficiency of the methods
using these meshes in various applications. Also, the smaller
the number of Steiner points the faster the refinement algo-

(© The Eurographics Association 2007.



H. Erten & A. Ungor / Triangulations with bcally Optimal Steiner Points 147

TYPEI TypPell TypPell TYPEIV

Figure 5: Find a point x inside the (shaded disk) petal of pq that is furthest away from all existing vertices. Such a point can be
on a Voronoi edge (left two) or a Voronoi vertex (right twd).PE I: on the dual of pg;TYPE II: on a Voronoi edge other than
the dual of pg;TYPE Il : a circumcenter other than that of pgT,YPE IV : the cirumcenter of pqr.

rithm will be (if the Steiner point computation time is kept  them with the existing refinement strategies. This classifica-
the same). Simpsors8[mO04g recently showed empirical ev-  tion also helps us presenting a theoretical and experimental
idence that standard Delaunay refined meshes (through cir-assessment of our method. Ldr be a bad triangle whose
cumcenter insertion) are roughly twice the size of the opti- shortest edge ipg. Then, the point inside the petal p§fur-
mal meshes for an application he calls function approxima- thest away from all existing vertices is one of the following
tion. Our results here complement this study as we get a size types.
improvement of roughly factor two compared to the previous
Delaunay refinement algorithms.

e TYPE |. The intersection of the Voronoi dual gfq and

the boundary of the petal qig. This case happens when

3. LOCALLY OPTIMAL STEINER POINTS the circumcenter opqr is outside the petal opg. This
Definition 1 Given an ordered pair of pointg,q) in the type is nothing but the offcenters describedimg04.

input domain. Consider the circle that goes thropgndg, e TYPEII. A point on a Voronoi edge other than the dual of

of radius 2sim|pg| whose center is on the right side of the ~ the shortest edgeq, This is a new type of Steiner point for
directed edgepq. The disk bounded by this circle is called Delaunay refinement and should be seen as an extension
thepetalof pg, denoted bypetal( pq). of the offcenter idea to the triangles that are almost good

) (circumcenter opqr is inside the petal opq) .
Note that every edge has two petals (of interest), unless ¢ Tvpe 111. The circumcenter of a nearby triangle fr.
both its endpoints are on the boundary. In a triangulation,  g,ch a triangle must be acute. So, this type is a sink

petals (of interest) of every edgeg must include another circumcenter. However, it is not necessarily the sink of
vertex. Otherwise, there would be a bad triangle in the trian- the considered bad triangjeyr (as is the case in Figure
gulation incident top andg. HarPeled and Ungér [HPUDS 5). Hence, our use of sinks is somewhat different than
proved that the triangulation of a points set is good if and e original sink insertion algorithm of Edelsbrunner and
only if petal of every pair of points contains another point. Guoy [EGO1.

In the following algorithm, we suggest to pick a Steiner point

- o " e TYPEIV The circumcenter of the bad triangjeyr.
inside empty petals furthest away from all existing vertices.

Algorithm 1 We compute the location (and also the type) of the Steiner
point simply by doing a local search (breadth-first-search) on
the Voronoi graph. The angles of the visited triangles provide
guidance in this search. For instance, if the smallest angle of
the bad triangle is less thary2, then we know for sure that
the locally optimal Steiner point is ofIPE | (an offcenter).
In general, it is better to start the search visiting the triangle
This point is either a Voronoi vertex (but not necessar- opposite to the largest angle of the bad triangle. We elabo-
ily the circumcenter opqr) or on a Voronoi edge. We clas-  rate more on the implementation details of the algorithm in
sify these points into four different types in order to relate Section6.

Compute the Delaunay triangulation of the input
while 3 a bad trianglgpgr with shortest edgeq
insert a poinix € petal(pg) of its shortest edgeq
which is furthest from all existing vertices

(© The Eurographics Association 2007.
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4. ANALYSIS

The analysis of the Delaunay refinement algorithms relies on
lower bounds on the local feature size of the Steiner points.
It is relatively easy to extend the analysis of the standard re-
finement techniques for our algorithms, since the local fea-
ture size of the Steiner points we use are not any smaller
than that of the circumcenters. See for instaii¢eg04 for

an analysis of the refinement that uses Type | and Type IV
Steiner points. Indeed, one might expect an improvement on
the angle bound. Such an improvement, however, seems dif-
ficult to prove and left as an open problem. Here, we pro-
vide some theoretical evidence on why our strategy works
for large values of threshold angte For this purpose, the
following lemma should be complemented with the experi-
mental results on the percentage use of each type of Steiner
points (presented in Secti@).

