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Abstract

We present a new volumetric method for reconstructing watertight triangle meshes from arbitrary, unoriented

point clouds. While previous techniques usually reconstruct surfaces as the zero level-set of a signed distance

function, our method uses an unsigned distance function and hence does not require any information about the

local surface orientation. Our algorithm estimates local surface confidence values within a dilated crust around

the input samples. The surface which maximizes the global confidence is then extracted by computing the minimum

cut of a weighted spatial graph structure. We present an algorithm, which efficiently converts this cut into a

closed, manifold triangle mesh with a minimal number of vertices. The use of an unsigned distance function

avoids the topological noise artifacts caused by misalignment of 3D scans, which are common to most volumetric

reconstruction techniques. Due to a hierarchical approach our method efficiently produces solid models of low

genus even for noisy and highly irregular data containing large holes, without loosing fine details in densely

sampled regions. We show several examples for different application settings such as model generation from raw

laser-scanned data, image-based 3D reconstruction, and mesh repair.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

The high quality reconstruction of a proper, watertight sur-
face mesh from scattered point samples remains a diffi-
cult problem in many areas of computer graphics, including
laser-scanning or image-based surface reconstruction tech-
niques as well as repairing non-manifold or topologically
noisy meshes.

Most previous work can be classified into computational
geometry approaches based on Voronoi diagrams and global
volumetric reconstruction techniques based on signed dis-
tance functions. Voronoi based approaches reconstruct a
mesh directly from the input samples, with the particular
strength of reconstructing even fine surface details. How-
ever, it is generally difficult to guarantee the reconstruction
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of a smooth and manifold surface, especially in the presence
of noise and for varying sampling density.

Volumetric methods on the other hand attempt to recon-
struct a signed distance function to the point cloud samples,
and then reconstruct the zero level-set using, e.g., March-
ing Cubes [LC87]. The generation of the signed distance
function however requires that the unstructured cloud of in-
put points comes with consistently oriented normal informa-
tion. This, however, is known to be one of the most crit-
ical steps in the reconstruction pipeline. The derivation of
consistent normals from a point cloud poses a number of
significant conceptual and computationally intensive prob-
lems, especially in the presence of noise, non-uniform sam-
pling, or thin features. As a consequence, methods based
on signed distance functions generally cannot guarantee that
the resulting model is of the lowest possible genus. For in-
stance, misaligned or noisy 3D scans are known to lead
to severe topological noise artifacts (cf. Fig. 1 and 14).
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These artifacts are a fundamental problem of methods based
on extracting the zero level-set of a signed distance func-
tion. An unnecessarily high genus prevents the possibil-
ity of immediate post-processing such as mesh decimation,
hence these techniques generally require subsequent post-
processing [ESV97, GW01, NT03, WHDS04] for artifact re-
moval or general mesh repair [BNK02, Ju04, BPK05].

In this paper we present a robust algorithm to overcome
these drawbacks. In contrast to the above mentioned ap-
proaches, our method reconstructs the surface from a vol-
umetric unsigned distance function, which represents the
probability that the surface passes through a given voxel.
Since the unsigned distance function does not carry infor-
mation about the local surface orientation we are able to
process input data consisting solely of 3D sample positions
without any normal information. Moreover, since the surface
extraction does not depend on a sign-change of the implicit
representation anymore, our method is immune to noisy and
non-uniformly distributed samples (cf. Fig. 1). As an impor-
tant consequence our method produces meshes of low genus
without the small-scale topological artifacts.

The particular contribution of this paper is a method
to compute an unsigned distance function from pure point
cloud data, from which a closed surface can be extracted via
graph-cut based energy minimization. We show how this al-
gorithm can be embedded into a hierarchical framework al-
lowing for efficient processing of highly non-uniformly sam-
pled input data with large gaps, without loosing fine details
in densely sampled regions. Finally we present a new algo-
rithm to convert the graph-cut representation of the surface
into a smooth and guaranteed watertight triangle mesh.

2. Related Work

Previous work on surface extraction from point clouds can
be roughly classified into the following approaches.

