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Abstract

We define a new representation for non-manifold 3D shapes described by three-dimensional simplicial complexes,
that we call the Double-Level Decomposition (DLD) data structure. The DLD data structure is based on a unique
decomposition of the simplicial complex into nearly manifold parts, and encodes the decomposition in an efficient
and powerful two-level representation. It is compact, and it supports efficient topological navigation through
adjacencies. It also provides a suitable basis for geometric reasoning on non-manifold shapes. We describe an
algorithm to decompose a 3D simplicial complex into nearly manifold parts. We discuss how to build the DLD
data structure from a description of a 3D complex as a collection of tetrahedra, dangling triangles and wire
edges, and we present algorithms for topological navigation. We present a thorough comparison with existing

representations for 3D simplicial complexes.

1. Introduction

Simplicial complexes are widely used representation for
3D shapes in computer graphics, Computer Aided Design
(CAD) and finite element simulation, because of their inner
simplicity and of the availability of algorithms for generating
such representations effectively. In this work, we consider
the problem of modeling non-manifold 3D shapes described
by three-dimensional simplicial complexes. A lot of work
has been developed on modeling 3D shapes by decompos-
ing their boundary into triangle meshes, or into more gen-
eral simplicial 2-complexes [DHOS]. These latter are used
to model non-manifold shapes, which are subsets of the
Euclidean space that can be regarded as combinations of
wire frame, surface, solid and cellular decompositions. In-
formally, a manifold object is a subset of the Euclidean space
for which the neighborhood of each internal point is homeo-
morphic to an open ball. Objects that do not fulfill this prop-
erty at one or more points are called non-manifold objects.

Three-dimensional shapes are often discretized as tetrahe-
dral meshes mainly in finite element simulations [CDMO04].
Most of the work in the literature, however, has been focused
on representations for tetrahedral meshes partitioning man-
ifold shapes. On the other hand, when generating a finite
element mesh from a CAD model to meet simulation re-
quirements, several simplification operations need to be per-
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formed, such as removal of details, topology modification,
e.g. hole removal, or reduction in the dimensionality of some
parts, which produce non-manifold geometries (see, for in-
stance, [FRLOO]). Thus, the need arises for representing non-
manifold 3D shapes discretized as general 3D simplicial
complexes, i.e., consisting of tetrahedra, but also of dangling
triangles and wire edges describing lower-dimensional geo-
metric entities. A suitable approach would consist of par-
titioning a 3D non-manifold shape, which has parts of dif-
ferent dimensionalities, into uniformly-dimensional compo-
nents which are manifold, or nearly manifold. The objective
is to be able to understand the structure of a shape, to identify
parts of the shape that define characteristic features which
are relevant in a specific application environment, like pro-
trusions, or depressions, or parts defining through-holes or
handles.

In this work, we address the problem of modeling non-
manifold 3D shapes discretized as 3D simplicial complexes
through a decomposition-based approach. In [DMMPO03], a
theory has been proposed addressing the criteria for a sound
decomposition of arbitrarily dimensional abstract simpli-
cial complexes, not necessarily embeddable in the Euclidean
space. Intuitively, a sound decomposition should remove as
many non-manifold singularities as possible, without break-

ing the complex at manifold-parts- Naturally; such-decompo
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sition cuts the complex at all non-manifold simplexes. The
resulting components have been shown to be almost, but not
exactly, manifold. This approach has been shown to produce
aunique decomposition of an abstract simplicial complex. In
this paper, we consider this decomposition for 3D simplicial
complexes embedded in 3D Euclidean space, and we pro-
pose dimension-specific algorithms for generating and navi-
gating on such decomposition.

We define an efficient and effective representation for a
3D simplicial complex, that we call the Double-Level De-
composition (DLD) data structure. The DLD data struc-
ture provides a two-level description of the complex, where
the upper level describes the decomposition of the complex
into simpler uniformly dimensional components as a graph,
while the lower-level representation describes the tetrahe-
dra, dangling triangle and wire edges in each component,
with connectivity information and mutual adjacency rela-
tions. The DLD data structure is compact, it scales very
well to the manifold case (that is, it requires almost the
same amount of storage compared with a data structure of
the same class specific for manifold 3D complexes) and it
supports efficient navigation within the complex. We com-
pare the DLD data structure with a highly optimized repre-
sentation for 3D simplicial complexes presented in [DH03]
as well as with 3D instances of dimension-independent data
structures for simplicial complexes.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background notions on simplicial com-
plexes and on entities and topological relations in a simpli-
cial complex. Section 3 reviews related work in the areas of
topological data structures, and on shape decomposition. In
particular, it reviews the theory behind the decomposition of
abstract simplicial complexes mentioned above. Section 4
presents an algorithm for the decomposition of a 3D sim-
plicial complex into nearly manifold components. Section 5
describes the DLD data structure, and analyses its storage
costs and scalability. Section 6 presents algorithms for re-
trieving topological relations from the DLD data structure.
Section 7 presents a comparison of the DLD data structure
with existing representations. Finally, Section 8 draws some
concluding remarks.

2. Background Notions

In this Section, we review the notion of simplicial complexes
and related definitions as well as the formal definition of
topological relations.

