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Abstract

Priority-driven search is an algorithm for retrieving similar shapes from a large database of 3D objects. Given
a query object and a database of target objects, all represented by sets of local 3D shape features, the algorithm
produces a ranked list of the c best target objects sorted by how well any subset of k features on the query
match features on the target object. To achieve this goal, the system maintains a priority queue of potential sets
of feature correspondences (partial matches) sorted by a cost function accounting for both feature dissimilarity
and the geometric deformation. Only partial matches that can possibly lead to the best full match are popped
off the queue, and thus the system is able to find a provably optimal match while investigating only a small
subset of potential matches. New methods based on feature distinction, feature correspondences at multiple scales,
and feature difference ranking further improve search time and retrieval performance. In experiments with the
Princeton Shape Benchmark, the algorithm provides significantly better classification rates than previously tested
shape matching methods while returning the best matches in a few seconds per query.

1. Introduction
Large databases of 3D models are becoming available in
a number of disciplines, including computer graphics, me-
chanical CAD, molecular biology, and medicine. As these
databases grow, shape-based similarity search is emerging
as a valuable tool for analysis and discovery.

The goal of our work is to develop effective methods to re-
trieve from a database a ranked list of 3D models most simi-
lar in shape to a 3D model provided as a query. This problem
is difficult because objects of the same type may not have ex-
actly the same sets of parts (e.g., some chairs have arms and
others don’t), and some parts that distinguish object types
may be relatively small (e.g., the ears of a bunny). Shape
representations that account only for global shape properties
do not perform well at recognizing shapes in these situations.

A common method for addressing this problem is to rep-
resent every object by a set of local shape features cen-
tered on points sampled from the object’s surface and then
to compute a similarity metric for every pair of objects
based on a cost function measuring the quality of matches
in the optimally aligned set of feature correspondences
(e.g., [BMP01, CJ96, JH99]). This approach is attractive be-
cause it is robust to shape variations within a class – as long
as a few key shape features match, then the objects will

match. The challenge is that the number of possible feature
correspondence sets grows exponentially with the set size
– naively checking all possible sets of k feature correspon-
dences among n features on two objects takes O(nk) oper-
ations. In practice, searching the space of potential feature
correspondences for a single pair of surfaces can take sev-
eral seconds or minutes, and using these methods to find the
best matches in a large database is impractical.

In this paper, we introduce a priority-driven algorithm for
searching all objects in a database at once. The algorithm
is given a query object and a database of target objects, all
represented by sets of local shape features, and its goal is to
produce a ranked list of the best target objects sorted by how
well any subset of k features on the query match features
on the target object. To achieve this goal, the system main-
tains a priority queue of potential sets of feature correspon-
dences (partial matches) sorted by a cost function account-
ing for both feature dissimilarity and geometric deformation.
Initially, all pairwise correspondences between the features
of the query and features of target objects are loaded onto
the priority queue. Then, at every step, the best partial match
m is popped off the priority queue, new partial matches are
created by extending m to include compatible feature cor-
respondences, and those new partial matches are added to
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the priority queue. This process is iterated until the desired
number of full matches with k feature correspondences have
been popped off the priority queue.

The advantage of this approach is that the algorithm
provably finds the optimal set of matches over the entire
database while investigating only a small subset of the po-
tential matches. Like any priority-driven backtracking search
(e.g., Dijkstra’s shortest path algorithm), the algorithm con-
siders only the partial matches that can possibly lead to the
lowest cost match (Figure 1). Although some poor partial
matches are generated, they never rise to the top of the prior-
ity queue, and thus they incur little computational overhead.
By using a single priority queue to store partial matches for
all objects in the database at once, we achieve great speedups
when retrieving only the top matches – if a small set of target
objects match the query well, their feature correspondences
will be discovered quickly and the details of other poten-
tial matches will be left unexplored. This approach largely
avoids the combinatorial explosion of searching for multi-
feature matches in dissimilar objects.

C1

C2

C3

C4

A1 A2

A3
B1

B2 B3

(A1,B2)
(A2,B1)
(A3,B3)

0.18

(A1,B3)
(A2,B2)

0.12

(A1,B2)
(A2,B3)
(A3,B1)

0.03
(A2,C3)

161.5
(A4,B1)

120.6
(A3,C1)

95.3

Priority Queue

Query Targets

Low Cost High Cost

Feature 
Matches

___________
Cost of Match

A4

Figure 1: Priority driven search: a priority queue (bottom)
stores potential matches of features (labeled dots) on a query
to features of all target objects at once. Matches are extended
only when they reach the top of the priority queue (the left-
most entry), and thus high cost feature correspondences sit
deep in the priority queue and incur little computational ex-
pense.

This paper makes several research contributions. In addi-
tion to the idea of priority-driven search, we explore ways
of improving computational efficiency and retrieval perfor-
mance of multi-feature matching algorithms: 1) we use ranks
rather than L2 differences to measure feature similarity; 2)
we use a measure of class distinction to select features; and,
3) we match features at multiple scales. Finally, we provide a
working shape-based retrieval system and analyze its perfor-
mance over a wide range of options and parameter settings.
We find that our system provides significantly better retrieval
performance than previous shape matching approaches on
the Princeton Shape Benchmark [SMKF04] while using in-
creased, but reasonable, processing and storage costs.

The organization of the paper is as follows. The next sec-
tion contains a summary of related work on matching of

3D surfaces. Section 3 contains an overview of the priority-
driven search algorithm followed by a detailed description
for every algorithmic step. Section 4 compares the perfor-
mance of the priority-driven search approach to other state-
of-the-art shape matching methods and investigates how
modifying several aspects of the algorithm impacts its per-
formance. Finally, Section 5 provides a brief discussion of
limitations and topics for future work.

2. Background and Related Work

There has been a large amount of research on algorithms for
shape-based retrieval of 3D surface models. In this section,
we focus on the previous work most closely related to ours
and refer the reader to survey articles for broad overviews of
prior work in related areas [BKS∗05, IJL∗05, TV04].