Voronoi based techniques such as [ABK98, ACK01,
BC02, DG03] have the advantage of computing output
meshes with a complexity in the order of the input data,
and produce good results for data sets with known sampling
density. Wrapping approaches such as [BMR∗99] provide
a good local feature preservation. For non-uniformly sam-
pled or noisy input data containing outliers, however, both
types of approaches often cannot guarantee the reconstruc-
tion of a globally optimal, watertight surface. Improvements
in these fields concerning noisy input data and outliers have
been achieved recently in [MAVdF05, SFS05].

Methods based on deformable models for point cloud re-
construction have been presented in [EBV05,SLS∗06]. They
solve the problem of computing a watertight surface by in-
crementally deforming an initial mesh along an energy field
induced by the point cloud. Although they guarantee water-
tight reconstructions, they have the potential problem of cre-

Figure 1: The fundamental problem of surface reconstruc-

tion methods based on a signed distance function is the

fact that local inconsistencies of the input data caused,

e.g., by unreliable normal estimations, lead to frequent sign

changes. This generally results in reconstructions of undesir-

ably high genus, with significant topological artifacts (up-

per left). In contrast, our method is based on an unsigned

distance function, which gracefully handles such inconsis-

tencies (lower left). The right images show a corresponding

point cloud and our genus 0 reconstruction.

ating overly smoothed surfaces since it is often difficult to
find appropriate surface tension parameters.

Most related to our work are approaches such
as [HDD∗92, CL96, CBC∗01, ABCO∗01, DMGL02,
OBA∗03, OBS04] which reconstruct the unknown surface
as the zero level-set of a signed distance function. These
methods, however, often rely on accurate normal orientation
and fairly uniform sampling densities, which are both
requirements generally not met by real world data sets.
Furthermore they can be quite sensitive to noise or outliers,
e.g., for badly aligned scan patches they tend to introduce
topological artifacts such as handles or bridges due to
spurious zero crossings of the signed distance function (cf.
Fig. 1). This often leads to reconstructions with significantly
increased genus. Recently, these issues have been addressed
in [FCOS05, Kaz05].

To summarize, most of the above methods have in com-
mon that it is generally difficult or even impossible to gener-
ate proper meshes from highly non-uniformly sampled point
cloud data without reliable normal information. We explic-
itly address these problems in our work.

Recently research on combinatorial energy minimization
has shown that globally optimal solutions to discrete volu-
metric segmentation problems can be found efficiently by
reformulating them into a maximum flow / minimum cut
problem of a specific spatial graph structure [BK03, KB05].
Applications using graph cuts have been presented for prob-
lems such as image segmentation [LSGX05] or 3D stereo
reconstruction [HK06, VTC05]. We will show in this work,
how our method presented in [HK06] can be extended to the
problem of point cloud reconstruction.
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Figure 2: This figure illustrates the point cloud reconstruc-

tion process in 2D. From left to right: Based on an input

point cloud P we first compute an unsigned distance function

by volumetric diffusion. The unknown surface is supposed

to lie in the voxel crust Vcrust between the outer boundary

Vext and the inner boundary Vint . We embed a spatial graph

structure G within the voxel grid, with small edge weights

for high confidence voxels and vice versa. The boundaries

are connected a sink and a source node, respectively. Com-

puting the min-cut of this graph yields the surface Sopt .

3. Overview

In this section we outline the four central ideas and corre-
sponding processing steps of our algorithm to achieve our
goals. The different phases are then described in detail in the
following sections.

The input to our algorithm is a point cloud, i.e., a set of
scattered 3D position samples p∈P of a surface S. Our basic
idea is to first derive a confidence map in the vicinity of these
point samples (similar to Pauly et al. [PMG04]), represent-
ing the probability that the unknown surface passes through
a certain part of 3D space. We compute these confidence
values as an unsigned distance function φ : v→ c ∈ [0,1]
over the voxels v ∈ V in a volumetric grid , where c can be
interpreted as the pseudo-distance of a voxel to the closest
point sample p (cf. Fig. 2). Since this representation, unlike
signed distance functions, does not imply any local orienta-
tion properties of the unknown surface, noise or non-uniform
sampling of the input samples do not significantly influence
the quality of the reconstruction. Sect. 4 describes the steps
for computing φ in detail.