We further classify the Type Il vertices for the sake of the
analysis. Consider a Steiner point that is on the dual edge

H. Erten & A. Ungdr / Triangulations with bcally Optimal Steiner Points

of gr of a bad triangle with shortest edge. This TypPE Il
Steiner pointis called aviPE Il (A) if Zgpr>T1/2, a TYPE
I1(B)if Zpgr < Zgpr < 11/2, and a WPE I (C) otherwise.

Lemma 1 Given a point sef© and a desired minimum angle
a as input, the AGORITHM 1 does not create any feature
shorter than the existing ones while inserting a vereft

type

(a) TyPe| Steiner points ifx < 11/3 = 60°.

(b) TYPEII (A) Steiner points ifx < 11/4 = 45°.

(c) Type |l (B) Steiner points iftx < 11/5 = 36°.

(d) TyPe Il (c), Type lll and TYPE IV Steiner points if
a <m/6=30°.

Proof Let pgr be a bad triangle with shortest edpe

(a) Sincex is on the Voronoi edge opq, its nearest neigh-
bors among the existing vertices grandg. Observing that
|xp| < |pq if and only if Zpxq> 11/3 completes this part of
the proof.

(b) Assume, without loss of generality, thatis on the
Voronoi dual ofgr. So, Zgpr is a non-acute angle. Lét
be the line the line orthogonal tpq and goes througip.
(Figure6 (top).) Lety be the other (thamp) intersection of
linel anddpetal(pq). Without loss of generality assume that
petal(pg) is unit disk. Then, the length of the apg is 2a
(in radians). Lek’ be the midpoint of the argg. This means,
the length of the arg’qis /2. Hencep < 11/4 if and only if
pg < X'g. Note that there is no point below the lihand out-
side thepetal( pg) that is closer t’ thang. So,|xq| < |xq|.
Then, we conclude thaxqgl > |pq if a < /4.

(c) This part of the proof is similar tdbj. Assume, without
loss of generality, thak is on the Voronoi dual ofyr. So,
Zpar < Zqpr < 1/2. Letl be the line the line orthogonal to
pgand goes through the midpoint pf. (Figure6 (bottom).)
Lety be the intersection point of lineanddpetal( pg) that
is furthest frompag. Without loss of generality assume that
petal(pg) is unit disk. Then, the length of the apg is 2a

Figure 6: TYPEII (A) AND (B)

(in radians) and the length of the aygis 11— a. Letx' be
the midpoint of the argq. This means, the length of the arc
X'qis /2 —a/2. Hencea < 11/5 if and only if pg < Xq.
Note that there is no point below the liheand outside the
petal(pg) that is closer tod thang. So,|X'q| < |xq. Then,
we conclude thajixgl > |pq| if a < 11/5.

(d) Straightforward to show. []

Lemmal suggests that if we could show that the @o-
RITHM 1 only uses, say YPE | and TyPE Il (A) Steiner
points, then it would (provably) compute triangulations with
minimum angle of 48. Unfortunately, such a premise does
not seem plausible. Our experiments (presented in Section
6) show that all four types are employed by Algorithm 1 in
different amounts.

The following theorem follows from the above Lemma.
Its proof is similar to the results in traditional Delaunay re-
finement Rup93 She02Ung04 and hence omitted here.

Theorem 1 Given a planar straight line grapgh and a de-
sired minimum anglex < 30° ALGORITHM 1 terminates
with a correct output.

Time ComplexityA straightforward running time anal-
ysis leads to a quadratic time complexity bound for-A
GORITHM 1 as is the case for most other Delaunay refine-
ment algorithms. However, this bound can be improved to
O(nlogn+ m), wheren is the input size andh is the out-
put size, by using a technique recently introdude&{)03.

This technique employs a balanced quadtree as a data struc-
ture and takes advantage of the locality of the Steiner points
with respect to the shortest edge of bad triangles.

