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Abstract 
In this paper, we describe a system for the reconstruction of deforming geometry from a time sequence of 
unstructured, noisy point clouds, as produced by recent real-time range scanning devices. Our technique 
reconstructs both the geometry and dense correspondences over time. Using the correspondences, holes 
due to occlusion are filled in from other frames. Our reconstruction technique is based on a statistical 
framework: The reconstruction should both match the measured data points and maximize prior prob-
ability densities that prefer smoothness, rigid deformation and smooth movements over time. The optimi-
zation procedure consists of an inner loop that optimizes the 4D shape using continuous numerical 
optimization and an outer loop that infers the discrete 4D topology of the data set using an iterative 
model assembly algorithm. We apply the technique to a variety of data sets, demonstrating that the new 
approach is capable of robustly retrieving animated models with correspondences from data sets suffer-
ing from significant noise, outliers and acquisition holes. 

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism – Animation, I.3.3 Picture/Image Generation – Digitizing and scanning 

 

1. Introduction 

Modeling of realistic three dimensional objects is one of the 
fundamental problems in computer graphics. Despite many 
advances in interactive modeling, the creation of high 
quality geometric models is still a very time consuming task 
that requires substantial artistic and technical skills. Conse-
quently, a lot of research in recent years has focused on 3D 
shape acquisition by measuring real-world objects, allowing 
the creation of models of those objects with drastically 
reduced manual effort. Recently, several approaches have 
been proposed to extend such techniques to capture ani-
mated scenes in real-time. Common approaches are based 
on active stereo or structured light techniques [RHL02, 
ZSC*04, DNR*05, FB05], passive multi-view stereo 
[CTM*03, ZKU*04, WLS*03], or time-of-flight measure-
ment systems (such as [PMD, CSEM]). Animation scan-
ning devices open up a large variety of interesting new 
applications, such as creating special effects for movies or 
content creation for interactive applications and games. 
However, currently available technology imposes some 
significant restrictions: Due to the real-time capturing 
requirements, dynamic acquisition techniques suffer espe-
cially badly from noise problems. In addition to that, any 
optical acquisition technique is limited by occlusions so 
that it is usually not possible to capture hole-free models. 
Typical data sets have large unknown regions and these 

holes move over the acquired object over time. Currently, 
there is no obvious way to solve these problems by hard-
ware improvements in scanner technology. Consequently, 
the reconstruction of noise-free and hole-free animated 
models is a necessary prerequisite for being able to make 
use of these exciting new acquisition techniques. A second, 
very important problem is the lack of correspondences: The 
scanning device only outputs a series of 3D measurements 
without keeping track of the movement of the physical 
object. However, many processing and editing techniques 
(such as changing geometry or texture in multiple frames 
simultaneously) demand correspondences over time. There-
fore, an automated mechanism for establishing dense and 
stable correspondences is also required. As an additional 
benefit, the correspondence estimates will also provide 
additional information to improve the reconstruction qual-
ity: Geometry from adjacent frames can be used to fill in 
holes and to remove noise more reliably, being based on 
more data. 

In this paper, we consider the problem of reconstructing 
an animated model with dense correspondences from real-
time range scanner data. We assume that the surface meas-
urement is given by a sequence of point clouds sampled at a 
series of discrete time steps as this is the output of almost 
any range scanning device. We also assume that the point 
cloud is distorted by measurement noise and outliers. In 
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addition, we expect the measurement to be incomplete, with 
large holes moving over the surface. Our reconstruction 
technique is based on a Bayesian statistical model, extend-
ing ideas from [JWB*06, DTB06]. We represent surfaces 
as a graph of oriented particles or “surfels” [STT93] that 
move over time, thus implicitly defining correspondences. 
Position and orientation of the surfels are controlled by 
statistical potentials that trade off fitting the data and prior 
assumptions on surface smoothness. To reconstruct the 
latent (not directly measured) correspondences between 
surfels over time, we add priors that penalize non-rigid 
movements and acceleration. As an additional prior, we 
assume the existence of a latent rest state of the shape that 
can be deformed optimally in this sense into all other 
frames and compute such a shape based on the rigidity 
priors. The resulting “urshape” serves as a template model 
and as such improves the reconstruction quality substan-
tially. It is computed automatically from the data. In con-
trast to previous work, no prior knowledge of the class of 
objects being considered is needed; the “urshape” is not an 
input to but an output of our algorithm. We show how to 
divide the statistical maximum a posteriori reconstruction 
of the deforming geometry into two subproblems: The first 
is the discrete problem of computing the 4D connectivity 
structure of the data set, which describes the spatial prox-
imity of surface points and their correspondence over time. 
The second subproblem is the continuous problem of com-
puting the most likely geometry given the 4D connectivity. 
We derive a non-linear least-squares formulation for the 
second, continuous problem that can be solved efficiently 
using a Gauss-Newton-based optimization procedure. For 
the first problem of finding the discrete connectivity struc-
ture, we use a heuristic iterative model assembly algorithm 
that repeatedly aligns pieces of the animation sequence in 
order to form larger chunks of reconstructed geometry with 
dense correspondences. This is done using the continuous 
optimization as a subroutine. We evaluate the proposed 
method by applying it to a range of synthetic and real-world 
data sets, acquired with different acquisition devices, show-
ing that the reconstruction algorithm is able to robustly 
reconstruct animated models from real-world data sources. 