The most common approach to shape-based retrieval of
3D objects is to represent every object by a single global
shape descriptor representing its overall shape. Shape His-
tograms [AKKS99], the Light Field Descriptor [COTS03],
and the Depth Buffer Descriptor [HKSV02] are a few ex-
amples. These descriptors can be searched efficiently, and
thus they are suitable for queries into large databases of 3D
shapes. However, retrieval precision is generally poor when
objects within the same class have different overall shapes –
e.g., due to articulated motions, missing parts, or extra parts.

Recently, several researchers have investigated ap-
proaches to partial shape matching based on feature corre-
spondences (e.g., [BMP01, CJ96, GCO06, JH99, NDK05]).
The general strategy is to compute multiple local shape de-
scriptors (shape features) for every object, each represent-
ing the shape for a region centered at a point on the sur-
face of the object. Then, the similarity of any pair of objects
is determined by a cost function determined by the optimal
set of feature correspondences at the optimal relative trans-
formation, where the optimal match minimizes the differ-
ences between corresponding shape features and the geomet-
ric distortion implied by the feature correspondences. This
approach has been used for recognizing objects in 2D images
[BMP01, BBM05], recognizing range scans [JH99], regis-
tering medical images [AFP00], aligning point sets [CR00],
aligning 3D range scans [GMGP05, LG05], and matching
3D surfaces [NDK05, SMS∗04].

The challenge is to find an optimal set of feature corre-
spondences efficiently. One approach is to consider an as-
sociation graph containing a node for every possible fea-
ture correspondence and an edge for every compatible pair
of correspondences [BB76]. If each node is weighted by
the dissimilarity of its associated features and each edge
is weighted by the cost of the geometric deformation im-
plied by its associated pair of correspondences, then find-
ing the optimal set of k feature correspondences reduces to
finding a minimum weight k-clique in the association graph.
Researchers have approached this problem with algorithms
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based on branch-and-bound [GMGP05], integer quadratic
programming [BBM05], etc. However, previous work in this
area has been aimed at pairwise alignment of objects, and
current solution methods are generally too slow for search
of large databases.

Another approach is based on the RANSAC algo-
rithm [FB81, SMS∗04]. Sets of k feature correspondences
are generated, where k is large enough to determine an align-
ing transformation, and the remaining features are used to
score how well the objects match after the implied align-
ment. For example, [JH99] finds small sets of compatible
feature correspondences, computes the alignment providing
a least-squared best fit of corresponding features, and then
“verifies” the alignment with an iterative closest point al-
gorithm [BM92]. [SMS∗04] proposed a “Batch RANSAC”
version of this algorithm that considers matches to all tar-
get objects in a database all at once, generating candidate
matches preferentially for the target objects with features
compatible with ones in the query. However, their evalua-
tion focused on recognition of vehicles from a small set of
range scans, and studies have not been done to show how
well it works for large databases of surface models.

Several researchers have considered methods for acceler-
ating database searches using discrete approximations. For
example, geometric hashing [LW88] uses a grid-based hash
table to store every feature of every target object in n choose
k hash cells. For every query, k features are used to determine
a mapping into the hash, and then other features vote for ob-
ject transformations wherever there are hash collisions. This
approach is quite popular in computer vision, molecular bi-
ology, and partial surface matching (e.g., [GCO06]). How-
ever, it requires a lot of memory to store hash tables and
produces approximate matches, since it discretizes both the
set of possible transformations (it only considers transfor-
mations induced by combinations of features) and Euclidean
space (features match only if they fall in the same grid cell).

Alternatively, “bag of words” approaches can be used to
discretize feature space. For example, [MBM01] clusters
features into “shapemes,” builds a histogram of shapemes
for every object, and then approximates the similarity of two
objects by the similarity of their histograms, and [GD05] ex-
tends this approach to consider pyramids of clusters. How-
ever, these methods make little or no use of the geometric
arrangements of features, and thus they do not provide as
distinguishing matches as possible.

Our approach is to use priority-driven search to find the
objects in a database that have sets of local feature corre-
spondences minimizing a continuous cost function. The key
idea is to use a priority queue to focus a backtracking search
on sets of feature correspondences with lowest matching
cost among all objects in the database all at once. This ap-
proach provides a significant efficiency improvement over
more expensive algorithms that compute pairwise matches
between the query and all objects in the database indepen-

dently (e.g., [BBM05]) – i.e., it avoids computing the opti-
mal set of correspondences for the target objects that do not
appear at the top of the retrieval list. It can also provide an
accuracy improvement over discrete or greedy approximate
algorithms, since it guarantees optimal matches with respect
to a continuous cost function.

3. System Execution

Execution of our system proceeds in two phases: a prepro-
cessing phase and a query phase.

During the preprocessing phase, we build a multi-feature
representation of every object in the database. First, we gen-
erate for each object a set of spherical regions covering its
surface at different scales. Second, for every region, we com-
pute a descriptor of the shape within that region. Third, we
compute differences between all pairs of descriptors at the
same scale and associate with every descriptor a mapping
from rank to difference. Finally, we select a subset of fea-
tures to represent each object based on how distinctive they
are of their object class. The result of this preprocessing is a
set of “shape features” (or “features,” for short) for every ob-
ject, each with an associated position (p), normal (~n), radius
(r), and shape descriptor (a feature vector of numbers rep-
resenting a local region of shape), and a description of how
discriminating its shape descriptor is with respect to others
in the database.

For every query, our matching procedure proceeds as
shown in Figure 2. The inputs are: 1) a query object, query,
2) a database of target objects, db, each represented by a
set of shape features, 3) a cost function, cost, measuring
the quality of a proposed set of feature correspondences, 4)
a constant, k, indicating the number of feature correspon-
dences that should be found for a complete match, and 5) a
constant, c, indicating the number of objects for which to re-
trieve optimal matches. The output is a list of the best match-
ing target objects, M, along with a description of the feature
correspondences and cost for each one.

