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Abstract
In this paper we describe an approach to the construction of curvature-continuous surfaces with arbitrary control
meshes using subdivision. Using a simple modification of the widely used Loop subdivision algorithm we obtain
perturbed surfaces which retain the overall shape and appearance of Loop subdivision surfaces but no longer
have flat spots or curvature singularities at extraordinary vertices. Our method is computationally efficient and
can be easily added to any existing subdivision code.

1. Introduction

Subdivision surfaces are well-established as a practical rep-
resentation for geometric modeling with many useful prop-
erties. However, classical subdivision schemes like Loop and
Catmull-Clark suffer from a number of problems: probably
the best-known is the lack of C2-continuity at the extraor-
dinary vertices, i.e. vertices of the control mesh of valence
different from 6 (Loop surfaces) and 4 (Catmull-Clark sur-
faces).

Several relatively simple solutions were proposed to this
problem (e.g. [PU98]). However, ensuring formal C2-
continuity is not sufficient to solve all problems associated
with absence of C2-continuity. In particular, all simple ap-
proaches to making Loop or Catmull-Clark surfaces C2-
continuous at extraordinary vertices result in surfaces with
flat spots: at surface points associated with an extraordinary
vertex, the curvatures are forced to be zero. Careful rule tun-
ing may make this artifact difficult to notice visually in most
circumstances, but it will still exhibit itself for certain geo-
metric configurations and certain types of lighting (e.g. re-
flection lines).

Even more importantly, C2-continuity and absence of flat
spots are needed for several types of numerical computa-
tion on surfaces. Examples include computation of curvature
lines, which have singularities at flat spots and curvature sin-
gularities, computation of fairness functionals which require
second derivatives and surface-surface intersection compu-
tations (e.g. one can construct examples of C1 curves and
surfaces intersecting in infinitely many isolated points).

The absence of flat spots for C2 surfaces is more precisely

described as surface 2-flexibility. Following Reif [Rei96], we
say that a C2-surface representation is 2-flexible, if for some
C2 parameterization any desired first and second derivatives
can be obtained at a given point by a suitable choice of po-
sitions of the control points (see Section 4 for a precise def-
inition). Surfaces with flat spots, or parametric points where
the Gaussian curvature is always positive, are not flexible.
On the other hand, if a surface is 2-flexible, the user is able
to make the surface locally a paraboloid or a saddle with ar-
bitrary orientation at any point. Flexibility is also related to
surface approximation quality. If a surface has a flat spot,
it cannot approximate C2-surface in C2-norm: the error re-
mains constant.

In this paper, we introduce a new method for the construc-
tion of curvature-continuous flexible surfaces on arbitrary
meshes, based on the idea of blending subdivision surfaces
with locally defined surface patches. Our approach is a sim-
ple extension of common subdivision algorithms and can
be easily implemented on the top of an existing subdivision
framework. The appearance of the resulting surfaces is sim-
ilar to the appearance of standard subdivision surfaces and
have insignificantly higher computational cost. We were able
to verify that resulting surfaces are flexible everywhere un-
der certain assumptions are imposed on the control mesh.

Compared to a existing constructions of C2 subdivision sur-
faces (Section 2), the distinguishing feature of our specific
construction is that it remains very close to standard subdivi-
sion, while eliminating curvature discontinuity and flat-spot
related problems and maintaining 2-flexibility away from ex-
traordinary vertices. While we describe our construction for
Loop surfaces, and our proofs are restricted to this case, the
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extension to Catmull-Clark surfaces is straightforward and
similar techniques can be used for analysis.

2. Previous Work

A large number of C2 constructions for arbitrary meshes of
various types were proposed over years. We mention some
representative work. Hagen and Pottmann [HP89] C2 inter-
polants of boundary position, tangent and curvature data are
constructed. Gregory and Hahn [GH89] describe a C2 hole-
filling algorithm; Bohl and Reif [BR97] describe C2- condi-
tions on degenerate patches and how N patches can be joined
at a point. C2 spline surfaces on arbitrary meshes were con-
structed by Peters [Pet96] and higher order spline surfaces
are described by Prautzsch in [Pra97]. More recently, vari-
ous types of constructions based on polynomial patches were
proposed in [Pet02], [Loo04] and [KP05].