The key contribution of this paper is a complete and 
practical animation reconstruction pipeline that reconstructs 
topology, shape and correspondences as well as a deform-
able template model from unstructured point clouds. To our 
knowledge, this has not yet been done in similarly general 
form. 

2. Related Work 

Our technique combines previous work in 3D surface re-
construction from point clouds and deformation modeling. 
We also discuss the relation to existing techniques that 
reconstruct animation sequences from certain types of data. 

3D Reconstruction: A large number of techniques have 
been proposed to reconstruct surfaces from point clouds; a 
full survey is beyond the scope of this paper. Our technique 
is an extension of the statistical point-based reconstruction 
method proposed by [JWB*06], which in turn is based on 
[STT93]. In contrast to these previous techniques, we in-
crementally construct a graph of surface points that explic-
itly describes the topology of the point set based on 
observations in several frames rather than using simple 
distance criteria, which do not yield stable results under 
strong noise artifacts. A similar statistical model has been 
proposed by Diebel et al. [DTB06], requiring however 
knowledge of a mesh topology as part of the input to the 
algorithm. For the final meshing stage in our algorithm, we 
use a variant of the moving least squares (MLS) technique 
of Shen et al. [SOS04]. We also adopt the approach of Lu et 
al. [LZJ*05] of preprocessing point clouds with tensor 
voting [MLT00] to identify well-behaved regions and 
remove outliers. 

Deformation Modeling:  As part of the statistical priors, 
we need to quantify deformation induced by reconstructed 
correspondences. From a differential geometry perspective, 
deformations of corresponding surfaces can be character-
ized by deviations in their first and second fundamental 
forms [TPB*87]. Alexa et al. [ACL00] introduce a defor-
mation gradient model to describe least-deforming shape 
interpolation. Allen et al. [ACP02] compute correspon-
dences between different range scans of a person by fitting 
a skeleton controlling a displaced template surface to the 
data. In follow-up work [ACP03], the authors use smooth-
ness of local affine deformations to fit a template surface to 
range scans of different subjects. Sumner and Popović 
[SP04] use a similar approach to transfer deformations 
between meshes. All these techniques need a topologically 
equivalent and geometrically similar template mesh as 
input. Related deformation models are also used by Hähnel 
et al. [HTB03] in a non-rigid variant of ICP and Pauly et al. 
[PMG*05] to complete scans from pieces of similar objects. 
None of the aforementioned techniques considers the prob-
lem of reconstructing a multi-frame animation sequence. 
Our deformation model is a variant of Sumner and Pop-
ović’s technique [SP04]. We add additional orthonormality 

Figure 1: An overview of the animation reconstruction pipeline: A preprocessing step extracts 3D pieces of geometry in each 
frame. Adjacent frames are then iteratively merged using a statistical model to align pieces and optimize their shape as well 
as fill-in holes. Finally an animated triangle mesh is created by a marching cubes based surface extraction algorithm. 
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constraints as we are dealing with one and the same object 
deforming over time. Recently, several multi-grid methods 
have been proposed to improve the performance of defor-
mation models [HSL06, SYB*06]. Our method currently 
does not use a multi-resolution representation but we would 
expect performance improvements from such an approach 
in future work. 

Animation Reconstruction: Up to now, only few ap-
proaches to reconstructing animations with correspon-
dences in general settings have been published. A common 
strategy is to fit template meshes to the data [MGR00, 
CTM03, ZSC*04]. Anuar and Guskov [AG04] use hierar-
chical optical flow on adaptively sampled distance fields to 
propagate a template model over multiple frames. Using 
templates typically yields good results but requires the user 
to provide a suitable model. Our approach assembles a 
suitable template model as part of the reconstruction proc-
ess, thus allowing for general input data sets, making only 
low low-level prior assumptions (spatio-temporal smooth-
ness rather than knowledge of the class of shapes). Sand et 
al. [SMP03] reconstruct animations of humans using a 
combination of motion capture and silhouette-based recon-
struction. Their method yields impressive results but is 
restricted to this specific acquisition setup as well as prior 
knowledge of the model skeleton. Park and Hodgins 
[PH06] reconstruct high quality animated meshes from 
dense motion capture data with several hundred markers. 
The main difference to our approach is that their sampling 
(given by the markers) needs to be fixed over time. In 
addition, the processed marker point clouds are of low 
complexity, low noise and high temporal resolution, which 
is not the case for general scanner data. Anguelov et al. 
[ASP*04] consider the problem of automatically matching 
geometry to (complete) template models. They model the 
problem as a Markov random field that tries to match local 
geometry descriptors while preserving geodesic distances. 
In follow up work [ASK*05], the algorithm is employed to 
learn deformation and shape models of humans in different 
poses. Shinya [Shi04] reconstruct animations using an 
energy function based on deformation and data matching. 
By triangulating the first frame, an initial mesh is obtained 
that is subsequently tracked over time to perform the recon-
struction. This restricts the method to inputs where com-
plete geometry is obvious in the first frame. The influence 
of noise is not modeled. The optimization is based on gra-
dient descent, which causes numerical issues in terms of 
performance and stability [BW98]. 