Initially, a priority queue, Q, is created to store partial
matches, and an array, M, is created to store the best match
to every target object. Then, all pairwise correspondences
between the features of the query and features of the target
objects are created, stored in lists associated with the tar-
get objects, and loaded onto the priority queue. The priority
queue then holds all possible matches of size 1. Then, until
c complete matches have been found, the best partial match,
m, is popped off the priority queue. If it is a complete match
(i.e., the number of feature correspondences satisfies k), then
the search of that target object is complete, and the priority
queue is cleared of partial matches to that object. Otherwise,
for every feature correspondence between the query and the
target of m, the match is extended by one feature correspon-
dence to form a new match, m′. The best match for every
target object is retained in an array, M, when it is added to
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PriorityDrivenSearch(Object query, Database db,
Function cost, int k, int c)

# Create correspondences
foreach Object target in db

foreach Feature q in query
foreach Feature t in target

p = CreatePairwiseCorrespondence(q, t, cost)
if (IsPlausible(p))

AddToPriorityQueue(Q, p)
AddToList(C[target], p)
if (cost(p) < cost(M[target]))

M[target] = p

# Expand matches until find complete ones
complete_match_count = 0
while (complete_match_count < c)

# Pop match off priority queue
m = PopBestMatch(Q)
target = GetTargetObject(m)

# Check for complete match
if (IsMatchComplete(m, k))

RemoveMatchesFromPriorityQueue(Q, target)
complete_match_count++
continue;

# Extend match
foreach PairwiseCorrespondence p in C[target]

m’ = ExtendMatch(m, p, cost)
if (IsPlausible(m’))

AddToPriorityQueue(Q, m’)
if (cost(m’) < cost(M[target]))

M[target] = m’

# Return result
return M

Figure 2: Pseudo-code for priority-driven search.
the priority queue. This process is iterated until at least c full
matches with k feature correspondences have been popped
off the priority queue for c distinct target objects, and the ar-
ray of the best matches to every target object, M, is returned
as the result.

The computational savings of this procedure come from
two sources. First, matches are considered from best to
worst, and thus, poor pairwise correspondences are never
considered for extension and add little to the execution time
of the algorithm. Second, after complete matches for at least
c target objects have been added to the priority queue, it is
possible to determine an upper-bound on the cost of matches
that can plausibly lead to one of the best matches. If the score
computed for an extended match, m′, is higher than that up-
per bound, then there is no reason to add it to the queue, and
it can be ignored. Similarly, if a match, m, is popped off the
queue, then it is provably the best remaining match – i.e.,
no future match can be considered with a lower cost. Thus,
the algorithm can terminate early (immediately after c best
matches have been popped off the priority queue) while still
guaranteeing an optimal solution.

Of course, there are many design decisions that impact the
efficacy of this search procedure, including how regions are
constructed, how shape descriptors are computed, what cost
function is used, how implausible matches are culled, and so
on. The following subsections describe our design decisions
in detail, and Section 4 provides the results of experiments
aimed at evaluating the impact of each one on search speed
and retrieval performance.

3.1. Constructing Regions
The first step of the process is to define a set of local regions
covering the surface of every object. In theory, the regions
could be volumetric or surface patches; they could be dis-
joint or overlap; and, they could be defined at any scale.

In our system, we construct overlapping regions defined
by spherical volumes centered on points sampled from the
surface of an object [KPNK03, NDK05]. We have experi-
mented with two different point sampling methods, one that
selects points randomly with uniform distribution with re-
spect to surface area, and another that selects points at ver-
tices of the mesh with probability equal to the surface area
of the vertices’ adjacent faces. However, they do not give
significantly different performance, and so we consider only
random sampling with respect to surface area for the re-
mainder of this paper. Of course, other sampling methods
that sample according to curvature, saliency, or other surface
properties would be possible as well.

We have experimented with regions at four different
scales. The smallest scale has radius 0.25 times the radius
of the entire object and the other scales are 0.5, 1.0, and
2.0 times, respectively. These scales are chosen because the
smallest scale is approximately the size of most “distinguish-
ing features of an object” and the largest scale is just big
enough to cover the entire object for spheres centered at the
most extreme positions on the surface (Figure 3).

0.25 0.5 1.0 2.0

Figure 3: Shape regions at four different scales.

3.2. Computing Shape Descriptors
The second step of the process is to generate and store
a representation of the shape for each spherical region (a
shape descriptor). There will be many such regions for
every surface, so the shape descriptors must be quick to
compute, concise to store, and fast to compare, in ad-
dition to being as discriminating as possible. There are
many shape descriptors that meet some or all of these
criteria (see surveys in [BKS∗05, IJL∗05, TV04]). Exam-
ples include shape contexts [BMP01, MBM01, FHK∗04],
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spin images [JH99, SMS∗04], harmonic shape descrip-
tors [FHK∗04, NDK05], curvature profiles [CJ96, GCO06],
and volume integrals [GMGP05].

In our system, we have experimented with three different
shape descriptors based on spherical harmonics. All three
decompose a sphere into concentric shells of different radii
and then describe the distributions of shape within those
shells using properties of spherical harmonics. The first
(“SD”) simply stores the amplitude of all shape within each
shell (the zero-th order component of spherical harmonics) –
it is a one-dimensional descriptor equivalent to the “Shells”
shape histogram of [AKKS99]. The second (“HSD”) stores
the amplitude of spherical harmonic coefficients within each
frequency – it is equivalent to the Harmonic Shape Descrip-
tor of [FMK∗03,KFR03]. The last (“FSD”) descriptor stores
the amplitude of every spherical harmonic coefficient sep-
arately – it is similar to the Harmonic Shape Contexts of
[FHK∗04]. In all of our experiments, we utilize 32 spherical
shells and 16 harmonic frequencies for each descriptor.