C2 subdivision algorithms based on standard schemes and
with zero curvature at extraordinary vertices were proposed
by Umlauf [PU98] and Biermann et al. [BLZ00].

The idea of obtaining smooth surfaces for arbitrary meshes
using blending and appropriate local parameterizations,
while known in geometric modeling for a long time (e.g.
[GH89]), is used in more general form in the work on
manifold-based surfaces [GH95, NG00, YZ04].

A closely related technique for subdivision surfaces was in-
dependently developed by Levin [Lev06].

The flexibility of resulting surfaces at arbitrary points is
rarely addressed explicitly but, for many spline construc-
tions, can be relatively easily inferred from the surface con-
struction. For representations based on blending, a complete
analysis is far more complex.

Despite the broad variety of options proposed in the research
literature, the practice is dominated by non-C2-continuous
algorithms.

The difficulty of constructing a practical C2-continuous sur-
faces appears to be in achieving the right tradeoff between
mathematical properties (C2-continuity and flexibility), vi-
sual quality, which can be captured by fairness measures,
computational expense and the difficulty of implementation.

Compared to previous work, our main contribution is to pro-
pose a simple algorithm which can be added to an exist-
ing implementation of Loop subdivision with minimal ef-
fort and in most cases, yields surfaces closely approximating
the standard Loop surfaces, yet curvature-continuous and 2-
flexible everywhere.

The crucial ideas we build on are: obtaining smooth surfaces
by blending in appropriate parameterization and using char-
acteristic maps [Rei95] to obtain such parameterizations.

3. Overview

The basic idea of our construction is to blend a subdivision
surface with parametric quadratic patches near extraordinary
vertices. The quadratic patches are constructed from the con-
trol points in such a way that flexibility is guaranteed at the
vertices.

For a given extraordinary vertex v, we use inverse of the the
characteristic map to obtain local parameterization of the
surface, which is C2 away from v. The quadratic patch is
defined as a function on to domain of the parameterization,
i.e. the characteristic map image.

The blending basis function for the domain is taken to be
the subdivision basis function corresponding to the extraor-
dinary vertex, computed using a flat-spot modification of the
Loop scheme.

Near the extraordinary vertex, the surface is blended with
the quadratic patch using the blending function, so that the
weight of the surface at v is zero. As we discuss below, this
leads to C2 surfaces flexible at vertices.

The distinguishing feature of the proposed construction is
that three components of the construction (the surface itself,
the characteristic map, and the blending function) can be
computed using the same subdivision code, and the remain-
ing component (the quadratic patch) is easy to evaluate.

4. Notation and terminology

To describe our construction and its properties in detail we
briefly review the necessary notation and terms. We use
boldface letters to denote 3D or 2D vectors.

Flexibility.

Definition 1 Let F be a parametric family of functions with
values in Rn defined on a domain D ⊂ R2. We say that this
family is parametrically r-flexible at a point x ∈D, if for any
given set of prescribed values of all partial derivatives di j, i =
0 . . .r, j = 0 . . . i up to order r, there is a function f (x1,x2)∈F
with this set of derivatives at point x ∈ D:

∂ i f
∂ jx1∂ i− jx2

(x) = di j

In particular, a function family is 2-flexible at x, if there is
a function in the family with any prescribed values and pre-
scribed first and second derivatives at x, which implies that
it is possible to obtain arbitrary prescribed curvatures and
curvature directions.

As explained below, subdivision defines a family (or more
precisely a linear space) of functions ∑pvBv on a mesh,
parameterized by the control points. For this family, r-
flexibility means that we can choose the positions of the con-
trol points in such a way that at any fixed point x of the mesh
we have prescribed partial derivative values up to order r,
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with derivatives computed with respect to certain local pa-
rameterizations (characteristic map parameterizations).