2.1. Simplicial Complexes

A Euclidean simplex o of dimension k is the convex hull of
k+1 linearly independent points in the n-dimensional Eu-
clidean space E", 0 < k < n. We simply call a Euclidean
simplex of dimension k a k-simplex. k is called the dimen-
sion of ¢ and is denoted dim (o). Any Euclidean p-simplex
o', with 0 < p < k, generated by a set V5 C V5 of cardinal-
ity p+1 <d, is called a p-face of . Whenever no ambiguity

arises, the dimensionality of ¢’ can be omitted, and ¢’ is
simply called a face of &. Any face ¢’ of ¢ such that 6’ # &
is called a proper face of ©.

A finite collection X of Euclidean simplexes forms a Eu-
clidean simplicial complex if and only if (i), for each simplex
o € L, all faces of o belong to X, and (ii), for each pair of
simplexes ¢ and ¢’, either c N6’ = 0 or N o’ is a face of
both ¢ and ¢”. If d is the maximum of the dimensions of the
simplexes in X, we call X a d-dimensional simplicial com-
plex, or a simplicial d-complex. The domain, or carrier, of
a Euclidean simplicial d-complex ¥ embedded in E”, with
0 < d < n, is the subset of E" defined by the union, as point
sets, of all the simplexes in X.

The boundary of a simplex o is the set of all faces of o in
Y, different from o itself. The star of a simplex o is the set
of simplexes in X that have ¢ as a face. Any simplex ¢ such
that the star of ¢ contains only ¢ is called a top simplex. The
link of a simplex o is the set of all the faces of the simplexes
in the star of ¢ which are not incident in ©.

We call h-simplex o in a d-complex X, 0 <h <d—1,
a manifold h-simplex if and only if there are at most two
(h+1)-simplexes incident at 6. We call an h-path any path
between two (i + 1)-simplexes formed by an alternating se-
quence of h-simplexes and (h + 1)-simplexes. An h-path,
0<h <d—1, such that every h-simplex in the path is a mani-
fold simplex is called a manifold path. Two simplexes are h-
connected if and only if there exists an A-path joining them.
Two (h+1)-simplexes are h-manifold connected if and only
if there exists a manifold h-path connecting them. We call a
d-complex densely connected if it is (d—1)-manifold con-
nected. A regular (d—1)-connected d-complex in which all
(d—1)-simplexes are manifold is called a (combinatorial)
pseudo-manifold complex (possibly with boundary).

A d-dimensional pseudo-manifold in which the link of
each vertex is homeomorphic to the unit d-sphere (or to
the unit (d —1)-dimensional open disk) is called a mani-
fold complex. We call a k-simplex &, with k < d — 1, a non-
manifold simplex if and only if k(o) consists of more than
one connected component. A(d — 1)-simplex o is called a
non-manifold simplex if three or more d-simplexes are inci-
dent at o. Figure 1 shows examples of non-manifold sim-
plexes in a simplicial 3-complex. Figure 1(a) shows a non-
manifold edge e, the link of e is highlighted in Figure 1(b).
Figure 1(c) shows an example of a non-manifold vertex v.

Figure 1: Singularities in 3D simplicial complexes
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2.2. Topological Relations

We introduce here a formalization of the topological rela-
tions among the entities in a simplicial complex. Topologi-
cal relations are an effective framework for defining, analyz-
ing and comparing the data structures for cell and simplicial
complexes [De 05]. They describe the connectivity informa-
tion among the cells. The choice of cells and relations to be
encoded determines the effectiveness of the data structure
for a specific application. Topological relations have been
defined among the entities in a cell complex. Relations in a
simplicial complex can be defined in the same way. Let £ be
a simplicial d-complex and let o € X be a p-simplex, with
0< p<d. We define the following ropological relations:

e For 0 < g < p—1, boundary relation R, 4(c) consists of
the set of g-simplexes in the set of faces of .

e For p+1 < ¢ <d, coboundary relation R, 4(0) consists
of the set of g-simplexes in the star of ©.

e For p >0, adjacency relation R, (o) is the set of p-
simplexes in X that are (p—1)-adjacent to ©. Adjacency
relation Ry (0 ), where o is a vertex, consists of the set
of vertices 0’ such that {0, 6"} is a 1-simplex of X.

Boundary and coboundary relations are called incidence
relations. In the remainder, we also define various partial re-
lations. Partial relation, generally denoted by R}, ,, is a sub-
set of the complete R, ; relation. We call constant any rela-
tion which involves a constant number of entities. Relations,
which involve a variable number of entities, are called vari-
able. Co-boundary and adjacency relations are variable rela-
tions in general, while boundary relations are constant. We
consider an algorithm for retrieving a topological relation R
to be optimal if it retrieves a given relation R in time linear
with respect to the number of entities involved in R.

3. Related Work

In this Section, we review related work on representations of
3D shapes, and on shape decomposition techniques. In par-
ticular, we review the topological decomposition for abstract
simplicial complexes proposed in [DMMPO03].