We chose these shape representations for several reasons.
First, they are well-known descriptors that have been shown
to provide good performance in previous studies [FHK∗04,
SMKF04]. Second, they are reasonably robust, concise, and
fast to search. Finally, they provide a nested continuum with
which to investigate the trade-offs between verbosity and
discrimination – SD is very concise (32 values), but not that
discriminating; HSD is more verbose (512 values) and more
discriminating; and FSD is the most verbose (4352 values)
and the most discriminating. The three descriptors are re-
lated in that each of the more concise descriptors is simply a
subset or aggregation of terms in the more verbose ones (e.g.,
the SD descriptor stores the amplitude of only the zero-th or-
der spherical harmonic frequencies). Thus, the L2 difference
of each descriptor provides a lower bound on the L2 differ-
ence between the more verbose ones, which enables progres-
sive refinement of descriptor differences, as proposed in Sec-
tion 5.

Our method for computing the descriptors for all regions
of a single surface starts by computing a 3D grid contain-
ing the Euclidian Distance Transform of the surface. The
grid resolution is chosen to match the finest sampling rate
required by the HSD for regions at the smallest scale; the
triangles of the surface are rasterized into the grid; and the
squared distance transform is computed and stored. Then,
for every spherical region centered on a point sampled from
the surface, a spherical grid is constructed by aligning a
sphere with the normal to the surface; a Gaussian function of
the distance transform (GEDT) [KFR03] is sampled at reg-
ular intervals of radius and polar angles; the Spharmonickit
software is used to compute the spherical harmonic decom-
position for each radius; the amplitudes of the harmonic co-
efficients (or frequencies, depending on the type of shape de-
scriptor) are computed; the shape descriptors are compressed
using principal component analysis (PCA); and, the dimen-

sions associated with the top C eigenvalues (C ∼ 10%) are
stored as a shape descriptor.

For each 3D object, computing the three types of shape
descriptors centered at 128 points for 4 scales (0.25, 0.5,
1.0, and 2.0) takes approximately four minutes overall and
generates around 1MB of data per object. One minute is
spent rasterizing the triangles and computing the squared
distance transform at resolution sufficient for the smallest
scale descriptors, almost two minutes are spent computing
the spherical grids, and a few seconds are spent decompos-
ing the grids into spherical harmonics for each object. Com-
pression amortizes to approximately one minute per object
for SFDs and approximately 1 second per object for SHDs.

3.3. Selecting Distinctive Features
The third step of our process is to characterize the differ-
ences between shape descriptors and to select a subset of the
shape features to be used for matching for each target ob-
ject. Our goal is to augment the features with information
about how discriminating they are and to select a subset of
the most distinctive features in order to improve processing
speed and retrieval precision.

Selecting a subset of local shape descriptors is a
well known technique for speeding up retrieval, and
several researchers have proposed different methods for
this task, The simplest technique is to select fea-
tures randomly [JH99, FHK∗04, MBM01]. Other meth-
ods have considered selecting features based on sur-
face curvature [YF02], saliency [GCO06], likelihood
within the same shape [GMGP05, JH99], persistence
across scales [GMGP05], number of matches to another
shape [SMS∗04], likelihood within the database [SF06], and
distinction of its object’s class [SF06].

In our system, we follow the ideas of [SF06]. For every
feature, we compute the L2 difference of its shape descrip-
tor to the best match of every other object in the database,
sort the differences from best to worst, and save them in a
rank-to-difference mapping (RTD). To save space, we store
an approximation to the RTD containing log(N) values by
sampling distances at exponentially larger ranks. We then
use the RTD to estimate the distinction of every shape fea-
ture. Distinctive features are ones that are both similar to
features in few other objects (ones in the same class) and
different from the rest (objects in other classes). When given
a classification for the target objects, we quantify this notion
by using a measure of retrieval performance as our model
for feature distinction [SF06].

Once the distinction of every feature has been computed,
we employ a greedy algorithm to select a small set of fea-
tures to represent every target object during the query phase
(Figure 4). The selection algorithm iteratively chooses the
feature with highest DCG whose position is not closer than
a Euclidean distance threshold, minlength, to the position of
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any previously selected feature. This process avoids select-
ing features nearby each other on the mesh and provides an
easy way to vary the subset size by adjusting the distance
threshold.

(a) All Features (b) Feature Distinction (c) Selected Features

Figure 4: Feature selection: (a) positions sampled randomly
on surface, (b) computed DCG values used to represent fea-
ture distinction (red is highest, blue is lowest), and (c) fea-
tures selected to represent object during matching.

The net result of this process is a small set of features for
every target object, each with an associated position (p), nor-
mal (~n), radius (r), a set of shape descriptors (SD, HSD, and
FSD), a rank-to-difference-mapping (RT D), and a retrieval
performance score (DCG). In our implementation, comput-
ing the RTD and the distinction for each feature takes a little
less than 1 second, and selecting the most distinctive features
takes less than a second for each object. The storage required
for the resulting data required at query time is approximately
100KB per object.

3.4. Creating Pairwise Feature Correspondences
When given a query object to match to a database of target
objects, the first step is to compute the cost of pairwise corre-
spondences between features of the query to features of the
target. The key to this step is to develop a cost function that
provides low values only when two features are compatible
and gradually penalizes pairs that are less similar. The sim-
plest and most common approach is to use the L2 difference
between their associated shape descriptors. This approach
forms the basis for our implementation, but we augment it in
three ways.

First, given features F1 and F2, we compute the L2 differ-
ence, D, between their shape descriptors. Then, we use the
rank-to-difference mappings (RTD) of each feature to con-
vert D into a rank (i.e., where that distance falls in the ranked
list associated with each feature). The new difference mea-
sure (Crank) is the sum of the ranks computed for F1 with
respect to the RTD of F2, and vice versa:

Crank = Rank(RT D1,D)+Rank(RTD2,D)

This feature rank cost (which we believe is novel) avoids
the problem that very common features (e.g., flat planar re-
gions) can provide indistinguishing matches (false positives)
when L2 differences are small. Our approach considers not
the absolute difference between two features, but rather their

difference relative to the best matching features of other ob-
jects in the database. Thus, a pair of features will only be
considered similar if both rank highly in the retrieval list of
the other.

