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Abstract

Reconstruction of surfaces from huge collections of scanned points often requires out-of-core techniques, and most
such techniques involve local computations that are not resilient to data errors. We show that a Poisson-based
reconstruction scheme, which considers all points in a global analysis, can be performed efficiently in limited
memory using a streaming framework. Specifically, we introduce a multilevel streaming representation, which
enables efficient traversal of a sparse octree by concurrently advancing through multiple streams, one per octree
level. Remarkably, for our reconstruction application, a sufficiently accurate solution to the global linear system

is obtained using a single iteration of cascadic multigrid, which can be evaluated within a single multi-stream
pass. We demonstrate scalable performance on several large datasets.

1. Introduction
We address the robust reconstruction of surfaces from larc

noisy oriented point sets. An important application is 3D

t
scanning, in which data are acquired at sub-millimeter res =
olution over large-scale models, potentially resulting in bil- —f\( '|r”\‘.;/
lions of points LPC*00]. The resulting complexity often ex- 1

ceeds the available computer memory, thus motivating an

out-of-core reconstruction algorithm. Existing approaches Flgure L Example of curve reconstruction as a sequence of
generally partition the domain into smaller blocks that can three multilevel streaming passes over an adaptive quadtree.
be solved locally. However, such partitioning presents sev-
eral complications. Ideally, surface complexity should adapt
to spatially varying point densities, and this is difficult to
achieve consistently across block boundaries. Most impor-
tantly, the presence of data noise and misalignment makes it
difficult to robustly reconstruct a surface by only considering
small localized neighborhoods. The fact that Poisson reconstruction has global support

Recent work by Kazhdan et ak#z05 KBHO6] demon- would seem to preclude an easy out-of-core solution. Indeed,

. . . not only is the matrix. too large to fit in memory, even the
strates that surface reconstruction from oriented points can oo
o . vectorsb andx are too large. Our contribution is to show that
be made more resilient to data errors by casting the problem . . .
. o . the reconstruction process can be implemented efficiently as
as a global Poisson system (Sect®)nlintuitively, the idea : .
. ; . ! . a sequence oftreamingoperations over out-of-core data.
is to interpret the oriented points as samples of the gradient . . . . .
o . : - These operations include the creation of the linear system, its
of the model's indicator functiory (defined as 1 at points solution, and the final isosurface extraction. The 2D example
inside the model, and 0 at points outside). Thus the desired : P

indicator function is the one whose Laplacian equals the di- in Figure1 helps to illustrate this streaming process.
vergence of a vector field constructed from the oriented In general, a streaming approach is advantageous because
points:Ax = O-V. By representing( using bases defined data is accessed sequentially from disk, and moreover it is

over an adaptive octree, the Poisson equation is discretized

into a sparse linear systdnx = b whose size is proportional

to the complexity of the reconstructed surface. Then, the de-
sired model is an isosurface of the resulting indicator field.
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only loaded once. Such sequential access is typically more Stream processing Much of the streaming work in com-
efficient because it allows for data prefetching. In computer puter graphics addresses irregular triangle mesWa€0R3,
graphics, the concept of streaming computation has been ap-ILGS03 IL05, ACSE05 AGL06]. An interesting challenge
plied to many data types including triangle meshes, point is to find a traversal order that minimizes the working
sets, and tetrahedral meshes, as reviewed in Seztion set (bandwidth) of the resulting computation. In practice
though, a simple axis-aligned sweep generally works suf-
an adaptive multiresolution structure, namely an octree, ficientlywel!.Str_e_am_ing operatio_ns include surface ;moc_)th-
ing, mesh simplification, remeshing and, normal estimation.

because a solution over a uniform 3D grid is not scal- Streaming has also been applied to irregular tetrahedral mesh
able Kaz03. Interestingly, the operations performed on the . L
Kaz0g stingly perations p compression ILGS0§ and simplification YCL*07]. Pa-

octree have different types of inter-level data dependencies, . | 09 d b " . ints. Hi
and consequently no single linear ordering of the octree jarola [Pajog describes stream processing on points. His

nodes is adequate. To overcome these dependencies, we in_streaming scheme is able to find the k-closest neighborhoods

troduce amultilevel streamingepresentation, in which each of the points, to enable processing operations such as density

resolution level is stored as a separate stream. Thus, a pro_computatlon, normal estimation, and geometric smoothing.

cessing pass sweeps over the octree by concurrently advanc-.lsenbl”g tet”al. [ILStSQEtistr%aT throu?h a S(Tt t9f pc\)/'\';ktls to
ing through the multiple streams, of course iterating at a incrementally construct a Lelaunay triangufation. ereas

faster rate through the finer nodes than the coarser ones. De-prior streaming methods operate at a single resolution on the

pending on the operation, information flows up and/or down data, we introduce a multiresolution streaming framework.
the tree, and computations on coarser levels precede or suc
ceed those on finer levels.