3.1. Representations of 3D shapes

Various approaches have been proposed in the literature for
representing non-manifold 3D shapes. Most of the works
have been on representing a 3D shape through a decompo-
sition of its boundary by a 2D cell or simplicial complex
embedded in the 3D Euclidean space. The first proposal for
a boundary representation of non-manifold 3D shapes is pro-
vided by the Radial-Edge data structure [Wei88]. Several
variants of the Radial-edge data structure exist, such as, for
instance, the Partial Entities [LLO1], and the Loop Edge-use
[MHO1] data structures. The Directed Edge [CKS98] ex-
tends the Half-Edge data structure, proposed for manifold
2D cell complexes, to arbitrary 2D simplicial complexes. All
such data structures are verbose and do not scale well to the
manifold case [DHOS].
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An alternative to the previous data structures, with the
same expressive power, is the Incidence Graph [Ede87] and
its variants [DGHO04, VL97]. Such data structures describe
a complex by capturing the incidence relations among the
cells in the complex. They are simpler to implement and
definitely more compact. However, to achieve high compact-
ness, it is necessary to minimize the encoded information by
encoding only a subset of the topological entities and rela-
tions. In this view, the Indexed data structure with Adjacen-
cies (IA) [Nie97] is a pioneer work, which however is lim-
ited to pseudo-manifold complexes. The Triangle-Segment
data structure [DMPS04] is the first data structure that ex-
tends the indexed data structure to handle non-manifold 2D
simplicial complex. It is very compact and allows retriev-
ing topological relations in optimal time (see [DHOS5] for an
analysis and comparison with other representations for 2D
simplicial complexes).

There are few representations for describing 3D shapes
discretized as 3D simplicial complexes. Most such represen-
tations are limited to the manifold domain. Examples are the
Facet-Edge [DL89, Muc93] and the Handle-Face [LT97].
The Non-manifold Indexed Data Structure with Adjacencies
(NMIA) proposed in [DHO3] is suitable for general 3D sim-
plcial complexes.This data structure explicitly represents all
vertices and top simplexes, specifically, tetrahedra, dangling
faces and wire edges. It is highly compact and supports the
efficient retrieval of topological relations.

3.2. Decompositions of 3D shapes

Another approach to represent non-manifold shapes con-
sists of decomposing the shape into manifold components.
Some approaches have been proposed in the literature for
uniformly-dimensional non-manifold shapes.

Desaulniers and Stewart [DS92] propose a representation
scheme based on a decomposition of solid object into regu-
lar parts (r-sets). Such a decomposition provides interesting
topological information about an object. In [FR92], Falci-
dieno and Giannini discuss the problem of identifying form
features from the r-set decomposition of a non-manifold ob-
ject. In [GTLHI98], Gueziec et al. propose a decomposition-
based technique to convert a non-manifold object into a man-
ifold one. Pesco et al. [PTL04] propose a decomposition of
a 2D cell complex based on a combinatorial stratification of
the complex, inspired by Whitney stratification. They pro-
pose a data structure and a set of operators based on such rep-
resentation, but they do not provide an algorithm for build-
ing it from a given (non-decomposed) complex. Selective
Geometric Complexes (SGCs) [RO90] can describe objects
through cell complexes whose cells can be either open, or
not simply connected. In SGCs, cells and their mutual adja-
cencies are encoded in an incidence graph [Ede87]. Lopes
et al. [LNPTOO0] define a stratification of 3D cell complexes,
but limited to manifold ones, and propose a data structure
and editing operators for manipulating it.
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3.3. Initial Quasi-Manifold Decomposition

A decomposition of a non-manifold shape into simpler parts
can be obtained by splitting the shape at those elements (ver-
tices, edges, faces, etc.) where singularities occur. In order
to be effective, the decomposition process should remove
as many singularities as possible, without introducing ar-
tificial, or arbitrary, “cuts" through manifold parts. Under
these assumptions, a decomposition into manifold compo-
nents is possible, in general, only for two-dimensional com-
plexes. In three or higher dimensions, a decomposition into
manifold components may need to introduce artificial cuts
through the object. In six or higher dimensions, a decompo-
sition into manifold components is not feasible in general,
since the class of d-manifolds has been proven to be not de-
cidable for d > 6 [Nab96]. A decomposition has been de-
fined in [DMMPO3] for abstract simplicial complexes, and
it is described here in the context of complexes embeddable
in the Euclidean space. This decomposition is uniqgue, since
it does not make any arbitrary choice in deciding where the
object has to be decomposed, and natural, since it removes
singularities by splitting the complex at non-manifold sim-
plexes only.

A complex ¥/ is a decomposition of another complex X
whenever X’ can be obtained by cutting ¥ along some faces.
If ¥’ is a decomposition of ¥, then any other decomposition
of ¥/ will also be a decomposition for X. This fact induces
a partial order over the set of all possible decompositions
of a complex, in which X is the minimum and the complex
obtained by decomposing ¥ into the collection of its top sim-
plexes is the maximum. This latter complex is called the to-
tally exploded decomposition of £, and it is denoted with £ T .
Any decomposition of X can be seen as obtained by pasting
together simplexes in X | . Pasting occurs through atomic op-
erations that identify two vertices of the form v, and v,, at
a time. The set of all possible decompositions of a complex
¥ forms a lattice. Two complexes adjacent in the lattice can
be transformed into each other by an atomic split or join in-
volving just a pair of vertices. Figure 2 gives an example of
all possible decompositions of a complex and the resultant
lattice. The complex in the root (top) of the lattice is the to-
tally exploded complex. The complex in the sink (bottom) is
the original complex. Each edge in the lattice connects two
adjacent complexes, indicating that one complex can be ob-
tained from another by cutting (if moving up the lattice) or
pasting (if moving downwards).