Second, we augment the cost function with geometric
terms. For part-in-whole object matching, we can take ad-
vantage of the fact that features are more likely to be in cor-
respondence if they appear at the same relative position and
orientation with respect to the rest of their objects. Thus, for
each feature, we compute the distance between its position
and the center of mass of its object (R), scaled by the aver-
age of R for all features in the object (RAV G), and we add a
distance term Cradius to the cost function accounting for the
difference between these distances:

Cradius = |
R1

RAV G1
−

R2
RAV G2

|

We also compute a normalized vector~r from the object’s
center of mass to the position of each feature and store the
dot product of that vector with the surface normal (~n) associ-
ated with the feature. The absolute value of the dot product
is taken to account for the possibility of backfacing surface
normals. Then, the difference between dot products for any
pair of features is used to form a normal consistency term to
the cost function:

Cnormal = ||~r1 · ~n1|− |~r2 · ~n2||

Overall, the cost of a feature correspondence is a simple
function of these three terms:

Ccorrespondence = αrankCγrank
rank +αradiusC

γradius
radius +αnormalC

γnormal
normal

where the α coefficients and γ exponents are used to normal-
ize and weight the terms with respect to each other.

Of course, computing all potential pairwise feature corre-
spondences between a query object and a database of targets
is very costly. If the query has MQ features and each of N
targets has MT selected features, then the total number of
potential feature correspondences is N ×MQ ×MT . To ac-
celerate this process, we utilize conservative thresholds on
each of the three terms (maxrank, maxradius, maxnormal)
to throw away obviously poor feature correspondences. The
terms are computed and the thresholds are checked progres-
sively in order of how expensive they are to compute (e.g.,
Crank is last), and thus there is great opportunity for trivial
rejection of poor matches with little computation. Indexing
and progressive refinement could further reduce the compute
time as described in Section 5.

3.5. Searching for the Optimal Multi-Feature Match

The second step of the query process is to search for the
best multi-feature matches between the query object and the
target objects. This is the main step of priority-driven search.
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Figure 5: A 3-feature match for two airplanes. Red points
represent feature positions on the surface. For three fea-
tures, red circles represent regions, gray histograms repre-
sent shape descriptors, orange lines represent feature corre-
spondences, and black lines represent lengths between fea-
tures of same object. Consistency of all shape descriptors,
lengths, and angles is required for a good match.

A priority queue is used to store incomplete sets of fea-
ture matches during a backtracking search. Initially, all pair-
wise correspondences (computed as described in the previ-
ous subsection) are loaded onto the priority queue. Then, the
best partial match, m, is repeatedly popped off the priority
queue, and then extended matches are created for every com-
patible feature correspondence and loaded onto the priority
queue. This process is iterated until at least c full matches
with k feature correspondences have been popped off the pri-
ority queue for distinct target objects.

As a partial match is extended to include one more fea-
ture correspondence, two extra terms are added to the cost
function to account for geometric deformations implied by
multiple pairwise feature correspondences (Figure 5). First,
a chord length term Clength is added to penalize matches with
inconsistent inter-feature lengths. Specifically, for every pair
of feature correspondences in m, we compute the length of
the chord between feature positions in the same object (L),
scaled by the average of L over all features in the object
(LAV G). Then, we compute the difference between these dis-
tances and normalize by the greater of the two to produce the
length term of the cost function:

Clength =
| L1

LAV G1
− L2

LAV G2
|

max( L1
LAV G1

, L2
LAV G2

)

Second, a surface orientation term is added to penalize
matches with pairs of feature correspondences whose sur-
face normals are inconsistent. This term penalizes both mis-
matches in the relative orientations of the two pairs of nor-
mals with respect to one other and mismatches in the ori-
entations of the normals with respect to the chord between
the features. If ~v1 is the normalized vector between features
1a and 1b with normals ~n1a and ~n1b in object 1, and similar
variables describe the relative orientations of features in ob-
ject 2, then the orientation term of the cost function can be
computed as follows:

Corient = || ~n1a · ~n1b|− | ~n2a · ~n2b||+
||~v1 · ~n1a|− |~v2 · ~n2a||+
||~v1 · ~n1b|− |~v2 · ~n2b||

These terms are also weighted and raised to exponents
to provide normalization when added to the overall scor-
ing function computed for a match with k feature correspon-
dences:

Cchord = αlengthCγlength
length +αorientCγorient

orient

As in the previous section, we utilize conservative thresh-
olds on Clength and Corient (maxlength and maxorientation)
to throw away obviously poor feature correspondences. We
also utilize a threshold on the minimum distance between
features within the same object (minlength) in order to avoid
matches comprised of features in close proximity to one an-
other.

The overall cost of a match is the sum of the terms repre-
senting differences in the k feature correspondences and the
geometric differences between the k(k-1)/2 chords spanning
pairs of features:

Cmatch = ∑
i<k

Ccorrespondence(i)+ ∑
i, j<k,i< j

Cchord(i, j)

4. Results
In this section, we present results of experiments with
priority-driven search. We investigate the performance of the
method in relation to the state of the art in shape-based re-
trieval and investigate the impact of several design choices
on the speed and quality of retrieval results.

All experiments were based on the 3D data provided in
the Princeton Shape Benchmark [SMKF04]. It contains 907
polygonal models partitioned into 92 classes (sedans, race
cars, commercial jets, fighter jets, dining room chairs, etc.).
This database was chosen because it has been used in sev-
eral previous 3D shape retrieval studies (e.g., [BKS∗05,
SMKF04]) and thus forms a basis for comparison with com-
peting methods.

In a representative preprocessing phase, we generated fea-
tures at 128 surface points with 4 different scales for every
object. For every feature, we computed its shape descriptors,
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RTDs, and DCGs, and then we selected the most distinc-
tive set of descriptors using the methods described in Sec-
tions 3.1-3.3. The total preprocessing time for all 907 ob-
jects was 70 hours and the total size of all data generated
was 1GB, of which 64MB represents the selected features
that had to be stored in memory for target objects during the
query phase.