3. The Reconstruction Pipeline 

Our reconstruction pipeline consists of four major compo-
nents (Figure 1): Preprocessing, iterative model assembly, 
(continuous) statistical optimization, and triangle mesh 
construction. For clarity, we will describe the statistical 
model and the corresponding continuous optimization 
procedure first (Section 3.1). The continuous optimization 
assumes that the 4D topology of the data set (spatial con-
nectivity and correspondences) are already known. After 
that, we discuss the outer optimization pipeline: the itera-

tive assembly procedure that actually determines the full 
4D topology (Section 3.2). The assembly process makes 
use of different variants of the continuous optimization 
procedure to align and globally optimize shape and corre-
spondence, as well as to fill in holes. Finally, Section 3.3 
explains how a globally consistent mesh is obtained from 
the point-based representation that will be employed within 
the rest of the pipeline. 

3.1. Statistical Model and Continuous Optimization 

We start the discussion of the statistical model by introduc-
ing some notation. The input to our system is a set of un-
structured point clouds d 

(t) sampled at discrete time 
intervals t = t0, …, tN. We refer to the individual data points 
as di

(t), i = 1…#d(t). The complete data set is referred to as 
D, its reconstruction is denoted by S. We employ a Bayes-
ian approach to surface reconstruction [DTB06, JWB*06]: 
Given a data set D, we compute the posterior probability 
Pr(S|D) for a candidate reconstruction S as: 

 Pr(S|D) ~ Pr(D|S) Pr(S) (1) 

The likelihood term Pr(D|S) models how well the data is 
explained by the candidate reconstruction and the prior 
Pr(S) quantifies how likely the reconstruction itself is a 
priori, not considering the data. This last term is crucial; it 
describes additional domain knowledge about the object 
being reconstructed. Without any such prior, no reconstruc-
tion (other than removing measurement bias) is possible. 
The goal of the reconstruction is to find the original ani-
mated scene S that has the largest posterior probability. To 
simplify computations, the optimization is done in log 
space, leading to an objective function 

  – log Pr(S|D)  ~  – log Pr(D|S) – log Pr(S). (2) 
For 3D surface reconstruction, the priors typically encode 
some form of smoothness assumption about the original 
surface. For animation reconstruction, we add additional 
priors that couple shape and correspondences over time: 
First, we assume spatio-temporal smoothness, i.e. the re-
construction is more likely if the surface deformation over 
time is small. Second, we assume temporal smoothness, 
which means that surface pieces should form smooth trajec-
tories over time. Overall, we obtain an objective function 
(negative log-posterior) of the following form: 

444444 3444444 214434421
priors

accelrigidsmooth

likelihood

match SESESESDESE )()()(),()( +++=   (3) 

In the following, we will define all terms in the objective 
function in the logarithmic domain. They can be converted 
to probability densities by taking the exponential of the 
negative value. 

Discretization: To simplify the formulation, we define 
the probabilistic model directly in the discretized domain. 
Following [STT93, JWB*06], we choose a set of oriented 
particles (surfels) si

(t), i = 1…ns, t = 1…nt as discretization. 
Particles with the same index i are always in correspon-
dence, i.e. they form a trajectory over time t that stays on 
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the same physical piece of surface (i.e., the number of 
particles is the same for every frame). In case of holes with 
no data, particles become latent parameters that are esti-
mated from the priors. For theoretical soundness, we think 
of truncating all prior densities to zero outside a large 
bounding box containing the scene to make them integrable 
[JWB*06] (the truncation is just a theoretical requirement, 
not affecting the actual implementation). A resampling 
procedure in the outer optimization loop (Section 3.2) will 
assure that the surfels (roughly) retain a sampling distance 
of εsampl. This distance is a user chosen constant that deter-
mines the maximum resolution of the reconstruction. The 
trajectories are connected by a graph TS that describes their 
topology: An edge ei,j is contained in TS if the geodesic 
distance between the trajectories is smaller than a user 
defined constant εtop. We typically set εtop = c·εsampl with 
c = 2. The topology is global over time, which means that 
every reconstructed frame has the same topology. We refer 
to a set of surfel trajectories with connectivity graph TS as 
4D topology. Please note that, as we use it in this paper, the 
term topology refers to the local connectivity structure over 
time and space, not to global properties such as the genus. 
We denote the set of surfels that are topological neighbors 
of a surfel s by NT (s). Using this representation, we are able 
to handle topological pseudo changes, such as opening the 
mouth (where the topology actually does not change, but it 
seems like it does). However, the model cannot handle 
inputs like the surface of a splashing liquid. An alternative 
representation of topology would be a triangle mesh. We do 
not use this type of discretization because the outer model 
assembly loop will perform frequent changes to the topol-
ogy. Maintaining a consistent triangle mesh in these opera-
tions is much more complex both in terms of computation 
time and implementation complexity than just maintaining 
a graph of surfels (in contrast to a full mesh, the surfel 
graph does not need to be conforming and may contain 
intersecting edges). We therefore postpone the creation of a 
consistent mesh to the last stage of the pipeline. Given the 
discretization, we can now define the different terms in the 
negative log-likelihood function: 