A unique aspect of our problem is the requirement for

“Other out-of-core processing  Cignoni et al CMRS03

introduce an octree-based external memory structure to store
A surprising result is that we are able to solve the sparse an irregular mesh out-of-core. They describe how to handle

Poisson systerh x = b with sufficient accuracy for our re-  triangles that span octree cell boundaries. Processing a sub-

construction application in singlemulti-stream pass. Two  tree involves loading its adjacent leaf nodes into memory.

factors make this possible. First, clever scheduling of the Maintaining random access to the octree nodes is beneficial

computation across levels lets us realize a cascadic multigrid for view-dependent rendering, as also showrLigQ1].

scheme BK96], which enables fast convergence using only

local updates. Second, the reconstructed indicator fungtion Out-of-core linear solvers — Toledo [Tol99] provides a

has high gradient and therefore requires only limited preci- hice survey of methods for solving linear systems out-of-

sion due to the subsequent isosurface discretization process Core. For sparse systems, most modern methods assume that
the system matrix itself can fit in memory. A common ap-

proach is to construct a Cholesky factorization out-of-core
(e.g. [GR8Y). In our problem, even the solution vector itself

is too large to lie in-core. We must therefore resort to simple
Jacobi iterative updates. However, we show that doing so in
a cascadic multigrid setting, with a per-block Gauss-Seidel
scheme, is able to produce adequate accuracy for surface re-
f. construction, in a single multi-stream pass.

We obtain reconstructions of highly complex models (210
million triangles) on a PC with only 1 GB of memory, and
demonstrate scalable performance.

2. Related Work

Out-of-core surface reconstruction ~ Several surface re-
construction algorithms lend themselves naturally to out-o
core computation because their access patterns are highly
localized. For instance, the range-image volumetric merging
scheme of Curless and LevoZI[96] can easily be com-
puted independently on blocks of the domain space. For
each block, one conservatively finds the scanned points that
contribute to it. Schemes based on local neighborhood fit-
ting such as IDD*92, ABCO*01] could be computed in

a streaming traversal, for instance using the scheme of Pa-
jarola [Pajog. The multilevel partition of unity (MPU) ap-
proach of PDBA*03] uses an adaptive octree structure to
blend together estimated implicit surface patches. Its use
of local weights should make it amenable to out-of-core
processing. The ball-pivoting algorithm oBMR*99] is
implemented out-of-core by partitioning the domain into Ax=0-V. 1)
slices. Our contribution is to consider a global approach

that has been demonstrated to improve resilience to data er- To represent 3D functions efficiently, Kazhdan et al create
rors [KBHO6], and to enable this solution over an out-of-core  an octree/’ adapted to the distribution of samples, in which
adaptive octree using a multi-stream scheme. each node € ¢ is associated with a tri-quadratic B-spline

3. Review of Poisson Surface Reconstruction

We begin by reviewing the method d{BHO6]. The input is

a set of oriented sampl&where each sample has a position
s.pand normak.V. The basic idea is to reconstruct a surface
from Sby estimating the indicator functiox of the model.
Kazhdan et al show that the (smoothed) gradient obrre-
sponds to a vector fiel formed by an integral over the (un-
known) surface, which can be approximated by a summation
over the oriented points. To obtain a least-squares solution of
Ox =V, the divergence operator is applied to both sides, i.e.
0-Ox = 0-V, resulting in a Poisson equation:
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blending functioro(p), shifted and scaled to align with the
node’s extent (see als8[96). Expressed in this basis,

X(P) =Y xoFo(p) and V(p)= 5 %Fo(p),  (2)

oel oel

the Poisson equation reduces to the sparse symmetric systen

Lx=b, 3)

wherex= {X, } andb = {bo} are|¢|-dimensional vectors of

octree coefficients, the matrix entries are the inner products

Lo,o = (Fo.AFy), and the divergence coefficients are
bo — z <|:07 D . (vol Fol)> .
oco

The Laplacian matrix is sparse because the B-spline func-
tionsF are locally supported.

4

Using a cascadic multigrid solver, Equati@nis trans-
formed into successive linear systetrfsxd = b4, one per
octree depthd. The solutions at finer depths only consider
theresidualdivergence not accounted for at coarser depths.
More precisely, the divergence is updated as

d d
bg < b — LooXo,
d’<d0’€()’d’

®)

wherecd denotes the set of octree nodes at debth

The octree structur&@ and vector field/ must be con-
structed to account for the nonuniform distribution of the
samplesS. This involves computing for each samglan es-
timate of its associated width(s), or more precisely its area
termw?(s) in the surface integral defining.