During the query phase, we performed a series of “leave-
one-out” classification tests. In each test, every object of the
database was used as a query object to search databases con-
taining the remaining N−1 target objects. Standard informa-
tion retrieval metrics, such as precision, recall, nearest neigh-
bor classification rate (1-NN), first-tier percentage (1-tier),
second-tier percentage (2-tier), and discounted cumulative
gain (DCG), were computed to measure how many objects
in the query’s class appear near the top of its ranked retrieval
list, and those metrics were averaged for all queries.

Unless otherwise stated, experiments were run on a
x86_64 processor with 12GB of memory running Linux. Pa-
rameters for the “base configuration” of the system were
set as follows: c = 1, k = 3, number of features per ob-
ject = 128, number of feature scales = 4 (0.25, 0.5, 1.0, and
2.0), shape descriptor type = HSD, compression ratio = 10X,
maxradius = maxnormal = maxlength = maxorientation
= 0.25, minlength = 0.3 · RAV G, αrank = 0.01, αradius =
αnormal = αlength = αorient = 1, and γrank = 4, γradius = γnormal
= γlength = γorient = 2. These parameters were determined em-
pirically and used for all experiments without adjustment,
except in Section 4.1 where the FSD shape descriptor was
used, and in Section 4.3 where the impact of specific param-
eter settings was studied.

4.1. Comparison to Previous Methods

The goal of the first experiment was to evaluate the retrieval
performance of the proposed priority-driven search (PDS)
approach with respect to previous state-of-the-art shape-
based retrieval methods:

• Depth Buffer Descriptor (DSR740B): this shape de-
scriptor achieved the highest retrieval performance in the
study of [BKS∗06]. It describes an object by six depth
buffer images captured from orthogonal parallel projec-
tions [HKSV02]. Images are stored as Fourier coeffi-
cients of the lowest frequencies, and differences between
Fourier coefficients provide a measure of object dissim-
ilarity. We use Dejan Vranic’s implementation of this
method [Vra06] without modification and ran it on a
2GHz Pentium4 running WindowsXP.

• Light Field Descriptor (LFD): this shape descriptor
achieved the highest retrieval performance in the study
of [SMKF04]. It represents an object as a collection of
images rendered from uniformly sampled positions on a
view sphere [COTS03]. The dissimilarity of two objects
is defined as the minimum L1-difference between aligned

images of the light field, taken over all rotations and all
pairings of vertices on two dodecahedra. We use the orig-
inal implementation provided by Chen et al. without mod-
ification and ran it on a 2GHz Pentium4 running Win-
dowsXP.

• Global Harmonic Shape Descriptor (GHSD): this is
the shape descriptor currently used in the Princeton 3D
Search Engine [FMK∗03]. It describes an object by a sin-
gle HSD feature positioned at the center of mass with
radius RAV G. We include it in this study to provide an
apples-to-apples comparison to a method that matches a
single global shape descriptor of the same type used in
our study.

• Random: This method provides a baseline for retrieval
performance. It produces a random retrieval list for every
query.

Figure 6 shows a precision-recall plot comparing the av-
erage retrieval performance for all queries for each of these
shape matching methods. Briefly, precision and recall are
metrics used to evaluate ranked retrieval lists. If one con-
siders the top M matches for any query, recall measures the
fraction of the query’s class found, and precision measures
the fraction of objects found from the query’s class – higher
curves represent better retrieval performance.
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Figure 6: Precision-recall plot comparing priority-driven
search (PDS) to other state-of-the-art shape matching meth-
ods using the Princeton Shape Benchmark.

Timing statistics and standard retrieval performance mea-
sures are also shown in Table 1. The leftmost column indi-
cates the shape matching method (PDS is the one described
in this paper). The remaining columns list the average time
required for one query into the database (in seconds), the
average classification rate achieved with a nearest neigh-
bor classifier (1-NN), the average percentages of the query’s
class that appear in the first-tier (1-Tier) and second-tier (2-
Tier), and the average discounted cumulative gain (DCG)
computed from the ranked retrieval lists.

From these statistics, we see that the priority-driven
search algorithm provides the best retrieval performance of
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Method Time 1-NN 1-Tier 2-Tier DCG
PDS 2.4 83.4 51.7 63.4 75.9

DSR740B 0.005 66.5 40.3 51.2 66.3
LFD - 65.0 37.2 47.4 63.6

GHSD 0.003 55.6 30.9 41.1 58.4
Random 0 1.7 1.6 3.4 26.1

Table 1: Comparison of retrieval statistics between priority-
driven search (PDS) and other methods on the Princeton
Shape Benchmark (times are in seconds).

the tested methods on this data set. The improvement in near-
est neighbor classification rate over the Depth Buffer De-
scriptor is 25.4% (83.4% vs. 66.5%) and the improvement
over the Light Field Descriptor is 28.3% (83.4% vs. 65.0%).
These are remarkable improvements for this data set – typi-
cal differences between algorithms found in other studies are
usually a couple of percentage points [SMKF04].

However, the PDS algorithm takes considerably more
compute time to preprocess the database (4-5 minutes per
object), more memory per object (100KB per target object),
and more time to find matches (2.4 seconds per query) than
the other tested shape descriptors. Almost all of the query
processing time is spent establishing the cost of feature cor-
respondences, and less than a tenth of a second is spent
finding the optimal multi-feature match with priority driven
search. Thus, we believe that simple improvements to the ba-
sic algorithm (e.g., compression, indexing, etc.) will signifi-
cantly improve the processing speed and that query process-
ing times less than a second are possible in this framework
(Section 5).

In any case, it seems that priority-driven search is well-
suited for batch applications where retrieval accuracy is pre-
mium. Often, query results can be computed off-line and
cached for later interactive analysis – e.g., for discovery of
relationships in mechanical CAD, molecular biology, etc.
Even interactive search engines can benefit from off-line pre-
processing with high-accuracy matching methods, for exam-
ple, to preprocess queries that find a shape similar to another
in the database (over 90% of the 3D queries to the Princeton
3D Search Engine are of this type [MHKF03]).