Likelihood (Data Attraction): The likelihood term 
Ematch(D,S) models the negative log-probability that data D 
has originated from the reconstructed surfaces S. We as-
sume that all data points have been created independently 
from each other, according to a noise probability density 
noise(t)(x, y), x ∈ S, y ∈ R3. Assuming uniform sampling 
probability (i.e., having no prior knowledge about how 
densely different portions have been sampled) and denoting 
the reconstructed surface at time t by S(t), the probability 
density p(D|S) is then given by the product of all 
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This means that the surface is blurred by the noise distribu-
tion. In this paper, we assume an unbiased Gaussian distri-
bution and employ the standard approximation [BM92] of 
just using the closest distance to the surface instead of 
calculating the integral expression (4). The negative log-
likelihood is then given by the squared distance function 
[PH03], scaled according to the variance of the Gaussian 
noise model in normal direction 
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where ωi
(t) is proportional to the inverse noise variance in 

normal direction. An issue in Gaussian noise models is 
outliers: Isolated points far away from the surface signifi-
cantly alter the solution. In order to deal with this problem, 
we truncate the gradients to zero (and thus the Hessian as 
well) for points that are too far away. This approximates a 
mixture of a Gaussian and a uniform distribution [BFS04], 
the latter accounting for outliers. We use different strategies 
for different stages of the optimization: For the global 
statistical optimization of already aligned surfaces, we 
truncate at a small distance of ε top. However, for the heuris-
tic assembly algorithm that initially aligns surfaces, we 
need to tolerate much larger distances in order to handle 
situations with substantial motion. In this case, we deter-
mine the cutoff distance automatically as the 85% percen-
tile of point distances and additionally reject data points 
with an angle of more than 45° towards the current surface 
normal estimate. Additionally, we check for a doublet 
constraint [PMG*05]: if the nearest data point of the nearest 
surface point a data point is not close to the data point itself, 
we prune this point as well. 

Spatial Smoothness (Noise Removal): In order to 
evaluate the smoothness of the surface, we assign each 
surfel si

(t) a normal vector n(si
(t)). The normals are latent 

variables; they are not measured directly but only inferred 
due to the priors. The objective function (negative log 
likelihood) prefers normals and point positions so that 
neighboring points are located close to the plane (Eq. 6). In 
addition, neighboring normals should be similar (Eq. 7): 
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Figure 2: Surfel potentials – red: surfels, blue: data points, grey: optimal position, light blue: correspondences 
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The overall objective function is the sum of these two 
functions. In addition to the smoothness terms, we also 
employ a Laplacian potential 
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which attracts surfels to the centroid of their neighbors. 
This leads to a uniform distribution of surfels on the sam-
pled surface. As this is only an additional regularization, we 
use only a small weight, typically 10% of the position 
weight. Our smoothness model is mostly identical to that of 
[STT93]. We currently do not use the feature preserving 
heavy tail potentials of Diebel et al. [DTB06]. This is not 
that critical for our application because we typically need to 
perform only very little smoothing as much of the noise is 
removed due to the averaging effect of the common ur-
shape. So far, we have only employed priors on the 3D 
shape, neglecting the behavior of the surface over time. In 
the following, we will formulate 4D priors that take into 
account the special properties of a deforming surface over 
time. For these priors, we consider the correspondences 
between frames and treat those as latent, non-observed 
variables. The special correspondence-based structure of 
these priors is the main difference to just applying a multi-
dimensional reconstruction technique to the four dimen-
sional set of points over time and space. We use two differ-
ent priors: A prior on the deformation and a prior 
prescribing temporal smoothness, which are described 
subsequently. 

Spatio-Temporal Smoothness (Rigidity): For a de-
forming surface, we expect it to deform as little as possible, 
unless evidence (measured data) shows otherwise. Conse-
quently, we formulate priors that try to keep the object as 
rigid as possible. The key component of our model is to 
assign a local transformation to each particle [SP04]. This 
local transformation is a latent variable, being reconstructed 
indirectly using priors. The transformation is modeled as a 
local rigid transformation. We use Ai

(t) to denote the corre-
sponding, orthonormal 3 × 3 rotation matrix. We then em-
ploy the following objective function: 
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This potential tries to make the deformation of points and 
normals in a local spatial neighborhood agree with a local 
rigid transformation. We apply the same potential function 
to the normals as well, which is a valid condition because 
the Ai

(t)  are orthonormal. In principle, the point condition 
alone is sufficient; having an additional constrain on the 
normals just improves coupling of the latent variables. 
Please note that the affine component of the transformation 
is modeled implicitly by the position of si

(t+1) [SP04]. This 
keeps the origin of the rotation in the center of each surfel 
and thus avoids coordinate system dependencies that arise 
when specifying affine mappings [ACP03]. The matrices 
Ai

(t) can also be interpreted as gradients of the deformation 
function that forcibly have been made rigid. Nevertheless, 
non-rigid mappings are possible as the constraints are only 

preserved in a least squares sense. Unlike [SP04], we do not 
explicitly penalize local deviations of the transformations. 
This is expressed implicitly in our model as the neighbor-
hoods overlap spatially: In order to yield the same predic-
tion for surfels joining an edge in the graph, their local 
transformations need to be similar. 

Temporal Smoothness (Acceleration Prior): The last 
prior we employ is conservation of momentum: as any 
different behavior needs additional force, we expect a priori 
that points keep their trajectory over time. 
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Again, we apply the same penalty function (scaled accord-
ingly) to the normals as well. The acceleration priors en-
force spatial coherence and turn out to be highly effective 
in avoiding high frequency tangential deformation noise in 
the final reconstruction. 