The standard decomposition of a complex is a specific
element of the lattice, which is obtained by discarding the
whole set of “non-interesting” decompositions, and taking
the “most general” of the remaining decompositions. Usu-
ally, one perceives non-manifold simplexes as “joints” be-
tween manifold parts, and it might seem reasonable to build
a decomposition by splitting the complex just at them. On
the other hand, it does not seem desirable to introduce cuts
along manifold simplexes. Such a decomposition X’ is con-
sidered in some sense “essential”. A decomposition X’ is an
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Figure 2: An example of the lattice of all possible decompo-
sitions of a 2D simplicial complex. The standard decompo-
sition is marked. All the essential decompositions are those
belonging to the sub-lattice rooted at the standard decompo-
sition

essential decomposition of ¥ if and only if ¥’ is obtained by
splitting X only at non-manifold simplexes.

Among all the essential decompositions, the standard de-
composition AX is the most decomposed. Thus, it has been
decomposed at all singularities that can be eliminated by cut-
ting only through non-manifold faces. It is easy to see that
AXY. must be a complex with regular connected components.
Moreover, all connected components belong to the class of
Initial Quasi-Manifolds (IQMs). A regular d-complex ¥ is
called an initial quasi-manifold if and only if every pair of d-
simplexes in the star of every vertex of £ is (d—1)-manifold-
connected. Up to dimension two, the class of initial quasi-
manifolds coincides with that of manifolds. In general, in
three or higher dimensions, an IQM is not always a mani-
fold (and not even a pseudo-manifold). However, in dimen-
sion d > 3, if an IQM is embeddable in E4, it must be a
pseudo-manifold complex. Figure 3 shows an example of a
3D initial quasi-manifold, which is not a manifold complex.

&

B/

Figure 3: A pinched-pie, which is an 3D initial qusai-
manifold but not a manifold

In [DMPO3], a representation for abstract simplicial com-
plexes, not necessarily embeddable in the Euclidean space,
has been designed. Any h-dimensional IQM component is
described by an adjacency-based data structure, in which
relation Ry, (o) for h-simplex o is encoded, that, how-
ever, involves an arbitrary number of A-simplexes adjacent
to o, since it is not guaranteed that a component is a
pseudo-manifold. This representation has not been imple-
mented, and it can be heavily simplified when dealing with
d-complexes embedded in E¢ for a specific value of d.
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4. Decomposition of 3D simplicial complex

In this Section, we present an algorithm for computing the
IQM decomposition of a 3D simplicial complex. In a 3D
simplicial complex, non-manifold singularities may occur
at edges and vertices. The IQM decomposition can be ob-
tained by cutting the complex along all non-manifold ver-
tices and non-manifold edges. For an efficient computation
of such decomposition, we need: adjacency relations R3 3 for
all tetrahedra, adjacency relations R; » for all dangling faces,
and the stars of all the vertices. The decomposition algorithm
performs the following five steps, that are detailed in the rest
of this Section:

1. Compute adjacency relation R3 3 for all tetrahedra.

2. Compute adjacency relation R; 5 for all dangling faces.

3. Compute the stars of all vertices, where each star is de-
scribed as the set of all top simplexes incident at that ver-
tex.

4. Identify non-manifold edges and non-manifold vertices
through a traversal of the star of each vertex.

5. Decompose the complex at non-manifold simplexes and
identify IQM components.

Step 1: Compute adjacency relation Rj 3 for all tetrahe-
dra. An efficient way to compute it is to sort the tetrahedra
by their four faces. It can be done as follows:

1. The faces of the tetrahedra are not explicit in the in-
put. Each such face can be described through a 4-tuple
(uy,up,us3,t), where uy,up,u3 are three vertices that de-
scribe one face of ¢, and are sorted in the increasing or-
der of their indices. Each 4-tuple not only identifies a
unique face, but also associates the face with a tetrahe-
dron bounded by it. For each tetrahedron ¢ four 4-tuples
are created.

2. After sorting all the 4-tuples in lexicographical or-
der, adjacent 4-tuples of the form (uy,up,us,f;) and
(u1,up,u3,tp) indicate that tetrahedra #; and 1, are face-
adjacent.

The time complexity for this step is O(m3log(ms)), where
m3 denotes the number of tetrahedra in the complex.

Step 2: Compute adjacency relation R, > for all dangling
faces. The technique is the same as the computation of rela-
tion R3 3 for tetrahedra described above. The complexity of
this step is, thus, O(d2log(dy)), where d, denotes the num-
ber of dangling faces in the complex.

Step 3: Compute the stars of all vertices. This is performed
as follows:

1. For each vertex v and each A, create empty sets, b(v, h),
which we call buckets, for collecting all the top simplexes
of dimension / incident at v.

2. For each top h-simplex o described by vertices
{v1,"**,vhs1}, add o to buckets b(v;, h), fori=1,---, h+
1.

(© The Eurographics Association 2006.

This step is performed in time linear with respect to the
number of vertices and the number of top simplexes, i.e.,
O(vp +wy +dy + m3), where v is the number of vertices,
wy the number of wire edges, dy the number of dangling
faces and mj the number of tetrahedra.