Given such a grid of confidence weighted voxels we want
to extract a minimal subset Sopt ⊆ V , representing a closed
surface with maximum confidence, i.e., for a faithful approx-
imation of the unknown surface S the sum of unsigned dis-
tance values has to be minimized ∑v∈Sopt

φ(v)→min. Meth-

ods for iso-surface extraction are not suitable to reconstruct
a surface represented by such a probability distribution. Pre-
vious work [BK03] has shown that similar types of combina-
torial optimization problems involving the minimization of
certain energy functionals can be efficiently solved by trans-
forming them into a max-flow / min-cut problem of an em-
bedded spatial graph G. Our specific problem formulation
for surface reconstruction from a set of confidence weighted
voxels is highly related to our previous work on image based
stereo reconstruction [HK06]. We will show in Sect. 5 how
this graph based algorithm can be adapted to the setting of
this work.

For non-uniformly sampled point clouds it is generally
difficult to estimate an optimal volumetric grid resolution
such that holes in sparsely sampled areas can be efficiently
detected and closed without loosing details in densely sam-
pled regions. On the other hand, simply computing the above
mentioned unsigned distance function and surface extraction
on a high resolution grid would result in a significant com-
putational overhead. In Sect. 6 we show how to integrate
the confidence estimation and graph-based surface extrac-
tion into a hierarchical framework such that the above men-
tioned problems are effectively resolved.

Once the desired target resolution is reached the voxel
based representation of the surface Sopt has to be converted
into a triangle mesh to be usable for further geometric pro-
cessing steps. Sect. 7 describes a new algorithm to generate
a smooth and manifold mesh derived from Sopt and the min-
cut edges of G.

4. Surface Confidence Estimation

Initially we insert each 3D sample p ∈ P into a volumetric
grid V , resulting in a sparse set of occupied voxels v (cf.
Fig. 2, upper left). As mentioned above the probability or
confidence that a voxel v is part of the unknown surface can
be approximated by an unsigned distance function φ over V .
To compute φ in the vicinity of S we first apply several steps
of a morphological dilation operator to the 6-neighborhood
of occupied voxels, generating an extended crust of voxels
Vcrust . The distance function φ(v) for each voxel v ∈ Vcrust

is then computed by volumetric diffusion (cf. Fig. 2, lower
left).

For the graph-based surface computation we have to en-
sure that the computed crust is watertight (i.e., 6-connected)
and has two interfaces Vext and Vint , to an outer and inner
volumetric component, respectively (cf. Fig. 3 b). In most
cases the number of necessary dilation steps for computing
this crust can be computed robustly with a simple heuristic.
By flood-filling unoccupied voxels from the outer bound-
aries of V we can easily determine the current number of dif-
ferent volumetric components separated by Vcrust . Initially
we generally have only one (outer) component. This num-
ber increases during the dilation process as the crust grows,
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Figure 3: An example in 3D for point cloud dilation and

confidence estimation for the dragon model. We increased

the crust size for visualization purposes. Image (a) shows the

initial set of occupied voxels which contain a sample of P. In

(b) the dilated voxels generate a watertight crust Vcrust in

which the unknown surface is contained. Note that the outer

boundary is genus 0, while the inner component is split into

several components. (c) shows a section of the unsigned dis-

tance function in the head region after the diffusion process.

Darker values indicate higher surface confidence. The set

Sopt of surface intersected voxels after the graph-cut com-

putation is shown in (d). The resulting model has the correct

genus 1.

and eventually drops down again to one component when the
“interior” of the point cloud P is full of occupied voxels. Vint

is then simply defined by the voxels conquered during the
last dilation steps (e.g., 3 in our experiments). Please note
that this repeated flood-filling and dilation process is com-
putationally irrelevant in our overall hierarchical setting (cf.
Sect. 6), since we generally start at low volumetric resolu-
tions of 643 or 1283.