Numerical Optimization: The sum of the log probabili-
ties of the described probability densities yields a non-
linear least-squares problem, which we solve using numeri-
cal optimization. Several problems have to be dealt with: 
First, we need a reasonable starting value as the log likeli-
hood might have multiple local extrema. This problem is 
addressed in the next subsection, which describes the itera-
tive assembly algorithm. A second issue is parameteriza-
tion: While the surfel position is unconstraint, the 
optimization of normals and rotation matrices is a con-
straint optimization problem. In order to avoid the difficul-
ties of dealing with constraint non-linear optimization, we 
employ the parameterization approach of [HP04]: We 
describe changes to the normal by offset vectors in the 
tangent plane spanned by vectors tu, tv, 

 vu ttnn vuvu ++=),( , (11) 

and solve for the parameters u, v during the optimization. 
Then we recompute the normals and the local parameteriza-
tion for the next step of the non-linear optimization. Using 
this parameterization, the normals might only grow, which 
enlarges the objective function, thus avoiding degenerate 
solutions (as for unconstrained normals). Initial normals are 
computed using PCA and region growing to unify their 
orientation [HDD*92]. Similarly, we need an unconstraint 
representation for rotation matrices: We parameterize the 
A(t)

i by 3 dimensional rotation vectors ci
(t): Their orientation 

defines the rotation axis and their length the angle of rota-
tion. We can compute the rotation matrix as matrix expo-
nent of the skew symmetric matrix C×i

(t) which describes 
the linear operation of taking the cross product with the 
vector ci

(t): 
 .)exp( )()()( t

i
t
i

t
i I ×× CCA +⋅==  (12) 

During the optimization, we use the first order Taylor ex-
pansion (12) of the matrix exponential to parameterize the 
transformations in the local neighborhood of the current 
estimate. As in the case of tangential normal parameteriza-
tions, a valid orthonormal rotation matrix and a new local 
parameterization are computed after each step. Initial esti-
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mates are computed using the technique of [Hor87]. A last 
but important issue is the actual numerical optimization that 
computes the local minimum: At this point, the rigidity 
priors cause trouble: Defining a stiff object by making local 
pieces rigid yields a problem that becomes increasingly ill 
posed with increasing resolution of the discretization. A 
gradient descent strategy fails for models containing more 
than just a few hundred surfels: Tracking the gradient of the 
deformation energy yields a stiff differential equation that 
needs to be solved with very small timesteps to avoid ex-
plosive divergence [BW98]. For large models, often no 
convergence is obtained at all. We therefore employ a 
Newton optimizer that computes a global equilibrium of all 
forces in a local quadratic approximation to the non-
quadratic objective function. As the objective function is of 
a non-linear least square type, we generally use the Gauss-
Newton approximation to compute analytic approximate 
Hessians, which is computationally less involved. The 
Hessian of the squared distance function is approximated 
using the technique of [PH03]. We solve the linear systems 
in the Newton iteration using a diagonally preconditioned 
conjugate gradient solver. This preconditioning is important 
to balance the different scale of normals, rotations, and 
positions. Using this approach, large surfel graphs can be 
handled without stability issues. 

3.2. Iterative Model Assembly 

The previously described optimization method needs to 
know the 4D topology of the data set (neighborhood graph 
TS and trajectory relationship) as well as a rough initializa-
tion of the variables in order to perform the optimization. In 
theory, we could think of trying all possible (well con-
nected) topologies, finding all local minima of the objective 
function and determining the best one. However, a naïve 
algorithm for such an approach is exponential and it is not 
obvious if there exists a more efficient algorithm. We use a 
heuristic approximation that reconstructs the 4D topology 
by iteratively assembling pieces of the moving surface 
(Figure 3). This works well for real-time scans of animated 
scenes, which are usually densely sampled in the temporal 
domain. A more rigorous statistical reconstruction of 4D 
topology from noisy data is a very interesting, non-trivial 
problem that we leave for future work. 

The iterative model assembly pipeline works in two 
steps: First, we extract seed regions in 3D. These are pieces 
of geometry for which the 3D topology can be safely de-

termined by a local proximity heuristic. The selection of 
these regions is done using tensor voting [MLT00]. After 
that, in the second step, we iteratively merge geometry from 
adjacent frames. Each merging operation yields a set of 
trajectories over two frames with a common topology. The 
process is then iterated subsequently to create longer trajec-
tories until each merged trajectory spans the complete 
animation and one single neighborhood graph TS describes 
the 3D topology of these trajectories in all frames simulta-
neously, which is the final reconstruction. Each merging 
operation itself is also performed in multiple steps: The first 
step is to align the first frame of the next and the last frame 
of the previous range of frames geometrically (Figure 3b, 
Figure 4a). Then, the topology of these two frames is 
stitched together. As the topology graph TS of each set of 
frames is global over time, connecting the frames connects 
the topology in all frames. The new set of trajectories cov-
ers the entire range of frames (Figure 4b). As a result, all 
trajectories from the left part are uninitialized in the right 
part and vice versa (Figure 4b, grey points). Thus, the next 
task is to fill in the interpolated estimates of the shape in 
these regions. We initialize the new points with a simple 
prediction and then locally perform statistical optimization. 
Finally, the resulting surfel graph (Figure 4c) is resampled 
to a fixed sampling density (in order to keep the complexity 
of the representation constant) and the optimization is 
applied once more to all surfels simultaneously to distribute 
errors globally, which finalizes the merging of two ranges 
of frames. Filling in missing values with estimates and 
optimizing these estimates also happens in regions where 
no data is present, i.e. in acquisition holes. In this way, 
holes are automatically filled with estimates from neighbor-
ing frames Thus, in the acquisition holes, the fill-in will 
resemble the neighboring geometry with as little deforma-
tion as possible. In the following, we will first describe the 
preprocessing procedure that estimates the initially recover-
able seed regions in 3D. Then we describe the steps of the 
assembly algorithm one after the other. 