Step 4: Identify non-manifold edges and non-manifold
vertices. Non-manifold vertices and edges are identified
through a traversal of the star of each vertex. This traver-
sal is done by using the information stored in the buckets
b(v,h), plus the relations R3 3 for tetrahedra, and R, for
dangling faces. During the traversal, the top simplexes in the
star of v are grouped into densely (h—1)-connected com-
ponents. Each component found is assigned a unique label,
which we call the component index. All vertices (except for
v) in a component C are labeled with the index of C. These
labels are used for identifying non-manifold edges in the star
of v. If a vertex u in the link of v has more than one label,
then edge (u,v) is a non-manifold edge. If the star of v con-
sists of more than one component, then v is a non-manifold
vertex; it is a manifold vertex otherwise. Algorithm 1 pro-
vides a pseudo-code description of the traversal strategy.

Algorithm 1 FindComponentsInStar(v, b)

I j—1

2: for h from 3 downto 1 do
3:  while b(v,h) is not empty do

4 Remove the unvisited top simplex ¢ from b(v, k)
5: Create new component C; for v

6: Enqueue(Q, o)

7: while not empty(Q) do

8 o «— Dequeue(Q)

9

: Cj — Cj Jo

10: for each yin R (o) do

11: if the (h—1)-face between o and y is manifold
and visited(y)=0 then

12: visited(y) «— 1

13: Enqueue(Q, 7)

14: end if

15: end for

16: end while

17: for each oinC; do

18: Add label j to all vertices of o (except v)

19: end for

20:  end while

21: end for

We illustrate the labeling of the star of v through the ex-
ample in Figure 4. In this example, the four tetrahedra form
two densely 2-connected components and the three dangling
faces three densely 1-connected components in the star of
vertex v. The vertices in the link of v are labeled according
to the component(s) to which they belong, thus exposing the
non-manifold edges in the star of v.

The traversal of the star of each vertex is a linear process
with respect to the number of top simplexes in that star. The



106 A. Hui, L Vaczlavik and L. De Floriani / A Decomposition-based Representation for 3D Simplicial Complexes

Figure 4: (a) Labeling densely connected components in the
star of vertex v

time complexity for Step 4 is thus O(Y,¢x |st(v)|), where
|st(v)| denotes the size of the star of vertex v in X. Since
each h-simplex belongs to the stars of exactly h+1 vertices,
the time complexity results to be linear in the number of top
simplexes in the complex.

Step 5: Decompose non-manifold simplexes and iden-
tify IQM components. To complete the decomposition, the
complex is cut at the non-manifold simplexes. For each non-
manifold vertex v, one vertex copy v; is created for each IQM
component in the star of v. After the cutting, the whole com-
plex is traversed once, but the traversal does not pass through
non-manifold edges and non-manifold vertices. All tetrahe-
dra that are 2-connected belong to the same IQM compo-
nent. All the dangling faces that are 1-connected form a sep-
arate manifold component. Likewise for all wire edges that
are 0-connected.

The star of each non-manifold vertex is partitioned when
copies are created for the non-manifold vertex. The sub-
sequent traversal of the whole complex takes linear time
with respect to the size of the complex. Thus this step takes
O(Yy,ex Ist(vs)]) + O(vo+w1 +day+m3+ko), where [st(vs)]
denotes the size of the star of non-manifold vertex vy in X, kg
is the number of IQM components at all non-manifold ver-
tices, and vg,w;,d>, m3 denote the number of vertices, wire
edges, dangling faces and tetrahedra respectively.

Both Steps 1 and 2 involve sorting, while all the other
steps perform operations that are linear in terms of the total
number of top simplexes in the complex. For a typical 3-
complex that is mostly 3-manifold with few dangling faces
and wire edges, the time consumption of the decomposition
is dominated by Step 1.

5. A Decomposition-based Data Structure for a
Simplicial 3-complex

In this Section, we present the Double-Level Decomposition
(DLD) data structure, which is based on the IQM decom-
position and is generated through the algorithm described
in Section 4. The DLD data structure is a two-layer repre-
sentation in which the upper level describes the connectiv-
ity of the IQM components through their non-manifold sim-
plexes, while the lower level describes the entities, their con-
nectivity and adjacency relation inside the IQM components
Ci,---,Cy. This is similar in concept to the representation
proposed in [DMMPO03] for decomposed abstract simplicial
complexes which is still a two-level data structure, but the

description of the single IQM component is more complex
since it may not necessarily be pseudo-manifold.

The connectivity of the components in the decomposition
is represented as a hypergraph G =<N,A >, where N is a
set of nodes representing the IQM components Cy,---,Cy,
and A is a set of hyperarcs. There are two kinds of hyper-
arcs: hyperarcs of type vertex, which represent non-manifold
vertices, and hyperarcs of type edge which represent non-
manifold edges. A hyperarc representing a non-manifold
vertex v connects all components which contain copies of
vertex v. Similarly, a hyperarc representing a non-manifold
edge e connects all components which contain copies of
edge e.

Figures 5(a)-(c) give an example of the IQM decompo-
sition of a simple 3-complex and the hypergraph that rep-
resents the decomposition. The 3-complex shown in Figure
5(a) consists of two tetrahedra that share the non-manifold
edge e which is incident at non-manifold vertices u and v,
and two wire edges that are incident at vertex v. The decom-
position of this complex consists of four components: C| and
C; are the two tetrahedra, C3 and Cy are the wire edges. Fig-
ure 5(b) shows all the components of the decomposition. The
non-manifold edge e and non-manifold vertices u and v are
copied for each component. Figure 5(c) is a full description
of the decomposition graph G. The nodes are Cy,---,C4 and
the hyperarcs are e, u and v. In the hypergraph, the solid
lines connecting C; and the hyperarcs are the copies of the
non-manifold joints. The dashed lines between u, v and e
indicate their incidence.