For point clouds covering only a part of the surface of an
object (cf. Fig. 13), or objects with relatively thin, elongated
features and non-uniform sampling density (cf. Fig. 12) it is
sometimes not possible to compute a proper interior com-
ponent Vint . In these cases our algorithm computes a fast
approximation to the medial axis of the dilated crust by es-
timating normal orientations on Vext , and propagating them
inwards through Vcrust by an averaging filter. For each voxel
we then estimate a normal cone by collecting the normals of
all 26 neighboring voxels and label each voxel as Vint if the
opening angle of this cone lies above a threshold of θ = π/2.
The actual choice of this threshold however does not have
a significant influence on the results, since we basically just
want to find discontinuities in the normal field.

Concerning the diffusion process to compute a smooth
distance function we first assign distance values φ(v) = 0
to voxels containing surface samples p, and φ(v) = 1 for the

remaining voxels in Vcrust . The diffusion is then simply per-
formed by iterative averaging over the 6-neighborhood N(v)
(in Vcrust ) of a voxel

φ(v) =
1

|N(v)|+1

(

φ(v)+ ∑
u∈N(v)

φ(u)

)

, (1)

while keeping φ(v) = 0 fixed for voxels containing surface
samples (cf. Fig. 3 c). The overall algorithm is not very sen-
sitive to the number of diffusion steps. In fact, a valid surface
can already be computed after the initialization of φ with-
out any diffusion. However, the surface becomes slightly
smoother with more diffusion steps, and we additionally
show in Sect. 7 how the unsigned distance values allow for
confidence weighted mesh smoothing of the extracted mesh.
In our results presented in Sect. 8 we simply use three diffu-
sion steps for all reconstructed models.

We also experimented with initial confidence values com-
puted from the sample density within a voxel instead of
setting all occupied voxels to φ(v) = 0. However, the cur-
rent approach has the advantage of handling strongly non-
uniformly sampled regions in a more uniform manner. Sim-
ilarly, keeping φ(v) = 0 fixed for voxels containing surface
samples instead of including them in the diffusion process
preserves fine details more faithfully.

5. Graph-based Surface Extraction

Given a function φ of surface confidence values in a volu-
metric region Vcrust , we have presented a method [HK06] to
compute a closed 2-manifold surface S embedded in Vcrust

which minimizes an energy functional

E(S) =
Z

S
φ(x) dx+

Z

S
a dS , (2)

with a being a regularizing parameter of the surface ten-
sion. Our algorithm efficiently computes a set of surface

Figure 4: Because of the

duality of the voxel and the

octahedron, a cut through

the octahedral subgraph

corresponds to a split of

the voxel faces into an ex-

terior and an interior com-

ponent (a). The splitting

surface is visualized in (b).

voxels Sopt ⊆ Vcrust ,
which minimizes the
discretization of E(S)
by computing the mini-
mum cut of a weighted
graph G embedded into
the volumetric grid. For
completeness we briefly
describe the graph con-
struction and edge weight
computation.

In G, a graph node is
associated with each voxel
face, and a weighted graph
edge is created for each
voxel edge, such that each
voxel contains an octahe-
dral subgraph (cf. Fig. 4
a). An edge weight w(v),
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depending on the voxel’s unsigned distance value φ(v) and
the constant a, is assigned to all edges of the corresponding
subgraph

w(v) = φ(v)s +a . (3)

The exponent s can be used to tune the unsigned distance
function to some extend, such that the maxima of the con-
fidence values are emphasized more or less strongly. How-
ever, in all our experiments we set the parameters for the
edge weight computation (cf. Eq. 3) as proposed in [HK06]
to s = 4 and a = 10−5. The outer and inner boundaries nodes
(voxel faces) exposed at the interface to Vext and Vint are con-
nected to a sink and a source node, respectively.