Using the blending functior, a family of kernel den-
sity estimatorK measures the expected number of samples
falling into the ball of radiusv/2 aboutp, for allw > 0:

Koup =3 F (2532).

A discrete seKd of such estimators is implemented within
the octree by associating a density estimator vijue each
node, defined by having each samgle S distribute a unit

(6)
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Figure 2: lllustration of the multilevel stream structure (top row)
and the corresponding quadtree nodes (bottom rows) at two mo-
ments in time (i= 3,4). In-core blocks and nodes are highlighted in
blue.

where the numerator is the area weight and the denominator
normalizes the scaled blending functiBnsuch that it has
unit integral. To implement this using the octree B-spline
basis, the depth of the sample’s contribution is definetl-as
log,(1/w(s)) and expressed as the log-based interpolation
d=d{-d}“ of depthsdy = |d] andd = [d]. The vector
field coefficients(V } are then updated by having the sample
splat its normal into the one-ring neighborhood of the nodes
0; € 0% ando, € 0% containings, weighted byw?(s) -
(2%)3a andw?(s) - (2%)3(1— a) respectively.

Finally, to obtain the reconstructed surface, an isovalue is
chosen and the corresponding isosurface is extracted using
an adaptation of the Marching Cubes algorithm to the oc-
tree representation. The isovallies set to the average of
the reconstructed indicator function at the sample positions,
weighted by the samples’ area. Approximating the contribu-
tion of the samples falling into nodeby |V,| and evaluating
the indicator function at the center of the node, this gives

[ 2oco YoXo

= with = Vy|Fo(0'.cente). (9
S oo Vol Yo z [V | Fol( b. (9)

el

value into the eight nearest octree nodes at each octree depth,

and setting:

K@ %p)=Kip)= 5 koFo(p). (7)

ocod
Using these estimators, the widif(s) associated to each
sample is found by solving fdf (w(s),s.p) = K, where the
user-specified desired denskyadjusts the average number
of point samples per octree node.

The sample widthv(s) is used both to scale the contribu-
tion of each sample to the surface integvaland to define
the spatial extent of that contribution (i.e. the octree level
in which it is entered). The vector field approximating the
gradient of the indicator function

V(p —Sgsﬁg F

(© The Eurographics Association 2007.
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4. Our Multi-Stream Octree Representation

In this work, we show that Poisson surface reconstruction
can be performed as a sequence of streaming passes over an
out-of-core octree representation.

Each streaming pass traverses the octree, sweeping along
thex axis. For an octree of height each traversal step is as-
sociated with a sweep index<0i < 2" defining the sweep
planex = (2i + 1)/2". Because streaming computations are
local, only the subset of the octree intersecting or near the
sweep plane needs to be maintained in main memory. Thus
as we advance to sweep index 1, nodes at the back of the
tree (with smallex coordinates) can be removed from mem-
ory, while nodes at the front of the tree need to be loaded in.

To implement a data structure that supports this traversal
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pattern, we must address the fact that the in-core persistence Within each stream, an “active window” between a head
of nodes depends on their depth, since coarser nodes arepointer and a tail pointer is mapped to physical memory.
maintained in memory longer than finer ones (see Figure  To efficiently update these pointers during the sweep, we
This motivates the construction of a multi-stream octree data store the offset and extent of all blocks in an index structure,

structure, consisting df different stream¢.#°, ... .#"-1}.

Each stream7’9 contains all nodes € ¢4, and is parti-
tioned into blocks79[0], ...,.9[24 — 1] with the nodes in
block .#4[j] all centered on the plane= (2j + 1)/29+1.
Thus, at the coarsest deptl’® contains only one block
.9[0] which in turn contains only one node, namely the oc-
tree root node. At finer depths, each blogi![j] generally
containsO(Zd) nodes (out of 24 nodes in a complete octree)
because the surface has co-dimension 1.

Figure2 shows a visualization of the multi-stream struc-
ture for a quadtree representation. Each row marked with a
depthd = 0...4 corresponds to a separate stresffi, and
within a row the rectangles denote the blockd[j]. In the
top left diagram, we see the data structure at sweep index
i = 3. The in-core blocks are highlighted in blue, correspond-

which forms a complete binary tree of heidht

Although we exploit virtual memory addressing, we never
rely on the operating system for demand-based paging, as
this can be inefficient. Instead we explicity manage the
memory mapping. As the head pointer advances through a
stream, the appropriate pages of virtual memory are com-
mitted to physical memory and read from disk. And, as the
tail pointer advances, dirty data is written to disk and mem-
ory pages are uncommitted. Memory management and /O
are performed asynchronously by a background thread, to
allow for lazy write-back and anticipatory read-ahead. All
I/O is performed at the granularity of 1 MB to maximize
disk bandwidth and minimize disk seek overhead.

