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Abstract

We develop spherical barycentric coordinates. Analogous to classical, planar barycentric coordinates that de-
scribe the positions of points in a plane with respect to the vertices of a given planar polygon, spherical barycentric
coordinates describe the positions of points on a sphere with respect to the vertices of a given spherical polygon.
In particular, we introduce spherical mean value coordinates that inherit many good properties of their planar
counterparts. Furthermore, we present a construction that gives a simple and intuitive geometric interpretation for
classical barycentric coordinates, like Wachspress coordinates, mean value coordinates, and discrete harmonic
coordinates.
One of the most interesting consequences is the possibility to construct mean value coordinates for arbitrary
polygonal meshes. So far, this was only possible for triangular meshes. Furthermore, spherical barycentric coor-
dinates can be used for all applications where only planar barycentric coordinates were available up to now. They
include Bézier surfaces, parameterization, free-form deformations, and interpolation of rotations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Barycentric coordinates are a special kind of local coordi-
nates that express the location of a point with respect to a
given triangle. They were developed by Möbius [Möb27]
in the nineteenth century. Wachspress extended the no-
tion of barycentric coordinates to arbitrary convex poly-
gons [Wac75]; another approach is due to Sibson [Sib80].
In recent years, the research on barycentric coordinates has
been intensified and led to a general theory of barycentric
coordinates and extensions to higher dimensions [FHK06,
FKR05, JSWD05, JSW05, JW05]. Barycentric coordinates
are natural coordinates for meshes and have many applica-
tions including parameterization [DMA02, SAPH04], free-
form deformations [SP86, JSW05], finite elements [AO06,
SM06], shading [Gou71, Pho75], and elementary geometry.

Our main contribution is the extension of the notion of
barycentric coordinates in several directions as follows:

• We introduce spherical barycentric coordinates. They are
analogues of the classical barycentric coordinates, but
they are defined for polygons on a sphere instead of a
plane.

• We construct three-dimensional barycentric coordinates
for arbitrary, closed polygonal meshes.

• We show that the vector coordinates in [JSWD05] and
the 3D mean value coordinates for triangular meshes
in [FKR05,JSW05] are special cases of our constructions.

The extension to polygonal meshes is an important gen-
eralization as noted in [JSW05]. In particular, it makes it
possible to use barycentric coordinates in conjunction with
subdivision surfaces and the recently introduced conical
meshes [LPW∗06].

Let P = (v j) j=1..n be a polygon with vertices v j. Barycen-
tric coordinates λi(v; P) = λi

(
v; (v j) j=1..n

)
of a point v are

continuous functions that satisfy the following properties (2)
and (3) for all points v inside the polygon. If property (1) is
additionally fulfilled for all convex polygons, we call them
positive barycentric coordinates.

∀i λi(v; P) > 0 positivity, (1)
∑

i
λi(v; P) = 1 partition of unity, (2)

∑
i
λi(v; P)vi = v linear precision. (3)

If P is a triangle, its barycentric coordinates are uniquely de-
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termined by these conditions. In general, it is only possible
to fulfill all three properties for convex polygons. We use
also λi or λi(v) if P and the point v are clear from the con-
text. If a partition of unity (2) is not given, we speak of ho-
mogeneous coordinates. They can be normalized to satisfy
property (2) if and only if

∑
i λi(v) , 0. Property (3) is called

“linear precision” since it ensures the correct interpolation
of all linear functions f :

∑
i
λi(v) f (vi) = f (v). (4)

The construction of barycentric coordinates for polygons
with more than three vertices had been an open problem
for a long time. The coordinates introduced by Wachs-
press [Wac75] are defined for arbitrary convex polygons P ⊂
�

2 and satisfy properties (1)–(3), but they are in general only
defined inside of convex polygons. This restriction was over-
come with the introduction of the mean value coordinates by
Floater [Flo03]. They are defined in the whole plane for con-
vex and non-convex polygons and can even be extended to
multiple polygons [HF06]. In [FHK06], an overview over
all similarity invariant, homogeneous coordinates is given.
In particular, it is shown that Wachspress coordinates and
mean value coordinates are the only similarity invariant, pos-
itive barycentric three-point coordinates. Recently, Wachs-
press coordinates and mean value coordinates were general-
ized to polytopes of higher dimensions. However, this was
only possible for convex polytopes (3D Wachspress coordi-
nates) [War96, JSWD05] and for polytopes with simplicial
boundary (3D mean value coordinates) [FKR05, JSW05].