(a) (b)

Figure 5: (a) a 3D complex; (b) its IQM decomposition; and
(c) the hypergraph describing the decomposition

All non-manifold singularities are thus explicitly repre-
sented only in the upper level, which encodes hypergraph G.
The following information are encoded:

e For each node representing IQM component C;:

— dimension of the component;
— and a pointer to one top simplex in this component.

e For each hyperarc representing non-manifold edge e: (We
consider hyperarc e in Figure 5(c) to illustrate the follow-
ing)

— apointer each to its extreme vertices, which are hyper-
arcs in G (in our illustration, they are hyperarcs u and
v for e);

— two lists of pointers: each pointer references a repre-
sentative top simplex for each 2D or 3D IQM compo-
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nent in the star of e. One list collects the 2D repre-
sentatives and the other the 3D representatives (in our
illustration, the 2D list of e is empty while its 3D list
consists of the two tetrahedra in Figure 5(b)).

e For each hyperarc representing non-manifold vertex v:
(See hyperarc v in Figure 5(c) as an example)

— A list of pointers, each to the vertex copy of v in each
IQM component in the star of v, (for the example, the
list of v consists of copies vy,--+,v4);

— a list of pointers, one for each non-manifold edge in
graph G, that is incident at v (for the same example,
the list of v contains hyperarc e).

The lower level describes the IQM components. For any
h-dimensional IQM component C;, we use the Indexed
data structure with Adjacencies which encodes all the h-
simplexes, the vertices and the following relations:

o For each vertex v in the component, relation Ra »(v) which
consists of one h-simplex in the star of v;

e For each h-simplex o of C;, relation Ry, (o) and relation
Ry p(0)

The low level data structure is implemented through the fol-

lowing constructs:

e For each vertex v in component C;:

— A 1-bit flag to indicate whether v is manifold;
— One pointer for relation Rjj ;,(v);

e For each wire edge o of C;: a pointer array of size 2 for
relation R} o(0)
e For each top h-simplex ¢ of C;, h > 1:

— A pointer array of size (h+ 1) for relation R, o(0)

— A pointer array of size (h+ 1) for relation R, (o)

— A bit flag of size (thrl) to indicate whether each edge
of ¢ is manifold;

e A hash table H, that stores the pointers from the vertex
copies to the node that corresponds to v in graph G.

The storage cost required by the DLD data structure can
be evaluated in terms of the following quantities:

mq : number of manifold vertices;

no : number of non-manifold vertices;

ko : total number of IQM components at all non-manifold
vertices;

np : number of non-manifold edges;

w1 :number of wire edges;

ky : total number of IQM components at all non-manifold
edges;

dp : number of dangling faces;

ms3 : number of tetrahedra;

C : total number of IQM components in the whole complex.
In the lower level data structure, the total number of ver-

tices (including all manifold vertices and copies of non-

manifold vertices) is mg + kg. Assuming that the hash tables

are 10% full in order to support constant access time, the size
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of the hash table H, is 20nq pointers. The storage cost of the
DLD data structure for various domains is shown below:

e For general non-manifold complexes:

— lower level: mq + ko + 2wy +4dy + 8m3 +20ng + 301,
pointers and mq + kg + 3d 4 6ms3 bits,

— upper level: 2C + 6n + 2ng + k| + ko pointers,

— hash table: 20n( pointers.

e For manifold complexes, dy =w| =ng=n| =ko=k; =0
and C=1

— lower level: mg + 8m3 pointers and mq + 6m3 bits,
— upper level: 2 pointers,
— hash table: O pointers.

A comparison with the extended Indexed data structure
with Adjacencies (IA)[Nie97] for manifolds gives us a mea-
sure of the scalability of the DLD data structure. When en-
coding manifolds, the DLD data structure is reduced to the
IA with just some additional bit flags. Thus, the overhead of
the DLD data structure in encoding manifold is mg + 6ms3
bits and 2 pointers.

6. Navigation in the DLD data structure

In this Section, we discuss how to retrieve topological rela-
tions from the DLD data structure. These algorithms are the
basic building blocks for any algorithm which navigates or
updates the complex.

Boundary relation can be retrieved both for top simplexes

and for faces of top simplexes. For any top p-simplex, &

p+l
g+l
binations of (¢ + 1) vertices of ¢. Thus, to retrieve boundary

relation Ry 4(0), relation R), o(0) is retrieved, and the com-
binations describing the g-faces are generated.

(p=2,3), the set of g-faces of o are described as (;_ , ) com-

We retrieve coboundary relation R, ,(0) of a p-simplex
o through a traversal of the star of ¢, (p = 0,1,2). In the
case in which ¢ is a manifold simplex, all g-simplexes in-
cident at o belong to the same IQM component. Thus, the
traversal of the star of ¢ is performed within the lower level
data structure. When o is non-manifold, the star of ¢ is dis-
tributed among several components. Therefore, it is neces-
sary to access the upper level data structure to retrieve all the
components incident at ©.