Additionally, we vertically partition the data for each
depth into two separate streamed files that are advanced in

ing to all the quadtree nodes that intersect the sweep-planelockstep, one containing the octree topology, and the other

as shown in the middle diagram. Note that as we advance to
sweep index = 4 (shown in top right and bottom diagrams),
not all streams need to be updated; in this example, itis only
the streams at deptlais= 2, 3,4 that are advanced.

At index i, the sweep plane intersects the nodes con-
tained in the blocks9[|i/2"-9-1]], which we denote by
9@y (i)], or simply asyid. More generally, stream pro-
cessing operations may require access to nodes in a smal
neighborhood of the sweep plane. If the operation needs ac-
cess to &-neighborhood at each depth, we maintainran
core octrees; x C ¢ defined as the union

h—1
Gx=U
d=0

Thus Figure2 can be seen to corresponddpg ati = 3,4.

k
% where ZG = |J @)+ ]
j=—k

An essential property of the in-core octree is that for any
nodeo € yid and any depthl’ < d, the k-neighborhood of
the ancestor ob at depthd’, denoted\lg' (0), is guaranteed
to be contained i i, i.e. to be in-core.

As the sweep index is advanced fromo i + 1, the in-core
octreedj  is updated. Specifically, we compute the set of
depthsD;j, at which the streams need to be advanced:

Di ={d| () # @u(i+1)}
and for eachd € Dj we can unload the block”’%[gy(i) — k|
and load the block”¥[gy(i) + k + 1] into memory.

Implementation  We store each stream in a separate file

and, using a 64-bit operating system, are able to reserve con-

tiguous blocks of virtual address space large enough to fully
span the streams. An advantage of using virtual addressing
is that, by simple addition with a base address, a pointer to a
node can be represented by the node’s offset in the file.

containing the octree datas(Kio, bo, Yo, Xo). Since the first

file becomes read-only after creation, it doesn’t need to be
written back to disk in subsequent passes, thereby reducing
the 1/0 workload.

5. Streaming Surface Reconstruction

|We now describe how Poisson surface reconstruction can be
decomposed into a sequence of streaming passes (RBgure
The focus here is to demonstrate that, thanks to the compact
support of the basis functiof, each step of the reconstruc-
tion process involves local computation, and can therefore be
implemented as a streaming pass. In Sediiae show how
these individual steps can be combined more efficiently into
just three passes over the out-of-core data.

The discussion in this section is guided by Tablevhich
summarizes the extent of the data that needs to be in-core to
process blocksﬂid in each step of reconstruction. The key
property that enables streaming reconstruction is that this
data extent is always bounded by a neighborhad each
depth, and therefore all the necessary data is available if we
maintain an in-core octre€; x as we sweep over index

We briefly review the individual steps of the reconstruc-
tion process, providing the value of the neighborh&adbat
defines the size of the necessary in-core oatrige

Points 5 Surface

constr,

v} vl
Octree | Ut | Y200 | ey | piern | 20 e [ el ® [ieosurt.
constr, |=> = comput, | ==> ri = | comput. |~ | extract.
(sobver]—~ -

Figure 3: Sequence of streaming passes through the out-of-core
octree data, as described in the naive implementation of Sestion
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Step Read Write (O- (Vo Fy),Fo) # 0 only if o € N§ (0), and bothb, andby

O constr. (=h-1) | § kot #G d<d can be incremented without access/gofor o & & ,.
V constr. 79SS @)= | Vo A8

o ko_ i el o il Poisson System Solution (k= 2) The most straightfor-
0.V distr Vo: .74 bo: .79 d'<d : ) . > ;
F dist ' |;'| 5‘ﬂd O'y'd? - ward implementation of the cascadic multigrid algorithm

IStr. ol: 7 Yo Ay d'<d performs two streaming passes for each depth @ < h
I accum. Nol: 79 d<d | yor A (from coarsest to finest), first updatib in the linear sys-
0.V accum.  |Vo: 79 d<d | bo: 4 temL9%d = b? using the solution at deptitf < d, and then
0.V update Xo: yidz’ d'<d | bo: yid solving the system. We describe such an approach, and later
A solution bo: 5,4212 Xo: .4 in Section6 show that it is possible to perforail these B

DI LS o . )

I comput. Vol Yor Vo %d isovaluel passes in ainglemultilevel streaming pass.
Isosurface extr. | Xo: yifiz, r surface mest We updatethe divergence coefficients, for o € .79 by it-

erating overd’ € NY (o) for all d’ < d and subtracting the

Table 1: Read and write operations when processing block valuexy Lo o from by (following Equations).