Spherical barycentric coordinates constitute another vari-
ant of barycentric coordinates. They have been studied first
by Möbius [Möb46] and were introduced to computer graph-
ics by Alfeld et al. [ANS96]. Spherical barycentric coordi-
nates express the location of a point v on a sphere with re-
spect to the vertices vi of a given spherical triangle P. Since
partition of unity (2) and linear precision (3) contradict each
other on spheres, Alfeld et al. chose to relax the former con-
dition to

∑
i
λi ≥ 1. (2′)

Ju et al. [JSWD05] extended spherical barycentric coordi-
nates (they called them “vector coordinates”) from spherical
triangles to arbitrary convex, spherical polygons. However,
non-convex spherical polygons still posed a problem.

In this paper, we show how arbitrary barycentric co-
ordinates from the family of planar barycentric coordi-
nates [FHK06] can be defined on a sphere (Section 2.1). In
particular, we introduce spherical mean value coordinates
that inherit many good properties of their planar counter-
parts and are defined for arbitrary spherical polygons (Sec-
tion 2.2). We show that the vector coordinates by Ju et
al. [JSWD05] coincide with spherical Wachspress coordi-
nates from our family (Section 2.3). Furthermore, we show
how 3D barycentric coordinates (in particular, mean value
coordinates) for arbitrary polygonal meshes can be defined

with the help of our spherical mean value coordinates (Sec-
tion 3). Finally, we discuss several applications including
space deformations and Bézier surfaces (Section 4). In addi-
tion, we provide a novel, geometric interpretation of planar
barycentric coordinates (Appendix A).

2. Spherical barycentric coordinates

In this section, we deal with the problem of finding (positive)
coefficients λi for vectors vi ∈�

3 such that their linear com-
bination is v ∈ �3. If we restrict ourselves to vectors of unit
length, the λi represent barycentric coordinates for v with
respect to the vi on the unit sphere. First, we give a general
introduction. Then, we develop spherical mean value coor-
dinates (Equation (8)) and spherical Wachspress coordinates
(Section 2.3).

While Equations (1)–(3) are well-chosen to characterize
planar barycentric coordinates, it is obviously not possible
to fulfill all three conditions if the vertices vi and the point v
are located on a sphere instead of a plane. This is especially
easy to see if P is a triangle with three vertices. In particular,
Equations (2) and (3) contradict each other since the former
condition requires all points described by

∑
i λivi to lie in the

triangle plane while the latter condition demands that this
sum yields a point v that lies not in this plane but on the
sphere. A similar observation was made in [BW92].

Consequently, we have to relax the above conditions. We
follow the suggestion in [ANS96] and replace Equation (2)
by (2′). Of course, by dividing by

∑
j λ j, we could also ob-

tain coordinates that constitute a partition of unity (2) in-
stead of satisfying the linear precision property (3) if desired.
However, for our applications, in particular for constructing
barycentric coordinates for meshes, linear precision is more
important. Note that this property still implies that linear
functions defined on �3 are correctly interpolated (Equa-
tion (4)). Constant functions, however, cannot be correctly
interpolated if a partition of unity (2) is not given. A differ-
ent approach that preserves the partition of unity was pro-
posed in [BF01]. We call a set of coordinates λi satisfying
conditions (2′) and (3) spherical barycentric coordinates. If
P is a triangle, then there exists obviously a unique solution:
the unique linear combination of the vectors v1, v2, and v3
such that

∑3
i=1 λivi = v. A geometric interpretation of these

spherical barycentric coordinates was given in [ANS96].

2.1. Definition of spherical barycentric coordinates

In this section, we show how barycentric coordinates can be
defined for arbitrary polygons on a sphere.

Definition 2.1 A spherical polygon P consists of a set of
distinct vertices vi located on a sphere and a set of edges
(vi,vi+1) that connect the vertices vi and vi+1 by geodesic
lines (these are the arcs of great circles on the sphere).