(© The Eurographics Association 2007.
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5 . RELOCATION and REFINEMENT

Based on our analysis (Sectigh) and experiments with
Algorithm 1, we observed that the refinement process in-

troduces shorter edges than existing ones usually when a

bad triangle is almost good and also the neighbor trian-
gles are good or almost good. This suggests that it might
be easy to fix such bad triangles by a local smoothing strat-
egy. While one might explore various powerful smoothing
strategiesABE97] in these cases, we opt for simplicity and
efficiency. We first recall couple of definitions and then de-
scribe a simple adjustment to our algorithm. Tiar of a
vertexa consists of all triangles that contaanThelink of a,

then, consists of all edges of triangles in the star that are dis-

joint from a. A vertex is said to béreeif it was inserted by

the refinement algorithm as a Steiner point. Input vertices are
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not free and never relocated. For each bad triangle, we first Figure 7: Relocating a free vertex of a bad triangle par to

(one-at-a-time) attempt to relocate its free vertices. If one of
its free vertices find a new location so that all the triangles
in its (new) star become good, we perform the relocation.
Otherwise, we proceed with a new Steiner point insertion as
described in AGORITHM 1.

Algorithm 2
Compute the Delaunay triangulatidD€l Tri) of the input
Let P denote the maintained point set
while 3 a bad trianglgpgr in DelTri(P)
relocated := BLSE
for each free verter of pgr
if X = ﬂxyelink(a) petal(xy) # 0
and 3b € X such that all triangles aftar(b)
in theDelTri(PU {b} — {a}) are good
then
deletea; insertb; relocated:=RUE; break;
endfor
if relocated == BKLSE then
insert a poinix € petal(pg) of its shortest edgeq
which is furthest from all existing vertices
endwhile

The standard analysis techniques (for proving termination
and output size optimality) that are used for the previous De-
launay refinement algorithms do not apply fo @ORITHM
2 due to the point relocation step. While proving an im-
proved bound for it is left open, we can match the earlier
bounds by a simple modification toL&ORITHM 2: apply
the relocation only when the the constraint angle is larger
than 30. This modification keepsL,&ORITHM 2 still effec-
tive for large constraint angles and provably good for small
constraint angles.

6. EXPERIMENTS

We implemented the proposed algorithms and run experi-

the intersection of the petals of the link ofar.

on ALGORITHM 1 and ALGORITHM 2. Performance plots
are similar for various other data sets. We should emphasize
that while as an illustration we present several sample out-
put triangulations in Figurek 8, and9, performance plots in
FigureslOand11 provide much more information regarding
the performance of the two algorithms.

6.1. Implementation

Our implementation is a fairly modest modification of the
Tri angl e software. Here, we explain the crucial changes.
For computing the YPE Il Steiner points, we have imple-
mented a primitive that computes the intersection(s) of a ray
and a circle. This computation is slightly more expensive
than computing circumcenters and is common to graphics
software MST89. A similar primitive that computes the in-
tersections of two circles is implemented for the relocation
step of ALGORITHM 2. In this step, however we avoid com-
puting the exact intersection of all petals on the link. Instead,
we use a simple sampling strategy which proves effective
and efficient. For each pair of petals, we pick a sample of
points on the line segment connecting the intersection points
of the two petals. We enumerate the petal pairs starting from
those that are furthest from each other on the link. If there
exist any petal pair with no intersection, then we terminate
the process and conclude that there is no relocation point.
Otherwise, we test for each sampling pomivhether all
triangles ofstar(b) in the Delaunay triangulation of the set
(PU{b} —{a}) are of good quality, where is the evolving
point set and is the point to be relocated. We always main-
tain the Delaunay property of the triangulation. Alternative

ments on various data sets and point distributions. Figures strategies for point relocation can be explored. We choose

10and11and Tables.3summarizes our experimental study

(© The Eurographics Association 2007.
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Figure 8: Output of theALGORITHM 2 for various data sets for various largevalues.

6.2. Data Sets.

We ran our experiments on various data sets including the
following:

1. Lake Superiorconsists of 522 points, 522 segments some

of which meet at small angles, and 7 holes.

Boxed Point Pairconsists of six points two of which are

located unit distance from each other and at the center of

a square of side length 100 units.

. Boeingconsists of 30 points and 30 segments and a hole
modeling an airplane wing. The sampling around the tip
of the wing is very fine (to allow accurate simulations).

. Random Pointsonsists of 1000 points spread uniformly
at random inside a square box.

. Turkeyconsists of 216 points and 216 segments and two
components.

2.

6.3. Performance Comparison

We compare our algorithms with the previous Delaunay re-
finement implementations on three performance measures.