4.2. Evaluation of Algorithmic Contributions
The goal of the second experiment is to understand which
algorithmic features of the priority-driven search algorithm
contribute most to its timing and retrieval performance. To
study this question, we started with the “base configuration”
and ran the system multiple times on the Princeton Shape
Benchmark with different aspects of the system enabled and
disabled.

• Rank (R): If enabled, the cost of two corresponding shape
descriptors (Crank) was the sum of the two ranks in their
respective retrieval lists, as described in Section 3.4. Oth-
erwise, it was the direct L2 distance between shape de-

scriptors (the most common measure of descriptor differ-
ence in other systems).

• Multi-Scale (S): If enabled, the costs of the best matches
found at all four scales were summed. Otherwise, the cost
of the best match found among features at scale 0.5 was
used (the scale that gave the best retrieval performance on
its own).

• Distinction (D): If enabled, a small subset of features (∼
7) was selected for matching within every target object,
as described in Section 3.3. Otherwise, all features were
included within the target objects.

Results of this experiment are shown in Figure 7 and Ta-
ble 2. The first three columns of Table 2 indicate whether
each of the three algorithmic features (R, M, and D) are en-
abled (Y) or disabled (N), and the remaining columns pro-
vide retrieval performance statistics (note that the top row
repeats the performance statistics for PDS with all its algo-
rithmic features enabled: Y Y Y).

R S D 1-NN 1-Tier 2-Tier DCG
Y Y Y 74.3 45.5 57.0 70.6
N Y Y 67.9 37.0 47.7 64.1
Y N Y 67.0 36.6 47.5 62.8
Y Y N 66.6 37.2 48.7 64.4
N Y N 63.4 32.7 42.6 60.6
Y N N 63.0 30.2 41.0 58.3
N N Y 54.0 28.2 38.3 56.0
N N N 57.0 26.7 36.2 54.7

Table 2: Results of experiments to investigate the individual
and combined value of three algorithmic features of priority-
driven search (PDS). The top row represents the base PDS
algorithm (Y Y Y). Other rows represent variants of the algo-
rithms with three algorithmic features (R = rank, S = multi-
scale, and D = distinctive feature selection) enabled (Y) or
disabled (N). Differences in the results achieved with these
variants provide insights into which aspects of the PDS al-
gorithm contribute most to its results.

From these results, we see that the retrieval performance
of our system comes from several sources. That is, all three
algorithmic features tested contribute a modest but signif-
icant improvement to the overall result. Specifically, if we
consider the incremental improvements in nearest neigh-
bor classification rates (1-NN) of the combinations shown
in Figure 7, we find that multi-scale features provide 11%
improvement over using the best single scale (63.4% vs.
57.0%); selecting distinctive features of target objects fur-
ther boosts performance by another 7% (67.9% vs. 63.4%);
and, using descriptor ranks rather than L2 differences pro-
vides a further 9% improvement (74.3% vs. 67.9%). These
three algorithmic features combine to contribute a cumula-
tive 30% improvement in retrieval performance over the ba-
sic version of our multi-feature matching algorithm (74.3%
vs. 57.0%).

c© The Eurographics Association 2006.

139



T. Funkhouser & P. Shilane / Partial Matching of 3D Shapes with Priority-Driven Search

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Pr
ec

isi
on

Recall

Priority-Driven Search
with HSD rather than FSD

& without ranks
& without distinction

& without multi-scale
& with only 1 feature

Figure 7: Precision-recall plot showing the relative contri-
butions of different algorithmic features of priority-driven
search. The top curve (red) shows the retrieval performance
of the best performing set of options for the PDS algorithm
(it is the same as the red curve in Figure 6). The second
curve (green) shows the result of using HSDs rather than
FSDs as shape descriptors (it represents the “base configu-
ration” for the study in Section 4.3). The third curve (blue)
shows the results of using L2 differences instead of ranks to
measure feature correspondence costs; the fourth curve (ma-
genta) shows the same, but without selecting a subset of dis-
tinctive features on target objects; the next-to-bottom curve
(cyan) also disables multi-scale feature matching (all fea-
tures are matched only at scale 0.5); and, the bottom curve
(yellow) shows the results when finding only one point per
match rather than 3. Note how the retrieval performance de-
grades significantly when each of these algorithmic features
is disabled.

With respect to timing, the main expense of the priority
driven search implementation is establishing the initial set of
pairwise feature correspondences (∼0.3 seconds per query
per scale). By comparison, the time required to search for
the best multi-feature match is negligible (<0.1 seconds).
So, the timing results are currently dominated by the number
of features considered for each target object and the number
of scales considered for each feature.

Overall, we find that choosing distinctive features (D) im-
proves both precision and speed significantly; using ranks
rather than L2 differences (R) improves precision with neg-
ligible extra compute time; and, using features at four scales
(S) improves precision, but incurs four times the computa-
tional expense.

4.3. Investigation of Parameter Settings
The goal of the third experiment is to investigate in detail
how various options of the priority-driven search system af-
fect the timing and retrieval performance. Of course, there
is a large space of possible options, and thus we are forced
to focus our discussion on small “slices” through this space.

Our approach is to center our investigation on the “base con-
figuration” set of options described in the beginning of this
section and to study how timing and retrieval statistics are
affected independently as one option is varied at a time.

The results of this study are shown in Table 3(a-d) – each
table studies the impact of a different option, and differ-
ent rows represent a different setting for that option. Please
note that rows marked with an ‘*’ represent the same data –
they provide results for the base configuration through which
slices of option space are being studied.