We consider a spherical polygon on the unit sphere cen-
tered at the origin. Let v be a point on the sphere. Let v̂i be
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Figure 1: Construction of spherical barycentric coordi-
nates.

the intersection points of the line given by vi and the tan-
gent plane Tv�

2 at v to the sphere (see Figures 1 and 2). The
points v̂i determine a polygon P̂ (shown in blue) in the plane
Tv�

2. (The map vi 7→ v̂i is a gnomonic projection. It is es-
pecially useful for our purpose since it projects geodesics to
straight lines.) Now, we can compute the planar barycentric
coordinates λ̂i of v with respect to P̂. The 3D position of v
is an affine linear function on Tv�

2. Consequently, any set
λ̂i of planar barycentric coordinates yields, by Equations (2)
and (3),

∑
i
λ̂îvi = v.

To obtain spherical barycentric coordinates λi of v that sat-
isfy the linear precision property (3), we define them by

∑
i
λivi = v, λi B 〈vi, v̂i 〉̂λi (5)

where 〈·, ·〉 denotes the usual scalar product in �3. Note that
〈vi, v̂i〉 is just ±‖̂vi‖. Although this value becomes very large
and finally undefined if the angle θi between v and vi ap-
proaches π2 , this is usually compensated by a shrinkage of
λ̂i such that the definition of λi can be extended continu-
ously to the case θi = π2 . We demonstrate this in Sections 2.2
and 2.3 for spherical mean value and spherical Wachspress
coordinates. Note that basically the same construction can
be used to obtain planar barycentric coordinates from spher-
ical barycentric coordinates. It follows that there is a bijec-
tion between planar barycentric coordinates and spherical
barycentric coordinates.

Finally, we remark that these coordinates can also be ex-
tended to vectors vi and v of arbitrary length by defining

λi
(
v; (v j) j=1..n

)
B
‖v‖
‖vi‖
·λi

(
v
‖v‖ ;
( v j
‖v j‖

)
j=1..n

)
. (6)

di+1

di

1
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θi

v
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Figure 2: Notation for spherical barycentric coordinates.

2.2. Spherical mean value coordinates

We now develop spherical mean value coordinates. They in-
herit positivity from their planar counterparts: the λi(v) are
positive if v is contained in the kernel of the polygon given
by the vi. If v is contained in the convex hull of the vi, this
can always be arranged by reordering the vertices vi with re-
spect to their polar angle around v. (The kernel is the region
inside the polygon from which the whole polygon is “visi-
ble”.)

Planar mean value coordinates are given by Floater’s for-
mula [Flo03]

λ̂i =
wi∑
j w j
, wi =

tan αi−1
2 + tan αi

2
di

(7)

where αi is the signed angle between v̂i − v and v̂i+1 − v
and di is the distance ‖̂vi − v‖. As shown in Figure 2, αi is
given by the dihedral, signed angle between the planes de-
termined by v, vi, and the origin, and v, vi+1, and the origin,
respectively. That is, αi is the signed angle between v× vi
and v×vi+1. The distance di is given by di = tanθi where θi
is the angle between v and vi. By inserting these terms into
Equations (7) and (5) and using 〈vi, v̂i〉 =

1
cosθi , we obtain

λi(v) =
tan αi−1

2 + tan αi
2

sinθi

/∑
j
cotθ j

(
tan
α j−1

2
+ tan

α j

2

)
.

(8)
This formula gives us a continuous definition of λi for arbi-
trary v. But for a v with θi > π2 , it implies that in the projected
polygon P̂, the vector v̂i − v has negative length (and is still
oriented like v− v̂i; this is the reason that αi is measured
as the angle between −(̂vi − v) and v̂i+1 − v instead of v̂i − v
and v̂i+1 −v), as indicated on the right of Figure 2. It can be
seen that the planar mean value coordinates still satisfy lin-
ear precision (3) for this case (for example, this is implied
by the construction in Appendix A). Therefore, the derived
spherical barycentric coordinates fulfill linear precision as
well.

From Equation (8), it is easy to see that the spherical mean
value coordinates are well-defined and positive if v is inside
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Figure 3: Bottom and side view of the polar dual.

a convex spherical polygon and θi < π2 for all θi. For such
polygons, inequality (2′) is implied by the triangle inequal-
ity.