Subdivision surfaces as functions on meshes. It is well
known [Rei95] that common subdivision surfaces such as
Loop and Catmull-Clark can be thought of as infinite collec-
tions of polynomial patches. The domains for these patches
can be taken to be subtriangles or subquads associated with
faces of the initial mesh. In particular, one can regard a patch
of the subdivision surface corresponding to a ring of trian-
gles adjacent to an extraordinary vertex to be a function on
a regular k-gon Uk centered at (0,0). While in the interior
of each triangle, this function is C2 for subdivision schemes
extending C2-continous splines. In general, one can only ex-
pect C0 continuity between triangles. A different parameter-
ization that we described below is needed to obtain C2 on
edges. Such parameterization is provided by characteristic
maps.

Subdivision matrix and characteristic maps. A charac-
teristic map is defined using the eigenstructure of the sub-
division matrix, introduced in [DS78]. Consider a vertex v,
and let p be the vector of control points in a neighborhood
of the vertex; For the Loop subdivision scheme, we use all
control points in a double ring of triangles around the vertex.
From now on, we call the double ring of triangles around a
vertex v the 2-neighborhood of v; we call the single ring of
triangles the 1-neighborhood of v.

Let S be the N×N matrix of subdivision coefficients relat-
ing the vector of control points p j on subdivision level j to
the vector of control points p j+1 in a similar neighborhood
on the next subdivision level. Many properties of the sub-
division scheme can be deduced from the eigenstructure of
the matrix. This is seen by decomposing the vector of control
points p with respect to the eigenbasis {xi} of S, i = 0..N−1,
assuming it exists:

p = a0x0 +a1x1 +a2x2 + . . . (1)

where the multiplication of three-dimensional coefficients
ai with N-dimensional vectors xi is understood in tensor-
product sense and yields a N × 3 matrix (the vector of 3d
control points). We assume that the eigenvectors xi are ar-
ranged in the order of non-increasing eigenvalues, and the
first eigenvalue λ0 is 1, which is required for convergence of
subdivision. Furthermore, we assume that the corresponding
eigenvector x0 is the vector of ones necessary for affine in-
variance.

For control points in general position, the limit position of
the center control point is a0 and the tangent directions at
this position are a1 and a2.

Two subdominant eigenvectors x1 and x2 are used to con-
struct the characteristic map for valence k. In the cases
of interest to us, the corresponding eigenvalues are equal
λ1 = λ2 = λ . The characteristic map Φk is defined as the

limit function of a subdivision for a 2D mesh which is con-
structed as follows. The mesh consists of two rings of tri-
angles around a vertex of valence k. The coordinates of
the vertices of the initial mesh are taken to be the compo-
nents of eigenvectors x1 and x2 respectively, p j = (x1

j ,x
2
j),

j = 0 . . .N − 1. The 1-neighborhood of the central vertex
is typically a regular k-gon, or can be mapped to one by a
piecewise-linear mapping. The characteristic map Φk is the
limit function with values in R2 generated by subdivision
from this initial mesh, and restricted to the regular k-gon
(Figure 1).

The following property is most important for us: the charac-
teristic maps for all valences are injective. Moreover, F is the
parameterization of subdivision surface over a regular k-gon
described above; the composition F ◦Φ

−1
k is C2-continuous

if the scheme is C2-continuous in the regular case.

Φ9

Figure 1: Characteristic map of the Loop subdivision
scheme for valence k = 9. On the left, a piecewise linear
approximation to the image of the map is shown.

More generally, the subdivision surface can be represented
as a linear combination of eigenbasis functions fi i.e. func-
tions obtained from the eigenvectors xi by subdivision (this
amounts to a change of basis in (1)). An eigenbasis fi sat-
isfies fi(t/2) = λi f (t) on the regular k-gon and its charac-
teristic map reparameterization satisfies ( fi ◦Φ

−1
k )(λx) =

λi( fi ◦Φ
−1
k )(x). It easily follows from this formula [Zor00]

that the function fi changes as |x|α near x = (0,0) with
α = logλi/ logλ .