5/1" in the various multilevel streaming computations.
We solvefor the values, with o € QS/’id by performing sev-

) ) ) eral iterations over the nodes i and, for each node,
Preprocessing ~ We first rotate the point set so that the  performing the Jacobi update:

dominant axis of its covariance matrix is aligned with the
x-axis. The intent is to reduce the cross-section complexity Xo M'
encountered during the sweep, and hence the peak memory Loo

size of the in-core octreé&; . We then uniformly scale and
translate the points so that they fit into the unit cube. Fi-
nally, we partition the points into subsefsc S, whosex-
coordinates lie in the range/2"1, (i+1)/2"1]. This parti-
tioning process is essentially a binning process, and is imple-
mented efficiently as a single-input, multiple-output stream-
ing operation.

Becausd, is supported in a one-ring neighborhoodoof
Lo # 0 only if o € N (0) so updating, and solving for
Xo can be done without accessxg for o & & ».

Computingthelsovalue(k=1) Since processing a node
oe .79, we only haveNZ (0) € & for d < d in the work-
ing set, we decompose the isovalue computation into three

Octree Construction (k= 1) At index i we read in the  StePs. Following Equatio8, at sweep indek

subset of point§ C S. For eachs € § and every deptid, We accumulatethe isovalue from nodes at depitiis< d by

we refine the in-core octree so that the noﬁl(:s) € 09 con- iterating overo’ € Ng’ (0) and addingV,|Fo(0'.centel to yo.

taining s and its one-ring neighbors are all presentipy,

adding new nodes as necessary. We also update the densit

estimator coefficient$k, } by having each sampkesplat a

unit value into the one-ring neighborhoodasf(s). We computethe isovalue by adding, Y, to the numerator of
I" and addingVy| to the denominator.

e distributethe isovalue to nodes at depttiis< d by iter-
ating overd’ € NY (o) and addingVy|Fy (0.centej to yy .

Vector Field Construction (k= 1) Atindexi we iterate

over all samples € §. For eachs, we evaluate the density  Extracting the Isosurface (k=2) We extract the isosur-
estimatorY to determine the sample width(s), compute face by iterating over the leaf nodes, computing the value of
the corresponding deptits anddy, and splat the sample’s  y at the eight cell corners, solving for the positionslof

(weighted) normal into the one-ring neighborhoaafs(s) crossings along the edges, and extracting the triangulation.

andodz(s) to update the vector field coefficienfgo }. o ) ) )
The challenge in implementing the isosurface extraction

Decausén is supported in & one-ring neighborhoodoof s the evaluation of at the corners of a leaf nodec .79
K¢(s.p) can be evaluated without accessgofor o & & ;. Since the value at a corner can be determined by the values
of xy € 69 with d’ > d, we are not guaranteed to have the

Divergence Computation (k =2)  Since processing a necessary information in-core when processing the wode

nodeo € .4, we only haveNd (0) C i for d’ < d in the _
working set, we decompose the divergence computation into ~ To address this challenge we observe that because the

two steps. Following Equatiofy, at sweep indek functionsFy are supported in the one-ring neighborhood of
0/, for a cornerc € o we haveFy (c) # 0 only if eitherd’ < d

ando’ € N (0), ord’ > d andcis also a corner of'. Thus,
wheno is the finest node adjacent to correery(c) can be
We accumulatedivergence from nodes at depttis< d by computed using only valueg, for o’ € N¥ (0) andd’ < d.

iterating overo’ € Ng’ (0) and adding 0 (Vy Fy ), Fo) to bo.

We distributedivergence to nodes at depttiis< d by iterat-
ing overd’ € NS (0) and adding 0 (VoFo), Fo) t0 by

This observation motivates an algorithm for isosurface ex-
Becausd, is supported in a one-ring neighborhoodopf traction that iterates over the leaf nodes from finest to coars-

(© The Eurographics Association 2007.
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est and stores the evaluationpfat the corners in a tempo-  and for eachd € D;

rary hash table. For a given corneof a leaf nodeo € 69, « Constructing the vector field far9[gy(i)]
we check if there is an entry in the hash table corresponding e Distributing the divergence foE/’d[qod(i) -3
to c. If there is not, this implies that there are no nodes at e Distributing the isovalue for”9[gy(i) — 3]

depthd’ > d containingc as a corner and the valygc) can Taking into account the size of the write neighborhoods for
be computed using only information associated to nodes in octree construction and divergence distribution, the first pass
the one-ring neighborhood of the ancestors of nmde of streaming reconstruction can be implemented by main-

In practice, separate hash tables are associated with theta'r"rlg the octre@j g in the working set at sweep indéx

corners of the front and back of the leaf nodes at each depth.
As the sweep plane is advanced, the front hash table is up-
dated by evaluating the front corners of leaf nodes intersect-
ing the sweep plane and the back corners of leaf nodes im-
mediately in front of the sweep plane. For a coroero that

is also a corner of a nod# € ¢9-1, we add the valug/(c)

to the front hash table at depdh- 1. Finally, after extracting The exhaustive testing of all samples which lie in the span
the isosurface in the current sweep index, we swap the front of Yid can be a computational bottleneck for our system
and back hash tables and clear the front one. It is also at this since it require$ passes through the ordered point set. This
point that vertices are finalized shortcitelsenburg:VIS:2005. is unnecessarily expensive since we expect a sample’s den-

Buffering Samples In addition to maintaining a small
working octree, our method must also address the fact that
to implement the vector field construction for blogk® the
processing step needs access to each sample which lies in the
span oféﬁd and has failed the density test at greater depths.