2.3. Relation to Ju et al.’s vector coordinates

In this section, we show that the coordinates that were intro-
duced by Ju et al. [JSWD05] to express a vector v as a linear
combination of other vectors vi coincide with our spheri-
cal Wachspress coordinates. It is sufficient to consider only
vectors vi and v of unit length and to show that the coor-
dinates coincide up to a constant factor c. Then, it follows
from Equations (6) and (3), which hold for both sets of co-
ordinates, that they coincide for arbitrary vectors and that
c = 1.

By Equation (5) and Figure 2, spherical Wachspress coor-
dinates are given by

λi =
1

cosθi
λ̂i (9)

where λ̂i are the planar Wachspress coordinates for the pla-
nar polygon with vertices v̂i constructed in Section 2.1. We
now show that the same formula holds for the vector coordi-
nates constructed in [JSWD05].

Ju et al.’s vector coordinates are defined for vectors vi that
are the vertices of a convex spherical polygon. The coordi-
nates are proportional to the area βi of the triangular faces
of the polar dual. The polar dual is the convex polyhedron
that is bounded by the planes that have vi as normal and
pass through the point v and by the plane perpendicular to v
with distance 1

‖v‖ to the point v (see Figure 3; the polar dual
is shown in blue). Let v̄ be the intersection point of v and
the latter plane. Let v̄i be the intersection points of the same
plane and the rays (green) determined by the vi. Let P̄ be
the polygon (shown in red) formed by the v̄i. Then v̄ and P̄
are, by construction, similar to v and P̂, the polygon defined
in Section 2.1. Therefore, the respective Wachspress coor-
dinates coincide: λ̂i(v̄; P̄) = λ̂i(v; P̂). Note that the boundary
polygon Q (solid blue in Figure 3, left) of the bottom face of
the polar dual is dual to P̄ (red) with respect to v̄. That is, its
edges ai are orthogonal to v̄i − v̄ (see Appendix A for dual
polygons).

The triangle areas βi can be computed (up to a factor 1
2 )

as the product of the length ai of the edge ai and the respec-
tive height hi. The latter can be computed as hi =

‖v‖−1

cos( π2−θi)
=

‖v‖−1

sinθi
. In the bottom face, the distance ri of the edge ai to

the center v̄ is given by ‖v‖−1 tan( π2 − θi) = ‖v‖
−1 cotθi and

the distance of the intersection points v̄i to v̄ is given by
di = (1− ‖v‖−1) tanθi. The product ridi =

‖v‖−1
‖v‖2 is indepen-

dent of i. Therefore, Q is (up to scaling) that dual polygon
of P̄ such that the distance ri of the edges ai to the center v̄
is inverse to the distance di between v̄i and v̄ (up to a con-
stant factor). The edges of such a polygon have lengths ai
proportional to diλ̂i (see Appendix A). If we put everything
together, we obtain the following formula for the vector co-
ordinates

βi =
1
2

aihi = c1dihiλ̂i = c
λ̂i

cosθi

with some constants c and c1. A comparison with Equa-
tion (9) concludes our proof.

3. Barycentric coordinates for closed meshes with
polygonal faces

First, we present the approach to compute barycentric coor-
dinates for triangular meshes that was introduced in [JW05].
Then, we show how barycentric coordinates for arbitrary
closed polygonal meshes can be obtained by using the spher-
ical barycentric coordinates proposed in Section 2.1. 3D
mean value coordinates are computed by Equation (10) if
vF is calculated by Equation (11) and λi by Equation (12).

Let x ∈ �3 be a point. Its barycentric coordinates with
respect to a mesh with vertices vi consist of coordinate
functions λ3D

i (x) that fulfill Equations (2) and (3). To de-
fine them, we need the following notation: F(vi) denotes
the set of faces incident to vi. For a face F, let V(F) de-
note the set of indices i such that vi is incident to F and let
PF B (vi − x)i∈V(F) be the boundary polygon of F, relative
to x. Using Equation (2), Equation (3) is equivalent to

∑
i
λ3D

i · (vi −x) = 0. (3′)

Thus, it is sufficient to find a solution λ3D
i for Equation (3′).

This is done in two steps [JW05]:

• A face vector vF is assigned to each face F of the mesh
such that

∑
F vF = 0. (Think of vF as some kind of face

normal.)
• The face vectors are distributed to their respective face

vertices by finding λi such that
∑

i∈V(F) λi · (vi −x) = vF .