Subdivision scheme. We use two versions of Loop subdi-
vision. The first is a commonly used version of Loop subdi-
vision with the vertex rule

p j+1
0 = (5/8)p j

0 +(3/8k)
k

∑
i=1

p j
i (2)

Note that a special rule is normally necessary for k = 3 as
in this case the resulting surface is not C1-continuous for the
rule (2).We use the same rule for k = 3 as the smoothness
of subdivision surface at the extraordinary vertex does not
affect the smoothness of the blended surface.

A modified version of this scheme is used to compute the
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blending function used in our construction. We use a special
case of the scheme from [BLZ00]. On the first subdivision
step, values for vertices immediately adjacent to an extraor-
dinary vertex are computed using

p1 = a0 +λa1x1 +a2λx2 (3)

Note that this forces the control values adjacent to the ex-
traordinary vertex to be in the same plane, which turns out
to be sufficient to ensure that the limit function is C2 with
zero second derivatives in the characteristic map parameter-
ization. After the first step, the standard rules are used.

Also note that eigenvectors of the subdivision matrix are not
affected by the modification. The only change to the eigen-
values is that for a subset of eigenbasis functions the coeffi-
cients are set to zero. These eigenbasis functions include all
functions which are obtained as linear combinations of ba-
sis functions corresponding to projected control points in the
one-ring, excluding f0, f1 and f2.

5. Blending local patches with subdivision surfaces

First, we describe how to blend a quadratic patch Q(t) asso-
ciated with a vertex v with the subdivision surface produced
by the Loop scheme. We assume that the patch Q(t) is de-
fined as a smooth function from the plane into R3, so t is a
point on the plane. A specific approach to computing local
quadratic patches is described in Section 5.1.

We start by applying one step of refinement to the subdi-
vision surface, to obtain a new control mesh M1. The 1-
neighborhoods of the vertices of M in M1 share only isolated
points (Figure 2).

The blending is restricted to the 1-neighborhoods of extraor-
dinary vertices in M1 i.e. at every point of the surface at most
one quadratic patch is blended with the surface.

As we have discussed, a subdivision surface is a function de-
fined on the control mesh, F(x) = ∑v pvBv(x), where pv are
the control points, Bv(x) are the basis functions of subdivi-
sion.

Figure 2: 1-neighborhoods of the vertices of the initial mesh
M in the once-refined mesh M1.

We construct the blending function B2
k as follows. Take a

mesh Rk with a single central extraordinary vertex v of va-
lence k, and containing a double ring of vertices around v.
Subdivide this mesh once to obtain R1

k . Assign the value 1
to v and zeros to all other vertices and apply subdivision to
these values. This yields a scalar basis function defined on a
2-neighborhood of v in R1

k , i.e. on 1-neighborhood of v in Rk,
which we identify with the regular k-gon. We rescale func-
tion values so that the value at the extraordinary vertex is 1.
The resulting function B2

k : Uk → R is the blending function
we use.

Let Φk be the characteristic map as defined in Section 4.

We use the following formula for blending the patch with the
surface on the regular k-gon Uk:

Fblended(x) =
(

1−B2
k(x)

)
F(x)+B2

k(x)Q(Φk(x)) (4)

Our new surface is a blend of the old surface F(x) and the
new locally defined patch Q(t) with the contribution of Q(t)
reducing to zero at the boundary of 1-neighborhood of v in
M1, i.e. half-way to the adjacent vertex in the original mesh
M. As we will see, all three components required to compute
Fblended can be easily evaluated.

The proof of C2-continuity at extraordinary vertices. As
it was discussed in Section 4, if Φk is the characteristic map,
F◦Φ

−1
k is differentiable.