Relation R ;,(v), h = 2,3, in an h-dimensional IQM com-
ponent C is retrieved by traversing the star of v in C through
relations R{ ;. Ry, and Rjo. The traversal is performed
by starting with i-simplex ¢ = R ,(v). The h-simplexes
(h—1)-adjacent to & are found through Ry, (o), and those
which are incident at v are found by considering Ry, o for
such h-simplexes. This process is linear in the number of /-
simplexes incident at v. If we want to retrieve R 4(v) in an
h-dimensional IQM component with g < h, we perform the
same traversal described above, but we collect as result the
g-taces of the h-simplexes found in the retrieval. The time
complexity is still linear in the number of g-simplexes inci-
dent at v, since the number of s-simplexes in the star of v is
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linear in the number of g-simplexes incident at v because of
Euler’ formula.

Next, we consider how to retrieve relation Rg 4(v), 0 <
g < h, for a non-manifold vertex u. The star of u is the union
of the stars of all its vertex copies. The vertex copies of u
are retrieved from the upper level data structure. Relation
Ry 4 for each vertex copy is retrieved from the lower level
data structure as though the vertex copy u was a manifold
vertex. Given an arbitrary vertex v in a given component C of
dimension 4, the bit-flag indicates whether v is a vertex copy.
If it is, the reference to the hyperarc representing the non-
manifold vertex is retrieved from the hash table H,. From
the hyperarc, we retrieve all the other copies of the same
vertex, and then the g-simplexes incident at each such copy.
Thus, all Ry 4(v) relations, where 0 < g < h, can be retrieved
in time linear in the number of g-simplexes in the star of v.

We consider how to retrieve co-boundary relation of type
Ry 4(e), 0 < g < h, for an edge e. If e is a manifold edge, we
consider a tetrahedron or triangle o containing it. (Note that
since the edges are not encoded in the DLD data structure
for the IQM component, we consider all edges to be speci-
fied through a top simplex containing it.) For a 3-component,
we retrieve all tetrahedra, or triangles, depending on whether
g = 2 or 3, incident at e, by traversing the star of e starting
from o, and retrieving all the other tetrahedra or triangles,
by using Ry, , and Ry,  relations. For a 2-component, Ry > (e)
is retrieved by simply considering R; > of triangle ©.

If e is a non-manifold edge, we get access from the hyper-
arc describing it to a top simplex in each component contain-
ing it. For each component, we repeat the process discussed
above for the manifold edge. The time complexity of this al-
gorithm is linear in the number of g-simplexes incident at
e.

Coboundary relation R 3(f) for a triangle f is retrieved
through the Rj3 3 relation of a tetrahedron that shares f. Ad-
jacency relations R, , (p = 0,1,2) are retrieved as a com-
bination of boundary and coboundary relations, and are not
elaborated here. Their time complexity is linear in the num-
ber of p-simplexes produced as result of retrieval. Thus, all
topological relations can be extracted in optimal time from
the DLD data structure.

7. Comparisons

In this Section, we analyze and highlight the distinctive fea-
tures of the DLD data structure by comparing it with exist-
ing data structures for representing non-manifold simplicial
complexes.

7.1. Non-manifold Indexed data structure with
Adjacencies (NMIA)

The Non-Manifold Indexed data structure with Adjacen-

cies (NMIA) [DHO3] is a highly compact data structure for

simplicial 3-complexes. The NMIA data structure encodes

vertices and top simplexes, and the following complete re-

lations: Ry (o), for each h-dimensional top simplex o,

R33(t), each tetrahedron ¢. In addition, partial coboundary
relations are encoded for vertices and non-manifold edges.
Vertex-based partial relations encoded by the NMIA asso-
ciates with each vertex v one ¢g-dimensional connected com-
ponent in s¢(v). In the example of Figure 6(a) each of the top
simplexes is a connected component by itself, so the par-
tial coboundary relations encoded at v consist of we,d f and
t. Edge-based partial relations encoded by the NMIA asso-
ciate each non-manifold edge e with one top g-simplex in
each g-dimensional component incident at e. In Figure 6(b),
there are three connected components at edge e, so the par-
tial relations by the NMIA for edge e consist of df,#1 and #4.

af

we

v

(a) (b)

Figure 6: Partial coboundary relations encoded by the
NMIA at (a) non-manifold vertex v and (b) non-manifold
edge e

Both the DLD and the NMIA data structures encode only
vertices and top simplexes. Their primary difference is that
the DLD data structure encodes the complex as an IQM de-
composition, thus allowing the non-manifold singularities to
be explicitly addressable, while the NMIA encodes the com-
plex as a single piece with non-manifold singularities dis-
tributed inside the complex. Both the NMIA and the DLD
data structure are comparable to the extended IA when the
domain is manifold. Also, both data structures support an
efficient retrieval of topological relations. The retrieval al-
gorithms for relations R), 3, for p = 0, 1, are sub-optimal for
the NMIA data structure, but still linear in the number of top
simplexes in the star of a vertex for p =0, or edge for p = 1.