We write to a block-based streaming mesh format. sity estimate to increase by a factor of four as the depth is
decremented, so the number of samples processed at depth
6. Optimized Implementation d but failing the density test should drop by a factor of four,

while the number of samples that lie in the spanS{}T’*l
In the previous section, we showed that the locality of the should only increase by a factor of two.
Poisson reconstruction steps allows for stream processing.

In this section, we show how the different streaming passes e address this concern by associating a sample buffer
can be merged into three multilevel streaming passes, with (0 €ach depth and processing the blocks in decreasing depth
the passes defined as follows: order. Samples are added into the buffer at déptiuring

) : i . . the octree construction step and are promoted to the buffer
Pass 1: Octree construction, vector field construction, di- . . . .
T . N at depthd — 1 if they fail the density test at depthin the
vergence distribution, and isovalue distribution ) . 7o
. . . . vector field construction step. (Points in the deg@tbuffer
Pass 2: Isovalue accumulation, divergence accumulation,

. ) . ; that lie in the span of”%[q(i)] are removed from the buffer
divergence update, Poisson system solution and isovalue i -
computation at the end of the vector field construction step.)

Pass 3: Isosgrface.extractlon . _ 6.2. Second Pass (k = 8)
Our approach is motivated by two observations. First, we can

parallelize streaming steps when there are no data dependen-As in the first pass, we merge the steps in the second pass
cies. Second, even when there are dependencies, we may béy pipelining them to resolve data dependencies. However,
able to pipeline the steps, resolving the dependencies with since the consolidation of these steps into a single pass
only a small increase in the size of the working set. forces us to iterate over the depths before iterating over

Due to the data dependencies, three passes are a IOWer_sweepindices, the merging of the divergence update with the

bound for our reconstruction algorithm: The fine-to-coarse P oisson system solution poses ac_hal_le_nge. For afixed Sweep
distribution of the divergence fielah (in pass 1) must be fi- index, we can no longer trgat th.e individual steps as atomic

nalized before the coarse-to-fine cascadic multigrid solution becggse ,th's would Fesult ina circular data depen.dgncy. the
(in pass 2), and the computation of the isovalue (in pass 2) modification of{bo} in the divergence update requiring ac-

must be finalized before the isosurface extraction (in pass 3). cess to{Xa} set in the Poisson system solver, which in turn
requires access o }.

6.1. First Pass (k= 6) We resolve this problem by separately considering the
To merge the processing steps in the first pass, we must re.Pipelining that needs to be performed to resolve the data de-

solve the data dependencies between different steps. We dopendencnes due to sweep index and due to depth.
this by pipelining the steps, delaying execution of later steps

to allow earlier steps to finalize the dependent data. Index Dependencies  Fixing a depthd and assuming no

cross-depth data dependencies, we define the scheduling as
Using the sizes of the read/write neighborhoods described we did in the first pass. Iterating over the (depth-relative)

in Table1, we can resolve the data dependencies in the first sweep indexd, with 0< 9 < 29, we:

pass by iterating over the sweep indices, for éach e Accumulate the isovalue fQVd[id]
« Constructing the octree fo7’"1[i 4 5] o Accumulate the divergence ford[i]
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Model |#Pointd h [#Triangleg Time| Peak mem. Stream Res|  Octree Size Peak Memory Running time

Lucy Statug 95M|12 26.2M| 3.1 138| 5,135 In-core| Streaming In-core| Streaming In-core| Streaming
David Head 216M|13 210M| 32.3 780| 62,464 256 49 48| 309 521 0.50 0.53
Awakening| 391M|13 149M| 26.6] 990| 35,840 512| 188 168| 442 278| 0.65 0.68
Awakening | 391M|14 431M| 82.4 2120| 106,494 1024 818 702| 1285 213 1.05 1.20

L ) ) 2048 3,695 3,070 4,442 212 2.65 3.33
Table 2 Q_uan_tltatlve r_esults for multl_level streaming recon_struc- 4096 nial 13,367 n/al 427 n/a 12.6
tions, showing input points, octree height h, output mesh triangles, 8192 nja| 39,452 n/a 780 n/a 32.3
total execution time (hours), memory use (MB), and total octree
stream size (MB). Table 3: Comparison of the data structure size (MB), peak working

set (MB), and running time (hours) for the in-core and streaming
reconstruction algorithms over a range of resolutions for the David
Head model. Running the in-core algorithm beyond a resolution of
2048 was impossible due to its high memory requirements.