We reparameterize the blended surface Fblended(x) over a
domain in the plane (the image of the characteristic map),

Fblended(Φ−1
k (t)) =(1−B2

k(Φ
−1
k (t)))F(Φ−1

k (t))+

B2
k(Φ

−1
k (t))Q(t)

(5)

For standard Loop subdivision near extraordinary vertices
the second derivatives of F ◦ Φ

−1
k grow no faster than

t logλ2/ logλ−2, where λ2 is the next largest eigenvalue af-
ter the subdominant eigenvalue λ [Zor00]. Specific flat-spot
subdivision rules described in Section 4 ensure that the only
eigenbasis functions that contribute to the blending function
derivative behavior at zero are the eigenbasis functions cor-
responding to control points outside the one-ring of the ver-
tex. The eigenvalues of these functions are known to be less
than 1/8, so the decay rate of these functions near the ex-
traordinary point is faster than |x|α1 for α1 = log(1/8)/ logλ

in the characteristic map parameterization. For the surface
itself the decay rate can be estimated to be no slower than
α2 = logλ2/ logλ . As a consequence the increase rate of
second derivatives does not exceed |x|α for α = α2 − 2, if
λ2 > λ 2.

Using these observations and the product rule for second
derivatives one concludes that the rate of change of sec-
ond derivatives of (1−B2

k(x))F(x) in the characteristic map
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reparametrization is α1 +α2−2, which can be verified to be
positive if λ2 < 8λ 2, which can be shown to hold for any
valence for Loop subdivision.

The blending function B2
k ◦Φ

−1
k is C2-continuous by con-

struction.

We conclude that the characteristic map parametrization of
the blended surface is C2-continuous because all included
functions are C2-continuous. Moreover, all first and second
derivatives of the first part at (0,0) are zero by construc-
tion, and the derivatives of the second part coincide with the
derivatives of Q(t); thus we have complete control over sur-
face flexibility through the choice of Q(t).

5.1. Local quadratic patches

The patch Q(t) for an extraordinary vertex v is constructed
as a function in the plane, with values in R3. The idea of
the construction is to find a quadratic patch that follows the
local shape of the mesh; at the same time, we try to make
our surfaces as similar as possible to the surfaces generated
using subdivision.

Thus we use the formulas for the limit positions of Loop
subdivision for Q(0). Remarkably, the rest of the coefficients
can be found using least-squares fit, and the resulting formu-
las for the coefficients for the first derivatives coincide with
the standard formulas for tangents to the Loop subdivision
surfaces.

The coefficients can be obtained as follows. Let (r,ϕ) be
the polar coordinates in the plane. Then the second-order
approximation to the surface can be written as

Q(r,ϕ) = b0 +(b11 cosϕ +b12 sinϕ)r+

(b20 +b21 cos2ϕ +b22 sin2ϕ)r2

We assume that b0 is computed using the formula for the
limit positions of a control point for Loop subdivision, that
is, b0 = p0/2+(1/2k)∑i pi, for k 6= 3, a0 = 2p0/5+∑i pi/5.
We determine the other five coefficients by fitting a quadric
with b0 = 0 to the shifted control points pi−p0, i = 0 . . .k−
1.

A simple calculation shows that the least squares fit to k
points of the 1-neighborhood p1−p0 . . .pk−p0 assumed to
be values at (cos(2πi/k),sin(2πi/k)), i = 0..k−1, leads to

b11 =
2
k ∑

i
pi cos

2πi
k

; b12 =
2
k ∑

i
pi sin

2πi
k

b20 =−p0 +
1
k ∑

i
pi

b21 =
2
k ∑

i
pi cos

4πi
k

; b22 =
2
k ∑

i
pi sin

4πi
k

Note that the formulas for b11 and b21 coincide with the
standard formulas for the tangents to the Loop subdivision
surface, and b20,b21,b22, with appropriate variable changes,
produce second derivatives in the regular case. As a result,
we obtain a set of simple rules for computing the coefficients
of an approximating quadratic surface which can be used as
function Q(t) in (4). A similar construction can be used for
the boundary, but we do not consider it here. Example set of
quadratic patches is shown in Figure 3.