The minimum cut of G then yields a set of cut-edges C

which form a watertight, manifold separation between the
sink and the source node (and hence Vext and Vint ) and are
the globally optimal solution in terms of the surface energy
functional (2) (cf. Fig. 2 and 3 d), and hence can be consid-
ered as a faithful approximation to the surface S. The corre-
sponding set of surface voxels Sopt is defined by those voxels
containing at least one cut edge.

6. Hierarchical Hole Filling and Detail Preservation

For high volumetric resolutions the computational complex-
ity for generating the unsigned distance function and the
graph cut computation become impractical, especially for
strongly non-uniform data containing sparsely sampled re-
gions as well as fine details. Hence we employ an itera-
tive hierarchical framework on an adaptive volumetric grid
(e.g., using an Octree), and use the surface approximation
obtained on a lower volumetric resolution to constrain the
crust and surface computation on the respective higher level.
Starting at a low volumetric resolution allows for an effi-
cient generation of a proper initial crust even for highly non-
uniformly sampled point clouds with large gaps.

Previous work (e.g., [LSGX05]) has shown however that
a simple hierarchical refinement of voxels within a fixed dis-
tance to the cut surface Sopt potentially leads to a loss of
fine details if the corresponding input data samples are not
contained inside this fixed distance crust. In our application
setting however, where explicit data samples are available,
we can derive an efficient hierarchical algorithm which ef-
fectively avoids the above mentioned problems.

On a given volumetric refinement level l we compute a
surface approximation Sl

opt within a crust V l
crust as described

in the previous sections. Then, we compute a new, thinned
crust V l+1

crust on the next higher resolution level by refining
the surface voxels v ∈ Sl

opt , and applying a number of mor-
phological dilation steps. This effectively constrains the vol-
umetric region for surface extraction based on our current
surface proxy Sl

opt . To preserve fine details represented by
point samples of P outside of this crust, we re-insert the cor-
responding input samples as occupied cells into the volu-
metric grid at the new resolution l +1, and dilate these cells

Figure 5: Starting at a volumetric resolution of 643 this

image sequence shows a hierarchical reconstruction of the

Buddha model from the Stanford 3D Scanning Repository

up to 5123. On each level the images show the reconstructed

mesh and the crust of consistency values in alternating or-

der. Re-inserted detail samples are shown in red. Note that

reconstructed thin features and the genus of the model do

not depend on the respective approximation on the previous

levels, but automatically adapt to the current resolution. Our

algorithm reduces the original genus of the input model from

>100 to 10. A few additional holes are introduced in regions,

where the point samples of opposite surface sheets lie very

close compared to the volumetric resolution, e.g., as shown

in the lower right close-up.

until they merge with V l+1
crust (cf. Fig. 5). In our experiments

we simply used a fixed number of 3 dilation steps. The cut
computation then automatically includes these voxels for the
surface extraction, and fine details are preserved.

The number of dilation steps to compute the thinned crust
V l+1

crust basically depends on the amount of noise of the input
data P. Without noise two dilation step at level l + 1 would
be sufficient assuming that the low frequency parts of the
surface have been reconstructed up to voxel accuracy at level
l. In all our experiments with real data four dilation steps
proved to be a good choice. However, since all original data
points outside of the crust are re-inserted and dilated in the
higher resolution grid anyway, the choice of this parameter
is mostly of importance for the computational performance.
An unnecessarily thick crust would include too many voxels
which do not contribute to the surface extraction at all, while
a too thin crust would lead to a higher number of samples
outside of the crust, such that a higher number of additional
dilation steps is necessary.

To summarize, our hierarchical point cloud reconstruction
consists of the following three iterative phases. Starting at a
volumetric resolution l:

c© The Eurographics Association 2006.
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Figure 6: The computed min-cut of G splits the voxels in

Sopt into exterior and interior faces (a). The set of cut-edges

C defines a loop of split-edges for each voxel, correspond-

ing to a non-planar polygonal face (b). In the dual mesh,

the non-planar polygonal faces are defined by cut-corners

which are shared by at least 3 surface voxels. We extract the

corresponding mesh by placing a single mesh vertex at the

center of each voxel, and visiting the voxels associated with

a cut-corner by cycling over shared cut-edges (c). Triangu-

lating the corresponding polygons with a triangle fan yields

the final mesh (d).