While this procedure was proposed only for triangular
meshes in [JW05] (in this case, the latter step has a unique
solution), we can extend it to arbitrary meshes by employing
spherical barycentric coordinates λi for the distribution of
the face vectors vF . Using them, we can assign barycentric
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coordinates to each vertex vi:

λ3D
i (x)B

wi(x)∑
j w j(x)

, wi(x)B
∑

F∈F(vi)
λi(vF ; PF ). (10)

Note that PF is in general not a spherical polygon. There-
fore, the λi refer to the generalized spherical barycentric co-
ordinates (6). It is clear from the construction that the wi sat-
isfy Equation (3′). It follows that the λ3D

i satisfy (2) and (3).

We can now vary our 3D barycentric coordinates by the
choice of vF and the choice of the spherical barycentric co-
ordinates λi. In [JW05] is described (for triangular meshes)
how vF has to be chosen to obtain Wachspress coordinates,
mean value coordinates, discrete harmonic coordinates, or
any other barycentric coordinates. In the next section, we
describe the necessary choices to obtain 3D mean value co-
ordinates for polygonal meshes.

3.1. Mean value coordinates for closed meshes

Mean value coordinates are the most flexible since they can
be computed for non-convex meshes with non-convex (pla-
nar) faces. The following construction of the associated face
vector is due to [FKR05, JSW05]. Let x be a point inside
the body bounded by the mesh. For a face F, let PF be the
boundary polygon with respect to x as above, and let QF be
the spherical polygon that is obtained by projecting the ver-
tices of PF to the unit sphere centered at x. We know from
Stokes’ theorem that the integral over the unit normals v−x
of this sphere is zero:

∫

v−x∈�2
(v−x)dS = 0.

The QF induce a polygonal tessellation of this sphere and
we define

vF B

∫

v−x∈QF

(v−x)dS ,
∑

F
vF = 0.

θ2,3

vF

u2

u4

u3

n3,4

x

u1

Figure 4: The
face normal vF .

Let the vertices of QF be u1, . . .un.
Another application of Stokes’ theo-
rem yields the formula

vF =
∑n

i=1

1
2
θi,i+1ni,i+1 (11)

where θi,i+1 is the angle between ui
and ui+1 and ni,i+1 B

ui×ui+1
‖ui×ui+1‖

is the
oriented unit normal to the plane de-
termined by these vectors (Figure 4).
To distribute the face vector to the in-
cident vertices, we choose spherical
mean value coordinates. This choice
of the λi leads to 3D mean value
coordinates whose restriction to the
faces of the mesh yields the planar
mean value coordinates of the respec-

tive faces (Section 3.2). For each face F, the λi(vF ; PF ) can

easily be computed with Equations (8) and (6). We obtain

λi =
‖vF‖

‖vi −x‖
·

tan αi−1
2 + tan αi

2
sinθi

/∑
j
cotθ j

(
tan α j−1

2 + tan α j
2

)
.

(12)

Since the vertices vi, i ∈ V(F) of PF are the boundary
vertices of the planar face F, it follows from the construction
that the spherical mean value coordinates λi are well-defined
and positive for convex faces. Consequently, our 3D mean
value coordinates are well-defined and positive for points
x in the interior of convex polyhedra. By construction, our
mean value coordinates coincide with the mean value co-
ordinates from [FKR05, JSW05] if they are computed for
meshes with triangular faces.

3.2. Behavior of the mean value coordinates on the faces

The denominator of Equation (12) becomes zero if x is con-
tained in a face F of the mesh. In this case, the face vector
vF is orthogonal to F and QF lies on a great circle since its
vertices vi−x

‖vi−x‖ lie in the plane determined by F. We show
now that the 3D mean value coordinates have nevertheless
a continuous extension to the faces and that this extension
coincides with the 2D mean value coordinates. Assume that
x approaches a point located on the face F. Then vF ap-
proaches the face normal. It follows that the denominator of
the λi(vF ; PF ) defined in Equation (12) approaches infinity.
Therefore, in the limit (due to the normalization)

λ3D
i (x) =



wi∑
j∈V(F) w j

, wi = λi(vF ), i ∈ V(F)

0, otherwise.

This approaches the usual 2D mean value coordinates.