250
Construction Salver Surface Extraction

Natural Pose
- PCA Aligned

200

g
J
1

Figure 4: Comparing the results of the in-core algorithm (left=h
11; 4,442 MB peak memory) and streaming algorithm (right; 13,
780 MB peak memory). rl [

Memory (MB)

« Update the divergence far'd[id] 0
« Solve the Poisson system fof4[id — 3]
e Compute the isovalue fard[i9 — 4]

o 0s 1 15 2 25 i 35
Time (Hours)
Figure 5: Memory use over time for a depth 12 reconstruction of
Depth Dependencies  To resolve the depth-related depen- the Lucy statue using two different poses of the model.
dencies we offset the values idfso that values required at
finer depths are guaranteed to have been set at coarser ONeSyatasets, as summarized in TaBleAll results use a target

Analyzing the size of the read/write neighborhoods shows of k = 2 samples per octree node.
that the dependencies can be resolved if the indices satisfy
the propertyi9—1 > [i9/2| + 6. Expressing? as an offset
from the finest indexjd = g (i"1) + &9, and initializing

Figure6 shows a surface reconstruction of the Michelan-
gelo’s David statue from an input of 216M oriented points
o sho1 . , , from raw scan data. The output surface of 210M triangles
with § q =0, we obtain a recursive exprgs_s:]on fo_r the off- was generated at maximum octree depth3, and required
sets:d” = {11,...,11,10,9,6,0}. Thus, setting “t=i-3, ~ only 780 MB of memory. In contrast, the in-core Poisson re-
th_e _second reconstru_ctlon pass can be |mplemen_ted_by main-construction of KBHOE] only produced a 20M triangle ap-
taining the octre g in the working set at sweep indéx proximation of this same model (at depth 11), and required

In practice, we can further reduce the memory require- 4.4 GB of memory. Figuré shows a close-up visual com-
ments by observing that processing at the finest depths re- parison.
quires a narrower window size. This allows us to maintain a

i ) ) As another example of our algorithm’s ability to recon-
working octree with fewer stream blocks at the finest depths.

struct large models, Figuré presents a reconstruction of
Figurel shows an example of the three streaming passes Michelangelo’s Awakening statue from 391M points from
for the reconstruction of 2D point set, showing the state of raw scan data. At a maximum depthlef14, our streaming
the reconstruction at different sweep indices (indicated by solution produced a mesh of 431M triangles in 82 hours. Al-
the arrows). As can be seen, the offsetting of the pipeline though the storage required for the out-of-core data structure
steps in the second pass forces coarser nodes to be solvedvas 104 GB, our reconstruction algorithm never required
ahead of the sweep line, resulting in a lower resolution re- more than 2.1 GB of working memory. Reconstructions at
construction emerging to the right of the sweep index. this resolution allow us to clearly see fine detail such as
chisel markings that could not be seen at lower resolutions.

7. Results
Scalable Memory Use  Each of our three multilevel

Large Datasets To evaluate our method, we have re- streaming passes only maintains a small window on the en-
constructed highly detailed surfaces from large scanned tire data structure at any one time. Fig@&examines how
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Figure 7: Views of our reconstruction of Michelangelo’s Awakening statue. Maximum tree depth was 14 with a target of 2 samples per node.

the maximum size of these windows varies with output res- plots memory use over time through each of the three multi-
olution. By comparison, the curve for the in-core algorithm level streaming passes during the reconstruction of the Lucy
grows so quickly that it exits the graph on the upper left. statue. The two different plot curves show how the sweep

Table 3 shows the octree size and peak memory use as plane orientatiqn can affec_t performance. Th_e re_d curve cor-
a function of the resolutionr (= 2" of the octree. As ex- respondg to using t.he x-axis as th_e sweep dllrectlpn, Wlth the
pected, the total octree size has compleiy2) since the gtatue orlented in its original vertlca! pose; in this orienta-
surface has co-dimension 1. However, using the streaming tion, the mtersef:tlor_'n of the surface with the sweep plane can
reconstruction, the size of the in-core window only scales as be large, resulting in a peak memory usg of 223,'\/”.3' Th?
O(r), allowing the streaming algorithm to process datasets blue curve corresponds to using the dominant principal di-

that far exceed a system’s main memory capacity. regtlon of the pomt_ set as the sweep direction; such orien-
tation reduces the intersection of the sweep plane with the

The unexpectedly large memory use for the coarser reso- syrface, resulting in a peak memory use of only 138 MB.
lutions is due to the buffering of points that occurs during oc-

tree construction. When the tree is artificially restricted to a
small depth, many more points fall into the bi§graversed
at each sweep step. However, this is an atypical scenario.