1. Surface confidence estimation

• Insert points p ∈ P as occupied voxels v into the vol-
umetric grid V l .

• Dilate these voxels to a crust V l
crust .

• Compute the unsigned distance function φ(v) for all
v ∈V l

crust by volumetric diffusion (cf. Eq. 1).

2. Graph-based surface extraction

• Generate graph G consisting of octahedral subgraphs
for each voxel v ∈V l

crust with edge weights according
to Eq. 3. Nodes at the boundaries of V l

crust are con-
nected to a corresponding terminal node of G.

• Compute the min-cut of G (e.g., using [BK04]), re-
sulting in a set of surface intersected voxels Sl

opt and
cut edges C.

• If l is the target resolution then terminate and extract
the final surface mesh (cf. Sect. 7).

3. Volumetric refinement

• Refine surface voxels Sl
opt to the next higher resolu-

tion and set l = l +1.
• Compute the new crust V l

crust by dilation and proceed
with step 1.

Please note that the computation of the unsigned distance
function and the graph cut in steps 1 and 2 are not affected
by the hierarchical approach, since all voxels in the current
crust V l

crust are at the same refinement level.

This algorithm computes a closed surface representation
even from strongly non-uniformly sampled point clouds.
Large gaps are effectively closed with a reasonable surface
due to the surface tension in Eq. 2, and fine details are pre-
served due to the iterative point insertion and dilation.

Figure 7: Different cut-corner configurations for a low res-

olution mesh of the buddha model with 3, 4, and 5 incident

cut-edges (shown in red), respectively.

7. Mesh Extraction

In the final step of the surface reconstruction algorithm we
have to extract a polygonal representation from the set of
voxels Sopt . Due to the duality of the octahedron and the
cube, we can interpret the cut through the octahedron edges
in G as a cut along the cube edges ("cut-edges", see Fig. 6
a,b). By this, the global graph cut through Sopt defines a
polygonal mesh M with non-planar faces, which corre-
sponds to a closed manifold surface. The vertices ofM lie
on the voxel corners and the mesh edges coincide with voxel
cut-edges (cf. Fig. 6 b). In [HK06] an algorithm is described
to extract a triangle mesh by generating a triangle fan for
each polygon/voxel.

However, since confidence values are estimated per voxel
and also in order to reduce the output mesh complexity, it
seems more natural to extract a polygon meshM′ which is
dual toM, i.e. vertices are lying in the voxel centers and the
non-planar polygonal faces correspond to voxel corners (cf.
Fig. 8).

The polygonal meshM′ can easily be generated by run-
ning through all 2× 2× 2 blocks of voxels. For each block
B the center voxel corner corresponds to a polygon face of
M′ if the block contains at least three voxels from Sopt (cf.
Fig. 6 c and 7). The edges for a polygonal face of M′ are
enumerated by cycling through the voxels of the 2× 2× 2
block. Since every voxel in Sopt has exactly two cut-edges
incident to the corner in the center of B, the ordering is given

c© The Eurographics Association 2006.
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Figure 8: This figure compares the meshing algorithm pre-

sented in [HK06] (a) to our new mesh extraction (b). Both

meshes have been generated from the same graph cut of a

sphere data set. The upper sectors show the mesh extracted

directly from the cut edges with voxel grid discretization ar-

tifacts. The lower sectors show the vertex distribution and

reflection lines after an equal number of Laplacian smooth-

ing steps. Due to the oversampling of grid artifacts in (a)

the surface smoothing for eliminating discretization artifacts

converges much slower and more non-uniformly. Since our

new meshing algorithm creates exactly one vertex per sur-

face voxel we achieve a significantly better vertex distribu-

tion with a more regular mesh topology (i.e., valence 6 ver-

tices), resulting in significantly improved smoothing conver-

gence and lower mesh complexity.