Figure 3: Local quadratic patches are used to approximate
a surface near extraordinary points.

Flexibility. It is easy to show that for valences k ≥ 5, the
patches are parametrically 2-flexible: for any specified first
and second derivatives, we can solve for patch coefficients bi
yielding these derivatives. For k = 3,4, the patches are not 2-
flexible, as the number of control points is less than the total
number of the derivatives of order ≤ 2.

To obtain surfaces that are parametrically flexible for all va-
lences, we need to use special rules for k = 3,4. Such rules
can be obtained in a similar manner, but require using tri-
angles outside the 1-neighborhood of the vertex. We use the
standard masks for b0 (the limit position) and b11, b12 (tan-
gents). In both cases b20 can be computed using a single
ring of vertices and expressions specified above. In the case
of k = 4, the mask for b21 does not require changes either.
In the remaining cases (both “saddle” coefficients b21 and
b22 for k = 3 and one of “saddle” coefficients b22 for k = 4)
additional vertices need to be used. We obtain these coeffi-
cients using a least squares fit to the single ring of control
points around the vertex augmented by k triangles outside
the ring. The resulting masks are shown in Figure 4.

Even if these special masks for valences 3 and 4 are used, the
surfaces may still be not parametrically 2-flexible for some
meshes. There are four small closed meshes for which the
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Figure 4: Masks for computing coefficients b21 and b22 for
valences k = 3 and k = 4.

surface is not parametrically 2-flexible, including the octa-
hedron and tetrahedron (Figure 5, b,c,f,g), due to insufficient
total number of degrees of freedom in the double ring.

In addition, the surface is not parametrically flexible for
meshes containing the three configurations a,d,e shown in
Figure 5. While configuration e is somewhat unusual, the
configuration d occurs, for example, if a pyramid is joined
with its reflected image at the base. There does not appear
to be a simple solution to this problem in our framework.
While it is unlikely to be an issue for tetrahedron and octa-
hedron, it is likely that a larger mesh would contain a neigh-
borhood shown in Figure 5. It should be noted that the degree
of inflexibility is relatively small in this case: a mixed second
derivative is constrained to be zero.

5.2. Algorithm

Finally we summarize the basic algorithm for computing our
surfaces. If a direct evaluation routine of the type described
in [Sta98] is available, than the implementation amounts to
defining a set of control meshes for the characteristic map
and blending functions, as described in more detail below,
and calling this routine to evaluate (4).

The output of the algorithm is a mesh approximating the sur-
face described by (4) after n refinement steps. All terms in
(4) are computed using subdivision modified Loop subdivi-
sion with zero curvature.

One refinement step is performed first; the refined mesh is
M1. Each triangle of the refined mesh either has a single ex-

traordinary vertex (valence not equal to 6) or all its vertices
are regular. All control points that are inserted in triangles
with regular vertices are computed using standard subdivi-
sion rules.

For each triangle T which has an extraordinary vertex, we
can characterize any vertex obtained by refining this triangle
by its barycentric coordinates (u,v,w). The barycentric co-
ordinates have the form (i/2n, j/2n,1− (i+ j)/2n), because
all new vertices are inserted using midpoint subdivision. We
always choose the coordinates in such a way that the weight
w corresponds to the single extraordinary vertex in the trian-
gle; the last coordinate w can be dropped, as u + v + w = 1.
Finally, assuming n fixed, each vertex is identified by the
pair of indices (i, j). For most common representations of
the subdivision meshes the indices (i, j) or a some modified
form of these indices is readily available. When evaluating
(4) we are interested only in values at the vertices obtained
after n subdivision steps, which can be enumerated using the
indices (i, j), i, j = 0 . . .2n−1, i+ j < 2n, as above, with (0,0)
corresponding to the extraordinary vertex.

To compute an approximation to the surface after n subdivi-
sion steps, the algorithm proceeds as follows.