Initial Estimation of Recoverable 3D Topology: The 
first step is a preprocessing step that extracts areas where 
the 3D topology TS of the data is obvious from a single 
frame. Later, these potentially disconnected pieces will be 
stitched together to assemble the global topology, assuming 
that it will become obvious over several frames. This step 
might still make mistakes: In some situations, such as an 
opening mouth, the topology cannot be estimated reliably 
from some of the frames. These problems will be dealt with 
in later stages of the algorithm. The main idea for the initial 
stage is that locally smooth areas are likely to represent a 
simple, topologically disc-like piece of the original model. 
In order to extract smooth, possibly curved pieces of sur-
faces, we employ tensor voting, which is a powerful feature 
extraction technique [MLT00]. It represents surface points 
as ellipsoids for which the main axis refers to the normal 
direction and non-zero values for the other two axes repre-
sent uncertainty. Our implementation closely follows the 
surface voting procedure described in [MLT00]: First, 
“cross-product” voting tensors are accumulated at every 
data point; then the resulting tensor field is convolved with 

  
(a) Merging partially known 

topology (schematic) 
(b) Pieces of known 3D topology 

(red) are merged 

Figure 3: Iterative assembly to compute the 4D topology 
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a surface voting tensor to enhance the contrast. As a result, 
every data point (we accumulate votes at data points only) 
obtains a normal direction tensor. We then threshold their 
aspect ratio (typically: second smallest / largest eigenvalue 
≤ 0.8) to identify points in locally smooth regions. These 
points get connected by a neighborhood graph that forms 
edges between all points within distance εtop. Points with 
uncertain normal directions are excluded from the topology 
computation. As a useful byproduct, this procedure also 
removes isolated outliers [LZJ*05]. For the resulting sur-
face patches, we apply the 3D part (data matching and 
smoothness) of the statistical optimization to remove noise 
from the initial estimate. Given these initial pieces of sur-
face, we can now start merging frames in the process of 
which the individual topological pieces will be stitched 
together. Each merging step involves geometric alignment, 
topology stitching, hole filling, and global optimization, 
which we will discuss subsequently: 

Geometric Alignment: The first step in the merging 
process is to align two frames at adjacent times such that 
corresponding pieces of the surface come to rest at the same 
spatial positions. This alignment will then be used subse-
quently to form topological connections. In the following, 
we will call the two ranges of frames the “left” and the 
“right” piece, the left ending at time tleft and the right start-
ing at tright = tleft + 1 (Figure 4a). We employ the statistical 
optimization procedure to obtain a variant of non-rigid ICP 
[HTB03]: We form an auxiliary scene with two frames: The 
first frame is constant and set to S (tleft). The second frame 
contains the unknown alignment to be optimized; the vari-
ables are also initialized with S (tleft) as starting position. The 
data points in the second frame are set to S (tright) in order to 
attract the aligned frame to the configuration in the follow-
ing frame. We then perform continuous optimization on the 
second frame using data matching and rigidity potentials 
only, until convergence. If the frames of the animation are 
densely sampled over time, the likelihood term will attract 
the predicted points to the actual data points, while the 
priors retain a smooth deformation. In order to increase the 
robustness of the pairwise alignment process, we perform 
the alignment twice, once aligning the left with the right 
frame and once the other way round. We compute the 
resulting average potential in both alignments and choose 
the variant with the smaller stretch. After stitching the 
topology (see below), we align the other part using the 
established correspondences; this third alignment step 
converges quickly, typically within 2-3 iterations. 

Topological Stitching: Having aligned the two frames, 
we have to stitch together their topology. In order to do so, 
we start from scratch and just connect every surfel to all of 
its neighbors within distance ε top in the aligned configura-
tion. Doing this naïvely could create a wrong topology: 
Surfels that have been connected previously will still be 
connected after the merge as they keep their distance due to 
the rigidity potential. However, surfels that come close to 
each other for only a few frames might be falsely con-
nected. To detect such situations, we employ an additional 
filter: Whenever the distance between surfels changes over 
the newly created trajectory by more than a certain factor 
(typically 1.5), the connection is rejected. In this way, the 
topology combines proximity information in all corre-
sponding frames. 

Hole Filling: After topological stitching, some parts of 
the trajectories are still unknown. These are the right parts 
from the left frame’s trajectories and left parts of right 
frame’s trajectories (Figure 4b). The frames directly in-
volved in the alignment have already been filled in with 
aligned data but the surfels in all other frames are uninitial-
ized so far. This step fills acquisition holes as well as ex-
trapolated trajectories supported by data points; the 
procedure is the same: We first initialize surfels in frames 
directly adjacent to already initialized frames with a copy of 
that data. Then, we use again the statistical optimization 
procedure to compute in the most likely values at these 
points. We restrict the optimization to run only at the newly 
estimated surfels, treating all other surfels, including spatial 
and temporal neighbors, as constant boundary conditions. 
This ensures both quick convergence (due to many known 
neighbors) and limited computational effort. The procedure 
is iterated by a region growing in time until all frames have 
been filled up. Please note that we do not fill surface area 
unless it is visible in at least one frame. For geometry that 
has been unobserved so far, hole filling is done when merg-
ing with the first frame that contains data in this area. 