by cut-edges that two neighboring voxels have in common.
The following pseudo-code describes the procedure:

f o r each 2×2×2 b l o c k B wi th a t l e a s t
t h r e e v o x e l s i n Sopt

p i c k a s t a r t i n g v o x e l v from Sopt ∩B ;
p i c k a cu t−edge e i n v a d j a c e n t t o

t h e c e n t e r v o x e l c o r n e r c of B ;
do

f i n d t h e second cu t−edge f i n v

a d j a c e n t t o c ;
f i n d t h e n e i g h b o r v o x e l w from Sopt ∩B

s h a r i n g t h e cu t−edge f wi th v ;
g e n e r a t e a po lygon edge from v t o w ;
v← w,e← f ;

until t h e f i r s t v o x e l i s r e a c h e d a g a i n ;

This code works correctly because each voxel from Sopt ∩
B has exactly two cut edges adjacent to the center corner and
no more than two voxels share a common cut-edge. A con-
sistent orientation of the faces can be propagated by mesh
traversal. The polygonal faces may be converted into trian-
gle fans afterwards and decimated if required.

The resulting mesh is watertight but shows grid artifacts
due to the fact that we initially placed the mesh vertices at
the voxel centers. However our surface confidence map φ

computed for each voxel can be applied to the mesh vertices
accordingly. We can exploit this information for a confi-
dence weighted smoothing algorithm, which allows for error
bounded surface smoothing in confident surface areas, such

Figure 9: Solid genus 0 reconstruction of a statue from non-

uniformly sampled 3D points from raw laser scanned data,

with significant outliers and holes. The backside of the up-

per arm and the lower part of the model are only partially

sampled from the front, without any samples at the back of

the object.

that only grid artifacts are removed, while less confident or
noisy parts of the mesh can be smoothed stronger. We im-
plement this algorithm by applying an iterative bi-Laplacian
smoothing operator [DMSB99] for each vertex v:

v← v−
1

d
△2

v , d = 1+
1

nv
∑

j

nv, j (4)

with nv and nv, j being the valences of vertex v and its j-th
one-ring neighbor. The surface confidence values φ(v) pre-
scribe how much every vertex is allowed to deviate from its
original position during smoothing. We stop the movement
of a vertex if δp < δv(φ(v)+1)s is violated. δp is the differ-
ence between the original and the smoothed vertex position,
δv represents the voxel size, and s allows for emphasized
smoothing in inconfident regions. For all of our presented
results, however, we simply set s = 1.

This algorithm computes smooth meshes while preserving
the original surface approximation quality of the computed
cut surface.

8. Results

In this section we present the results of our method applied
to a variety of different data sets such as point clouds ac-
quired from laser scans and stereo vision based point recon-
structions as well as model repair. All reconstructions are
based purely on 3D sample positions without any normal in-
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Figure 10: The point cloud of the Max-Planck consists of

a set of circularly acquired laser scans. The second im-

age shows that top and bottom of the bust as well as some

smaller areas around the ears do not contain any samples.

Our method closes these holes and produces a genus 0 mesh.

Figure 11: Solid reconstruction of a genus 3 object from

a noisy scan. Due to significant noise, however, two of the

rings are merged, resulting in a genus 4 reconstruction. On

the other hand, even significantly misaligned parts as shown

in the right images are easily handled without producing

topological artifacts.

formation. We also provide quantitative evaluations in terms
of the computation performance and the resulting meshes in
Table 1. All experiments were performed on a 3.2 GHz Pen-
tium P4 with 2 Gb of main memory.

The statue shown in Fig.9 is reconstructed from raw laser-
scanning data at a volumetric resolution of 10243. The in-
put point cloud contains significant noise, outliers and large
gaps, e.g., at the bottom part or at the backside of the up-
per arm. Nevertheless our algorithm reconstructs a proper,
watertight genus 0 model. This model is particularly diffi-
cult to reconstruct because of large regions with completely
missing samples on the backside of the statue.

Further reconstructions from raw laser scanned point
clouds are shown in Figures 10 and 11, respectively. While
the Max-Planck example has a highly non-uniform sample
distribution with large holes, especially at the top and the
bottom, the Rings example contains significant noise and
alignment artifacts.