Descriptor Time 1-NN 1-Tier 2-Tier DCG
SD 1.1 75.5 44.2 56.1 71.1

HSD * 1.2 74.3 45.5 57.0 70.6
FSD 2.4 83.4 51.7 63.4 75.9

(a) Shape descriptor type

Radius Time 1-NN 1-Tier 2-Tier DCG
0.25 0.3 62.6 31.0 41.2 58.8
0.5 0.3 67.0 36.6 47.5 62.8
1.0 0.3 63.9 37.2 48.5 63.0
2.0 0.3 60.0 33.2 43.4 59.5

Multi-scale * 1.2 74.3 45.5 57.0 70.6
All 0.6 71.3 40.6 54.2 68.0

(b) Scales used for matching shape features

# Points Time 1-NN 1-Tier 2-Tier DCG
64 0.6 71.9 42.4 54.2 68.6

128 * 1.2 74.3 45.5 57.0 70.6
256 4.0 75.5 47.3 59.2 71.9
512 17.6 76.6 48.6 60.2 72.6

(c) Number of sample points per object

k Time 1-NN 1-Tier 2-Tier DCG
1 1.2 72.9 43.4 54.9 68.9
2 1.2 72.1 44.3 55.8 69.5

3 * 1.2 74.3 45.5 57.0 70.6
4 1.2 72.8 45.4 56.8 70.3
5 1.2 71.2 44.9 56.3 69.7

(d) Number of feature correspondences per match (k)

Table 3: Results of experiments to investigate the impact of
several options on the query time (in seconds) and retrieval
performance of priority-driven search.

Impact of shape descriptor type (Table 3(a)): more ver-
bose descriptors generally provide better retrieval perfor-
mance, albeit at higher storage and compute costs. For ex-
ample, the Fourier shape descriptor (FSD) provides better
nearest neighbor classification rates (83.4%) than the Har-
monic shape descriptor (HSD) (74.3%). However, it is also
eight times bigger, and thus eight times more expensive to
compare. Interestingly, the Shells shape descriptor (SD) pro-
vides retrieval performance similar that of the HSD in this
test. Further study is required to determine which descriptors
provide the best “bang for the buck” for specific applications
and how multiple descriptors can be combined to provide
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the accuracy of the most verbose ones while incurring query
times of the smaller ones (Section 5).

Impact of feature scale (Table 3(b)): medium scale features
(radius = 0.5-1.0) provide better retrieval performance than
small and large scales in this test, and multi-scale features
perform the best of all (nearest neighbor classification rates
are 74.3% with multi-scale versus 67.0% with the best sin-
gle scale (0.5)). Interestingly, summing the cost functions
computed for matches at all four scales separately (“Multi-
scale”) provides better retrieval performance than matching
features at all scales simultaneously (“All”). The difference
is that the same set of features must match at all 4 scales
in “All,” while different features can be selected indepen-
dently for each scale in “Multi-scale.” This result seems to
suggest that features persistent across multiple scales are not
necessarily as useful for classification as ones that are very
distinctive at a particular scale.

Impact of the number of sample points per object (Ta-
ble 3(c)): including more sample points for each object im-
proves retrieval performance in this test, at least up to 512
points. The nearest neighbor classification rate is 76.6% for
512 points per object, while it is 75.5% for 256 points, 74.3%
for 128 points, and 71.9% for 64 points. Although a small set
of distinctive features are ultimately selected for every target
object during a preprocess, features centered at all sample
points of the query object are candidates for a match, and
thus the compute time for each query should be proportional
to the number of points (the quadratic growth observed in
this experiment is an artifact of our implementation).

Impact of number of feature correspondences (Ta-
ble 3(d)): matching large numbers of features does not im-
prove retrieval performance in this study. In fact, matching
more than 3 features seems to degrade performance. This re-
sult may be because features are quite large scale and spread
apart, and thus 3 features may describe the shape as well as is
possible with the HSD feature representation. Interestingly,
matching larger numbers of features also does not increase
query times – this is because the priority-driven search al-
gorithm is able to find good matches in time that is largely
independent of the number of possible matches – it investi-
gates only the good matches and ignores the rest.

5. Conclusion and Future Work

This paper describes an algorithm for multi-feature match-
ing of 3D shapes with priority-driven search. The main con-
tribution is an algorithm for searching a database for the best
multi-feature matches without computing complete matches
for every object. Perhaps just as valuable is the investigation
of factors that contribute to speed and retrieval performance
improvements in a multi-feature matching system. We find
that: 1) using ranks to measure the cost of a feature cor-
respondence is more effective that using L2 differences di-
rectly; 2) selecting target features based on how distinctive

they are of their object’s class can improve both search speed
and retrieval performance significantly; and, 3) matching
features at different scales independently and then adding
the resulting costs is an effective way to combine shape in-
formation from multiple scales.

This work suggests several areas for improvement and
future work. In particular, there are three main computa-
tional bottlenecks in the system: 1) constructing shape de-
scriptors, 2) determining the distinction of shape descriptors,
and 3) generating pairwise feature correspondences. There
are many simple ways to speed up these steps, including
random sampling, compression, and indexing. For example,
the time required to establish the best pairwise correspon-
dences between features could be improved with standard
multi-dimensional indexing schemes. We have focused our
efforts in this paper on the priority-driven search algorithm,
and thus we have not yet investigated these options in detail.

Another interesting option is to compute the cost of fea-
ture correspondences progressively – i.e., initially compute
a conservative lower bound on the difference between shape
descriptors (e.g., using SD), and only refine it for the best
matches. When the correspondence rises to the top of the pri-
ority queue, the lower bound on the descriptor difference can
be refined a little further (e.g., using HSD) and loaded back
onto the priority queue. After the feature correspondence has
reached the top of the priority queue and been refined a num-
ber of times, the full correspondence cost will be computed
(e.g., using FSD) and the PDS algorithm could proceed as
usual with that correspondence. This approach would utilize
the priority driven strategy not only for extending matches,
but also for computing correspondences in the first place.

Perhaps the most interesting question for further study is
to investigate how best to recognize 3D objects from their
parts. Of course, this is an active topic in computer vision,
but the issues for 3D shapes are different than they are for
2D images. Our study seems to suggest that just a few shape
features are sufficient to recognize most 3D objects. It will
be interesting to see whether other object types follow this
pattern, and whether effective algorithms can be developed
using even fewer features.
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