Resampling: The next step is to resample the surfel 
graph in order to keep the discretization density (and thus 
the computational costs) constant. This is done by greedily 
deleting all surfels that are “unnecessary”, i.e. which are 
within distance ε sampl/2 of another point over all frames and 
are not the last surfel to support another previously deleted 
point. This strategy creates a provably good approximation 
of an optimal surfel distribution on the surface [Wan04]. To 
our experience, upsampling is not necessary as the iterated 
merging constantly adds new surfels anyway. The resam-

    
(a) alignment (b) stitching (c) hole filling (d) resampled 

Figure 4: Steps of the topological merging pipeline. (a) Two ranges of frames are aligned. (b) The topology is stitched to-
gether. (c) Unknown surfels (grey) are filled in. (d) The surfel graph is resampled and optimized. 
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pled topology is created by simply again recomputing the 
topology using the previously described strategy. 

Global Optimization and the Urshape: Next, we per-
form a global optimization of the complete merged range of 
frames on all surfels, again minimizing the previously 
derived statistical energy function. This avoids error accu-
mulation by balancing all terms in the statistical model over 
time and space. Global optimization is done in two steps: 
first, only the trajectories are optimized. In the second step, 
we compute the urshape: We form an empty frame, not 
containing any data points and initialize it with any of the 
reconstructed frames (in our implementation just the first 
frame). Then we connect this frame to all other frames of 
the animation. This means, the rigidity potential is evalu-
ated for any pair of a surfel in a frame and a surfel in the 
urshape. Then we run the optimization procedure (experi-
ments show that a joint optimization of both geometry and 
urshape at the same time shows a good convergence behav-
ior; the presence of data points in all frames avoids artifacts 
due to the initialization of the urshape). The rigidity poten-
tials between frames are not used at this stage. Empirically, 
splitting up the optimization into one trajectory and a sub-
sequent urshape fitting step led to the best results on our 
test data sets. The addition of the urshape fitting step 
proved to be especially helpful to avoid correspondence 
noise and drift in the final reconstruction. In addition, it 
yields an “average” template model that can be deformed 
most easily into all other frames, which is a useful output of 
its own. Global optimization finalizes the merging of two 
frame ranges. 

Iteration: The whole merging procedure (alignment, 
hole filling, stitching, resampling and global optimization) 
is iterated in a binary scheme until all frames of the anima-
tion are merged: We iteratively merge adjacent pairs frame 
ranges, leading to a logarithmic number of merging steps 
per frame involved. Urshapes are currently recomputed at 
each level from scratch. After all frames have been merged, 
we run an additional global optimization step. In this stage, 
we use increased rigidity weights to finally smooth the 
reconstruction. The reason for this extra step is that strong 
rigidity penalties during merging make the problem of 
detecting topological changes harder to solve. To avoid 
oscillations during merging, we also postpone the usage of 
strong acceleration penalties to this last optimization step. 

3.3. Meshing 

The result of the reconstruction is a graph of trajectories 
sampled with oriented surfels. From this representation, we 
create the final animated mesh. To convert a single frame 
into a triangle mesh, we construct an implicit function for 
each surfel according to the local linear model defined by 
its surface normal. Then we blend between these local 
implicit functions [SOS04] using a Gaussian weighting 
kernel with standard deviation proportional to εsampl. From 
this representation, we extract a triangle mesh using a stan-
dard marching cubes algorithm [HDD*92], augmented with 
a border detection step that clips regions not supported by 
surfels [JWB*06]. Each triangle vertex is associated with 

the nearby surfels according to their Gaussian window 
weight, which we renormalize to form a partition of unity. 
Therefore, we can compute a meshing of the whole anima-
tion by just copying the mesh topology for all frames and 
recompute the vertex positions, normals and possible addi-
tional attributes according to the Gaussian weights. 

4. Implementation and Results 

We have implemented the proposed system and applied it 
to a number of synthetic and real-world data sets. The input 
data sets and the reconstructions are show in detail in the 
video accompanying this paper. Figure 5 and Table 1 give a 
rough overview of the results. We render the final meshes 
textured, with texture coordinates of the first frame to show 
the correspondences. We also add a specular environment 
map to visualize surface smoothness. 

Synthetic tests: Our first synthetic test data set is the 
well known Venus torso model, rotating about 120° over 20 
frames. We subsequently add uniform Gaussian noise and 
10% random outliers within the bounding box of the scene 
(see video for a comparison). The reconstructed correspon-
dences do not show any visible drift. Correspondences are 
stable under noise and outliers, only some high frequency 
details in the geometry are lost as more smoothing becomes 
necessary to control the noise level. A second synthetic data 
set shows a model of an elephant with bending legs and 
proboscis that has been modeled using a commercial 3D 
modeling package. Again, we add noise and outliers and 
additionally cut out several large holes over the course of 
the animation. Again, we obtain globally stable correspon-
dences over the entire sequence. Holes are seamlessly filled 
in with geometry from other frames. Some artifacts are 
visible in the final mesh at the elephant’s ears as the sam-
pling of the surfel graph was chosen too coarse for the final 
marching cubes step. 