The point cloud for the Leo (Fig. 12) as well as for the
Monkey (Fig. 13) model have been acquired by image based

Figure 12: The Leo point cloud was generated with a

“Voxel Coloring” algorithm for image based 3D reconstruc-

tion [SD97]. It is quite noisy and highly non-uniform in

terms of sample density and surface “thickness”. Neverthe-

less our method succeeds in reconstructing a proper genus 1

model.

Figure 13: The point cloud for the Monkey model was cre-

ated by an image based stereo reconstruction algorithm. De-

spite the fact that only samples for the front of the model are

available, our algorithm is capable of computing a closed

mesh. We computed the interior component with the medial

axis approximation described in Sect. 4. The ears however

get cut away since they would include too many inconfident

voxels in particular on the back of the head, and the resulting

energy (cf. Sect. 5) would be higher than the given result.

3D stereo reconstruction methods. The Leo has a particu-
larly non-uniform and noisy sample distribution, with large
clusters of points inside the model, and larger gaps at the tail
and the legs. The Monkey model has a more uniform sam-
pling but consists only of samples for the front side of the
face. Creating watertight models from such models without
at least approximate surface normals has been very challeng-
ing for previous methods.

As examples for mesh repair we applied our algorithm
to the VRIP-reconstructions [CL96] of the Buddha (Fig. 5)
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Model Resolution Timings Genus Vertices

Rings (Fig. 11) 2563 45 s 4 91 K
Leo (Fig. 12) 2563 48 s 1 47 K

Monkey (Fig. 13) 2563 82 s 0 72 K
Buddha (Fig. 5) 5123 112 s 10 264 K
Dragon (Fig. 14) 5123 150 s 1 318 K

Max-Planck (Fig. 10) 5123 199 s 0 320 K
Statue (Fig. 9) 10243 269 s 0 448 K

Table 1: The time and space complexity for all presented re-

constructions. The timings include all processing steps, from

confidence estimation to mesh smoothing. However, the most

significant processing time is currently used for creating the

actual graph structure. As discussed in Sect. 9, we expect a

much better performance by computing the cut directly on

the voxel grid.

and the Dragon (Fig. 14), available at the Stanford 3D Scan-
ning Repository. Both models have a very high genus due to
topological artifacts. Our method faithfully reconstructs wa-
tertight models with low genus. For the Dragon model we
also show the triangle quality generated by our meshing al-
gorithm.

9. Conclusions

In this paper we presented a robust algorithm to reconstruct a
watertight triangle mesh from point clouds without requiring
normal information. It generates surfaces of low genus with-
out the topological artifacts produced by many other tech-
niques due to the use of an unsigned distance function and
graph cut minimization for surface extraction. Our method
supports highly non-uniform sample densities without loos-
ing details due to an efficient hierarchical scheme. Finally
we showed how to extract a proper triangle mesh from the
cut representation with just one vertex per voxel.

The resolution of our output models is currently restricted
to 10243 because we explicitly generate the spatial graph
structure G using a graph cut library [BK04], resulting in a
noticeable memory overhead. However, due to the duality of
the voxels and the embedded octahedral subgraphs it should
be possible to alleviate this limitation by computing the cut
directly on the voxel grid.

Since the surface is reconstructed at voxel accuracy, flat
surface areas with a slight slope with respect to the main
axes of the volumetric grid can lead to staircase artifacts,
which converge only slowly to a smooth surface during our
smoothing process. Although this fact does not influence the
accuracy of the reconstructed model, we would like to find
a solution for visually improved results, e.g., by integrating
direct solvers.

Figure 14: The original Dragon model in the Stanford 3D

Scanning Repository contains numerous small holes and

topological artifacts such as bridges, resulting in a very high

genus (>400). When using the 3D point samples of this mesh

as input to our algorithm, all topological artifacts are re-

moved and the resulting watertight mesh has genus 1. The

close-ups compare the original backside of one of the legs

and a view from inside the model to our result.
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