4. Applications

4.1. Interpolation and extrapolation

The most direct application of mean value coordinates is
their use for interpolation and extrapolation using Equa-
tion (4). In Figure 5, color values are specified on the eight
vertices of the cube. In the top row, the values are interpo-
lated on the faces. In the bottom row, the color values are
interpolated and extrapolated on a plane that passes through
the cube. In the left column, the cube was triangulated before
the interpolation. The piecewise linear structure of the inter-
polation on the triangles is clearly visible. With our 3D mean
value coordinates, a triangulation is no longer necessary, and
the resulting interpolation is much smoother.

4.2. Space deformations with 3D mean value
coordinates

Figure 6 shows an example how mean value coordinates
can be used for space deformations. We determine the mean
value coordinates of the vertices of the tube with respect to
the black control mesh with vertices vi. Then we deform the
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Figure 5: An example of interpolation of color values using
3D mean value coordinates. The color values are specified
at the vertices of the cube. They are interpolated on the faces
(top) and on a plane passing through the cube (bottom). If
the cube is triangulated beforehand (left), the interpolation
is less smooth than with our method (right).

Figure 6: An example of a space deformation using 3D
mean value coordinates with respect to the polygonal con-
trol mesh. If the control mesh is triangulated beforehand,
strong artifacts may be introduced (top). No triangulation is
necessary with our method (bottom).

control mesh by moving the vertices to points wi and calcu-
late the new location of the tube by x =

∑
i λ

3D
i

(
x; (v j) j

)
wi.

Note that we can compute these coordinates for non-convex
(control) meshes with non-convex faces (bottom row). If all
faces are triangulated, the number of faces is nearly tripled,
the result depends on the chosen triangulation, and large ar-
tifacts may be introduced (top row).

Although this approach is very simple, it is possible to ob-
tain pleasing results. A more sophisticated framework could
use Bernstein polynomials on polyhedra (Section 4.3) to
generate free-form deformations [SP86].

Figure 7: The quadratic mean value Bernstein polynomials
B2

2000, B2
1100, and B2

1010 +B2
0101.

4.3. Bernstein polynomials on polygons and polyhedra

Bézier surfaces are defined by a linear combination of Bern-
stein polynomials which are polynomials in barycentric co-
ordinates. Using classical barycentric coordinates, this was
only possible for triangles. Using tensor product polyno-
mials, Bernstein polynomials can be defined on quadran-
gular domains as well, but this leads to a higher degree
of the polynomial. The only approaches for general poly-
gons that we are aware of are restricted to convex poly-
gons [LD89, Gol02].

We can define mean value Bernstein polynomials for arbi-
trary polygons and polyhedra. For a polygon or polyhedron
with k vertices, the general form for the Bernstein polyno-
mials in the coordinates λ = (λ1, . . .λk) is

Bn
α(x) =

n!
α!
λα(x)

where we use multi-indices α = (α1, . . .αk) ∈ �k with the
notation α! B α1! · · ·αk! and λα B λα1

1 · · ·λ
αk
k . In Figure 7,

we show some quadratic Bernstein polynomials on a square
using mean value coordinates [Flo03].

Important properties of classical Bézier surfaces like the
convex hull property and the de Casteljau algorithm still hold
in this extended setup.

4.4. Bézier surfaces on spherical polygonal domains

In the above applications, spherical barycentric coordinates
were only indirectly used to construct 3D barycentric co-
ordinates. But they can also be used directly to construct
Bézier surfaces on spherical domains. For a triangulation of
the sphere, this has been done in [ANS96]. Our extension to
arbitrary spherical polygons makes it possible to handle ar-
bitrary tessellations of a sphere. Again, the de Casteljau al-
gorithm can be used for computations of the spherical Bézier
patches.

5. Conclusions

We have introduced spherical barycentric coordinates that
generalize Ju et al.’s vector coordinates. Our spherical mean
value coordinates are defined not only for convex spherical
polygons but for arbitrary polygons that are contained in a
single hemisphere. We have shown that spherical mean value
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coordinates can be used to construct 3D mean value coordi-
nates for meshes with arbitrary polygonal faces while so far
only 3D mean value coordinates for triangular meshes were
known. This concludes the generalization of mean value co-
ordinates from two to three dimensions.

The examples in Section 4 demonstrate that these 3D
mean value coordinates are well-defined for arbitrary poly-
hedra. This is proven for convex polyhedra in this paper. We
intend to give a proof for the general case in the near future.