The graph also shows that the three multilevel stream-
ing passes have similar memory requirements and running
times. The graph curves do not include the preprocess oper-
Memory use is further highlighted in Figu® which ations of orienting, scaling, and binning the points. However,
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| —Streaming Octree Construction
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1538 { Streaming lso-Surface Extraction

| In-Core Reconstruction
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Figure 8: The peak working set in our 3 multilevel streaming
passes, and in the in-core algorithm (far left), for a range of re-
constructions of the head of Michelangelo’s David.
Figure 10: Comparison of reconstructing the indicator function of
100% =TT TTTIT] a cow silhouette from its Laplacian using a single-resolution stream-
'/ ing solver (top), a traditional conjugate-gradient solver (middle),
/| and a cascadic multigrid solver using multilevel streaming (bottom).

75% N R

_/ L [ 1] level, the resulting surface mesh is still very accurate — only
4 11% of the vertices have an error greater than 0.1 voxels, and
/ the maximum error is 0.842 voxels.

0%

Percent of Vertices

8. Discussion

e 5 § Solving the Poisson system in streaming fashion is a chal-
Eeamebic Sriod (in Vass] i8] lenging task since it involves a global linear system in which
Laplacian values at one point affect the solution at points far-
Figure 9: The cumulative distribution of geometric error for a away. The key ingredient that enables an effective streaming
depth 12 reconstruction of the Lucy statue when compared to the solution is the use of a cascading multigrid approach.

in-core algorithm of KBHO§].
To demonstrate the importance of multigrid, Figur@

shows the quality of solutions to a 2D Poisson problem us-
this preprocess is negligible as it requires only about 1% of ing three different techniques. The first row shows the re-
the total execution time and uses less memory than the mul- constructions obtained with 1, 4, 16, and 64 iterations of
tilevel streaming passes. a block-based Gauss-Seidel solver that streams through the

) ) ) column blocks of the image, much like one of thiagle-

Computation Times  Table3 reveals that our streaming gy streaming passes described in Sectioms shown
algorithm is time-competitive with the in-core algorithm de- in the second row, even if we replace the Gauss-Seidel
spite the large amount of I/O. The streaming overhead is gq|yer with the more efficient (but non-streaming) conjugate-
small because the overall process is compute-bound and they 4 dient solver, the convergence is still too slow, requiring at
stream read-ahead prevents stalls in computation. least 64 passes through the data to obtain an approximate so-

lution. In contrast, a cascadic multigrid solver (bottom row)

Streaming Solver Accuracy ~ Because our streaming quickly converges to the indicator function.

solver computes only an approximate solution to the Pois-
son equation, the numerical accuracy of the solution could  For general problems, a multigrid solver typically requires

impact the geometric accuracy of the resulting surface mesh. several Gauss-Seidel iterations per level, which would in-
(This topic is further discussed in Sectidn To test geomet- volve several streaming passes, but remarkably for our re-
ric accuracy, we compare the surface mesh generated by ourconstruction problem a single pass is usually sufficient. The
streaming algorithm to that generated by the in-core algo- intuition is that, in the context of surface reconstruction, the
rithm of [KBHO6]. Figure 9 graphs the cumulative distribu-  Poisson solutiory approximates an indicator function, and

tion of mesh vertices as a function of their geometric error, is thus only used to identify the boundary between interior
measured as the distance in voxel units to the nearest pointand exterior. Because the indicator function is a binary func-
on the reference surface. Despite the fact that our stream-tion whose value is either 0 or 1, and the isovalue is approx-
ing cascadic multigrid performs only a single sweep at each imately Q5, the reconstruction is sufficiently accurate if it
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never differs by more than.® from the indicator function.
As shown in the bottom left reconstruction of Figli@(and
also earlier in Figur®), this relaxed error condition can be

met with just one iteration per level of the cascadic multi-
grid solver, allowing us to perform a single streaming pass [GR85]
at each level. And, one of our key algorithmic contributions

is to show that all such passes can be combined into a single

multilevel streaming pass.

9. Conclusion and Future Work

Streaming computation is an effective tool for processing
huge out-of-core datasets. We have shown that such a frame-[ILGS03]
work can be extended to multiresolution computation, in-
cluding global Poisson solution over an adaptive octree

structure in the context of surface reconstruction.
Avenues for future work include:

e Application of multilevel streaming to out-of-core pro-
cessing of multi-gigapixel images.
e Support for multicore parallel processing.

e Generalization to processing of higher-dimensional

datasets such as 4D time-varying volumes.
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