7.2. Incidence Graph and Simplified Incidence Graph

The Incidence Graph (IG) [Ede87] is a data structure for rep-
resenting cell complexes of any dimensions. We consider it
for simplicial complexes here. The IG encodes the following
topological relations:

e for each p-simplex o, where 0 < p <d, boundary relations
Rpp-1(0),

e for each p-simplex ¢, where 0 < p <d, coboundary rela-
tions R, ,1(0)

Thus, for each p-simplex o, the IG encodes its immediate

boundary, and its immediate coboundary.

The Simplified Incidence Graph (SIG) [DGHO04] simpli-
fies the IG by encoding the coboundary partially as follows:
for each simplex o, the SIG encodes one top A-simplex for
each (h— 1)-connected component of top A-simplexes in the
star of o. Figure 7 shows two examples of the coboundary
relations encoded at a vertex. For the example of Figure 7(a),
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the SIG encodes just one triangle as partial coboundary rela-
tion R > of v. In Figure 7(b), the partial coboundary relation
encoded by SIG at v consists of two triangles.

V. ))

<Ny al\Y

Figure 7: Two examples of partial coboundary relations en-
coded by the SIG at vertex v

The SIG encodes the same boundary relations as the 1G.
It simplifies the IG by encoding a subset of the cobound-
ary instead of the complete immediate coboundary. We have
shown in [DHOS5] that the SIG is almost always more com-
pact than the IG. The main difference with respect to the
DLD data structure is that both the IG and the SIG are
dimension-independent, and they encode all simplexes in a
complex. Both the IG and the SIG support topological navi-
gation in optimal time, as does the DLD data structure.

7.3. Comparison on storage costs

In this Subsection, we provide a comparison of the storage
costs of the four data structures on synthetic data sets with
high degree of non-manifoldness. Table 1 summarizes the
characteristics of each data set. The storage costs of the data
structures for each of them are shown in Table 2. The stor-
age cost is measured in terms of the number of entities and
relations encoded, which is independent of each individual
implementation.

From Table 2, we can make three remarks. First, the num-
ber of entities encoded by the NMIA and the DLD data struc-
tures are % to % of that encoded by the IG and by the SIG.
Second, the DLD data structure is more compact than the
SIG and IG, since it occupies only less than % the size of
the SIG and even less than that of the IG. Finally, the stor-
age cost of the DLD data structure is almost the same as that
of the NMIA data structure, especially when there is a re-
stricted number of non-manifold singularities with respect to
number of simplexes in the complex (as it is almost always
the case in practical applications).

Model T F E V DF WE V, E,

3D13 28 82 84 31 0 0 1 O
3D15 40 116 112 37 0 0 5 4
3DDe 30 97 101 37 8 2 5 4
3D25 48 208 234 79 56 0 7 6

Table 1: Four 3D data sets with non-manifold proper-
ties: T=#tetrahedra, F=#faces, E=#edges, DF =#dangling
faces, WE=#wire edges, V=#vertices, V,=#non-manifold
vertices, E,=#non-manifold edges,
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Model 1G IS NMIA DLD

Ent Rel | Ent Rel | Ent Rel | Ent Rel
3D13 | 225 1052 (225 756 | 59 258 | 59 263
3D15 | 305 1464 | 305 1045 | 77 373 | 77 405
3DDe | 265 1226|265 879 | 77 327 | 77 389
3D25 | 569 2568 | 569 1815 | 183 695 | 183 943

Table 2: Storage costs of four data structures on 3D
data sets with non-manifold properties: Ent=#entities,
Rel=#relations

8. Concluding Remarks

We have addressed the issue of modeling non-manifold 3D
shapes discretized as 3D simplicial complexes through a
decomposition-based approach. To this aim, we have de-
scribed a data structure for 3D simplicial complexes embed-
ded into 3D Euclidean space based on unique and sound de-
composition of such complexes into nearly manifold com-
ponents, that we termed the DLD data structure. The struc-
ture of the decomposition is encoded as the upper level in
the DLD data structure, while each nearly manifold com-
ponent is described as an extended indexed data structure
with adjacencies by encoding connectivity and adjacency
relations. The DLD data structure is compact, since it ex-
plicitly encodes only vertices and top simplexes, it is highly
scalable to the manifold case, and it supports efficient re-
trieval of topological relations. The DLD data structure is
more expressive than the NMIA data structure [DHO3], since
it describes the non-manifold entities explicitly, and has al-
most the same storage cost. Also, navigation algorithms are
simpler to implement on the DLD data structure since non-
manifold singularities are kept distinct from the lower-level
representation of the IQM components. The DLD data struc-
ture, its construction and navigation algorithms have been
implemented and tested on synthetic data sets. Figures 8(a)-
(f) show a 3D complex described by the DLD data structure.

@
() (b) (

(@ (e) ®

Figure 8: (a) A wheel model with 1000 tetrahedra, 32 dan-
gling faces and 96 wire edges; (b) a zoomed-in view of its
center; (c) a side-way view; (d) the tetrahedral parts form
three 3D manifold components; (e) the parts described by
dangling faces form eight 2D components; and (f) the wire
parts (enlarged)
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A further important advantage of the DLD data structure
is that it provides a unique decomposition of a 3D shape and
thus is a very suitable basis for performing geometric rea-
soning of a 3D shape by identifying interesting topological
features, and for shape understanding and recognition. The
decomposition also makes it easier to extract topological in-
variants, such as Betti numbers, which can be used as a shape
signature for reasoning and recognition purposes.
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