Angle thresholdPlots in Figurell show that that the
original Delaunay refinement algorithm is impotent for con-
straint angles larger than 34The offcenter insertion algo-
rithm of Ungér has already extended this cut-off t& 36n
the other hand, our BGORITHM 1 terminates with correct
output for constraint angles up to.38. Finally, our ALGO-
RITHM 2 which is a simple extension of the first algorithm
works for constraint angles up to 42

Output sizeThe number of triangles in a triangulation is
a simple linear function of the number of points in it. Hence,
the plots in Figurd 1reflect on the number of triangles in the
output. We observed significant improvement on the output
size of the two refinement algorithms proposed here. This
improvement is particularly impressive when the threshold
angle is large. (See FiguBealso.)

Running timeThe primitives we use for computing the
proposed locally optimal Steiner points is slightly more ex-
pensive than those used for computing circumcenters. How-
ever, we insert fewer Steiner points. Overall, ORITHM

1 runs faster than the previous algorithms, where as @
RITHM 2 has comparable running time. (See Figlog Af-

ter the optimization of our code, we expect more significant
speed up on both algorithms.

Turkey
10* | |
Triangle 1.4 —
Triangle 1.6
8 Algorithm 1 -
: Algorithm 2
o0
S 3
- 107 |
2
=}
=}
g
Q /,1
E /
! Ol ‘ ! L I I
30 32 34 36 28 o -

Angle Threshold

Figure 10: Plot of the running time vs. the constraint angle
a for the Turkey data set shown in Figute

7. DISCUSSIONS

The termination and size complexity bounds given for the
previous Delaunay refinement apply for our algorithms, for
constraint angles up to 30as we are more cautious in in-
troducing short features. It would be interesting to prove the
same theoretical (termination and size-optimality) bounds
for o > 30°. It would be also interesting to further improve
the practical performance angle bounds saydap 45°.
This would imply generating non-obtuse/acute angle trian-
gulations. Ours is a first Delaunay refinement result breaking
the constraint angle barrier of 34which survived over ten
years. In achieving this, its important to note that we kept the
simplicity of the algorithm. This in turn, enabled us to design
an efficient and effective implementation. Alternative (more
powerful but perhaps more expensive) mesh optimization al-
gorithms can be integrated within our framework.
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Tri angl e(1.4) (circumcenter)

Tri angl e(1.6) (offcenter)

ALGORITHM 2

Figure 9: Output size comparison on the Boeing data set.drer 30°, the new algorithm inserts82 Steiner points, almost half
as many as th&18 Steiner points inserted by the offcenter algorithm which is in turn half as many @3@®teiner points

used by the circumcenter insertion algorithm.
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Figure 11: Plot of the number of Steiner points vs. the constraint angle

The standard Delaunay refinement algorithms are proneto  Delaunay refinement is a popular technique for comput-
significant round-off errors, e.g., computation of the circum- ing surface triangulations als®gy0qg. We foresee that our
center of a triangle with a very large angle. Since we limit algorithms can be easily extended for computing high qual-
ourselves to petal regions, we avoid such round-off errors. ity and small size triangulations of two manifolds. Extension
Hence, the algorithms and implementation presented in this of method to three dimensions is also a natural research di-
work are numerically stable. rection and is currently under study.
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Circumcenter| Offcenter Algorithm 1 Algorithm 2
Data Set o TypelV | Typel TypelV | Typel Typell Typelll TypelV | Typel Typell Typelll TypelV Relocation
Superior 30 803 182 455 136 152 176 7| 145 133 127 6 76
Superior 34 2350 323 787| 185 228 237 10 193 203 164 5 79
Superior 38 00 o) o) 269 379 381 24 254 316 253 14 101
Superior 41 o0 00 00 0 o0 00 0 384 567 331 68 206
Boeing 30 233 59 103 34 42 12 0 39 29 8 0 7
Boeing 34 16309 88 154 50 57 20 3 48 55 12 1 5
Boeing 41 00 o0 o0 0o 00 o0 (%) 95 152 47 8 47
Random 30 3519 593 1380| 445 426 508 30| 446 421 458 24 58
Random 34 oo | 1076 2770 677 666 802 700 675 644 672 43 141
Random 41 00 o) o) 00 o) o) oo | 3853 5857 5038 1344 2744

Table 1: Number of different type of Steiner points used by four different Delaunay refinement algorithms.
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