With barycentric coordinates for arbitrary polyhedra in
�

3, we can construct spherical barycentric coordinates for
the three-dimensional sphere. These can then be used to ob-
tain barycentric coordinates for arbitrary polytopes in �4

and successively in higher dimensions. It would be interest-
ing to find a general theory for barycentric coordinates for ar-
bitrary polytopes similar to the one given in [FHK06,JW05].
It should shed light on the relationship between “Euclidean”
and spherical coordinates. To construct the general 3D mean
value coordinates, we used the construction for 3D mean
value coordinates for triangular meshes together with the
spherical mean value coordinates. However, should we use
Wachspress coordinates in both cases to obtain the gen-
eral Wachspress coordinates? Or should rather the spheri-
cal mean value coordinates be used again, due to their better
properties? These topics need to be addressed in future work.
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Figure 8: A geometric construction of the discrete harmonic, mean value, and Wachspress coordinates (from left to right).
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Appendix A: A geometric interpretation for planar
barycentric coordinates

Here, we present a unified, geometric, and intuitive con-
struction that explains the “linear precision” property of an
especially interesting one-parameter family of barycentric
coordinates that was introduced in [FHK06]. A different,
but equivalent, approach was recently presented in [SJW06].
With this construction, we can derive analogues of the dis-
crete harmonic, mean value, and Wachspress coordinates for
arbitrary dimensions. In this paper, we used it in Section 2.3
to show that our spherical Wachspress coordinates and Ju
et al.’s vector coordinates coincide. Nevertheless, this con-
struction constitutes an independent contribution on its own.

Our construction is indicated in Figure 8. It is based on a
theorem of Minkowski which states that the sum over the
edge normals of a polygon, weighted with the respective
edge lengths, is zero. Consider a polygon with vertices vi. It
is always possible to construct a dual polygon (that may have
self-intersections) with respect to a vertex v whose edges are
orthogonal to the edges vvi and whose vertices are given by
the intersection point of two consecutive edges. In fact, there
are even infinitely many dual polygons since we can choose
the intersection point of the dual edges with the line given

by vvi freely. Since the normals of the dual edges are given
by the edges vvi, the lengths ai of the dual edges yield ho-
mogeneous coordinates wi for v that satisfy property (3′).
Since the edges vvi don’t have unit length in general, the ex-
act relationship between ai and λ̂i =

wi∑
j w j

is ai = diwi where
di = ‖vvi‖. Negative weights correspond to inversely oriented
dual edges.

In Figure 8, three particular choices for the intersection
point of the dual edges are depicted. On the left, the dual
edges pass through the points vi, in the middle, the dual
edges have constant distance to v, and on the right, the dis-
tance of the dual edges to v is d−1

i . Using a little trigonom-
etry, it is easy to show that these choices correspond to the
standard formulae for discrete harmonic, mean value, and
Wachspress coordinates [PP93, Flo03, MBLD02]. In fact,
this construction had been used to derive the discrete har-
monic coordinates.

Now, it is natural to ask what kind of coordinates are ob-
tained if the distance of the dual edges to v is chosen as
dp

i , p ∈�. The answer, given as a formula, is

wi,p =
1
di


dp

i+1 −dp
i cosαi

sinαi
+

dp
i−1 −dp

i cosαi−1

sinαi−1

 .

If we compare this to the one-parameter family of barycen-
tric coordinates ŵi,p from [FHK06], we see that wi,p =
1
2 ŵi,p+1. Therefore, both families generate the same bary-
centric coordinates (after normalization), and the analysis of
Floater et al. applies to our family as well:

Corollary A.1 ( [FHK06]) The only members of the one-
parameter family wi,p which are positive for all convex poly-
gons are the Wachspress and the mean value coordinates.

Another appealing property of this geometric construc-
tion is that it easily generalizes to higher dimensions, and
barycentric coordinates for polytopes with simplicial bound-
ary can be derived. In the three-dimensional case, the analo-
gous weights wi,p lead to three-dimensional Wachspress co-
ordinates for p = −1, but for p = 0 and p = 1, they do not
correspond to the mean value and discrete harmonic coordi-
nates constructed in [JW05] unlike in the two-dimensional
case.
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