Real-world data sets: Next, we apply the method to a 
set of real-world data sets obtained with different types of 
animation scanning devices. The first data set is a human 
face with opening mouth acquired using space-time stereo 
[DNR*05]. The data set is incomplete and even over all 
frames some amount of hole area remains unobserved. A 
special challenge is the topological pseudo change of the 
opening mouth. After adjusting rigidity weights and maxi-
mum edge length change tolerance manually, our algorithm 
is able to compute the correct topology. Correspondences 
are tracked reliably, without global drift. A small amount of 
tangential noise remains, which is mostly damped out by 
increasing acceleration penalty weights. In the final mesh-
ing, some marching cubes artifacts remain at the bounda-
ries. In addition, some small patches created from 
structured outliers remain in the reconstruction; we cur-
rently do not remove small non- or loosely connected 
pieces automatically. We obtain comparable results for a 
facial animation captured with a prototype structured light 
scanner of Gumhold and König [GK07]. Again, the topol-
ogy of the data set is correctly reconstructed as far as this is 
apparent from the incomplete input data. Area that is visible 
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in some of the scans is filled in reliably with roughly be-
lievable dynamics (due to the deformation and acceleration 
priors). As a simple application example, we use the com-
puted correspondences to propagate color painted on the 
first frame to all other frames automatically (see video) 
using the same technique that extrapolates the position and 
normal attributes from the single frame marching cube 
reconstruction. The third real-world example is a gesturing 
hand, acquired using a real-time structured light scanner 
[ABW]. The main problem is once more to reconstruct the 
topological pseudo-change when the fingers meet. This is 
achieved correctly up to sampling resolution. Correspon-
dences are again tracked reliably with no global drift and 
little tangential noise. The video shows how the computed 
correspondences can be used to paint simultaneously on all 
frames. A last test data set shows a person shaking a pop-
corn bowl acquired with a color coded real-time structured 
light scanner [FB05]. Here, the algorithm merges the tin 
with parts of the hand because the input sequence is am-
biguous: it does not show examples with sufficient separa-
tion of the two. Otherwise, we again obtain smooth surfaces 
and visually correct correspondences and some artifacts in 
boundary regions or due to surface-like structured outliers. 

5. Discussion and Future Work 

We have presented a system for performing animation 
reconstruction from time series of noisy and incomplete 
point clouds. The method uses a statistically motivated 
optimization procedure that removes noise, establishes 
correspondences over multiple frames and fills in holes 
from other frames. Using this approach, we were able to 
reconstruct animated meshes with dense correspondences 
from data corrupted by strong noise and outlier artifacts as 
well as large portions of missing data. For synthetic data 
sets that meet our model assumptions, we obtain almost 
artifact free results and globally and locally stable corre-
spondences. Stable correspondences are also obtained for 
real-world data sets; however, some geometric artifacts 
remain due to structured outliers (which are not modeled) 
and in some boundary regions. The latter is a shortcoming 
of our simple meshing technique that could be improved in 
future work by adding better handling of boundary curves 
[JWB*06]. As far as data is available, holes are filled in 
reliably and the algorithm is able to distinguish between 
acquisition holes and topological changes based on the 
deformation of adjacent geometry. Our approach has sev-
eral limitations that could be addressed in future work: The 
employed iterative assembly heuristic does not provide 
guarantees for finding a good solution. For data sets with 
bad spatial or temporal sampling, the assembly algorithm 
cannot determine the 4D topology correctly. We have 
conducted some successful preliminary experiments of 
using geometric feature matching to improve correspon-
dence estimation for large temporal spacing. However, a 
general solution to determine a strong statistical estimate of 
the 4D topology still remains an open problem. A further, 
important practical limitation is the large computational 
costs of the current method. A scene representation that 

separates low resolution, adaptively sampled, time variant 
deformation and high resolution, static geometry could 
improve upon this. We would also like to integrate the 
reconstruction more tightly into a computer vision system, 
using more accurate noise distributions and visibility con-
straints. Using the urshape as common reference frame, it 
would also be interesting to try to learn the weights of the 
prior potentials from data by trading off fitting residuals 
and additional regularization constraints that avoid degen-
erate zero weights. Having a practical and stable technique 
to reconstruct shape and correspondences from dynamic 3D 
scanner data could serve as a basis for more general geome-
try processing algorithms on animated data. The long term 
goal of such efforts could be an application such as a scan-
ner based 3D movie editing pipeline. 
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(a) venus torso 
(synthetic example) 

(b) elephant 
(synthetic example) 

(c) face [DNR*05] 
courtesy of J. Davis 

(d) face [GK07] 
courtesy of S. Gumhold

(e) hand gesture 
courtesy of O. Schall 

(f) popcorn tin, 
courtesy of P. Fong 

Figure 5: Example scenes – top: input data, center: reconstructed surfel graphs (blue: urshapes), bottom: final meshes. 
 The images show two different frames with large temporal spacing; please refer to the video for the full animations. 

 venus  elephant face [DNR*05] face [GK07] hand gesture popcorn tin 
frames / surfels /  

data pts. 
20 / 25,905 / 

399,920 
20 / 49,500 / 

963,671 
21 / 63,651 / 

1,333,000 
20 / 32,740 / 

400,000 
26 / 21,294 / 

520,000  
15 / 56,985 / 

896,301 
preprocessing 272 sec 412 sec 1,203 sec    419 sec(*)     708 sec(*)    434 sec 

merging 5,816 sec 14,755 sec 16,721 sec 19,674 sec 4,002 sec 19,621 sec 
final global opt. – 1,196 sec 4,910 sec 7,367 sec 1,398 sec 1,320 sec 

Table 1: Computation time on a single core Pentium-4 3.4GHz with 2GB of main memory ((*) Pentium-4 3.0Ghz) 
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