Precomputation.

1. For each extraordinary vertex, we precompute and store
the coefficients of the quadric associated with the extraor-
dinary vertex applying the coefficients of Section 5.1 to a
ring of vertices around the extraordinary vertices.

2. For each valence k present in the mesh, we precompute
the limit values of the characteristic map Φk and B2

k(x)
at vertices (i, j) at the subdivision level n for one trian-
gular sector (all other values can be obtained by applying
an appropriate rotation). For each valence k, we create
two small meshes, both consisting of 2 rings of triangles
around an extraordinary vertex of valence k. To the ver-
tices of the mesh used to compute B2

k we assign scalar
initial values. To obtain B2

k , we refine twice first, then set
all values to zero except the value in the center, which
is set to 2, so that the limit value in the center is 1. The
second mesh, used to compute Φk, is initialized to val-
ues from R2. The two components of each value are the
components of the subdominant eigenvectors for valence
k. As we care only about the values of the functions on
the first triangle T0 of the k-gon, we need to refine only
this triangle. After refining n times and using the standard
limit rules, we obtain the values Φk(i, j) and B2

k(i, j) at all
vertices of n times refined triangle T0.

Evaluation. We first subdivide the mesh n times using Loop
rules, and evaluate the limit position for each vertex. Fix a
triangle T = (v0,v1,v2) of M1 with an extraordinary vertex
v0.

For each vertex inserted into a triangle of M1 adja-
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Figure 5: Inflexible meshes. Upper row: meshes inflexible at a vertex of valence 3. Lower row: meshes inflexible at a vertex
of valence 4. For each mesh, the circle indicates the vertex where the mesh is not 2-flexible. Naming convention for vertices
is shown on the left. Each inflexible mesh is obtained by identifying some vertices, as indicated by the equations. Only three
meshes are open, that is, have boundary edges (shown as thick) and can be submeshes of larger meshes. The remaining meshes
are closed. Invisible edges are shown in gray.

cent to an extraordinary vertex, we determine the indices
(i, j) and compute the final value (1 − B2

k(i, j))F(i, j) +
Q(Φk(i, j))B2

k(i, j).

Note that computation of B2
k and Φk have to be performed

only once per valence, that is, they have little impact on
the performance of the algorithm; the only additional ex-
pense for each vertex is the lookup of the values Φk(i, j)
and B2

k(i, j), and computation the linear combination (4).

A simple implementation of the algorithm required less than
500 lines of code on the top of an existing subdivision li-
brary.

5.3. Surface Quality

As it can be seen in Figure 7, for common meshes the dif-
ference between surface appearance is difficult to see. How-
ever, in some cases the difference can be significant (Fig-
ure 6). We have chosen to compare surface appearance for
standard Loop surfaces and surfaces obtained by blending
using a saddle-shaped control mesh. The reason for this is
that for valences higher than six surfaces corresponding to
such control meshes have in some sense least curvature con-
tinuity. As it is discussed in detail in [Zor00] the lack of
curvature continuity is due to the fact that certain eigenval-
ues of the subdivision matrix have magnitude larger than
λ 2 where λ is the subdominant eigenvalue. For the Loop
scheme, the largest among these eigenvalues is the eigen-
value 3/8 + (1/4)cos4π/k; the corresponding eigenvector
is v21. A saddle-like arrangement of control points has the
largest magnitude of the corresponding coefficient b12 in the
eigenbasis decomposition, which results in pronounced vi-

olation of curvature continuity especially for high valences.
For example in Figure 6 for valence 20 one can see that the
surface develops a visible kink. At the same time for va-
lences close to 6 no artifacts are visible. However, the cur-
vature still diverges for valences higher than 6, which causes
numerical problems for algorithms such as surface-surface
intersection and geodesic tracing. In contrast, the overall
shape of blended surfaces is not much affected by valence
and the curvatures converge smoothly to a limit value (Fig-
ure 6). It appears that the surfaces are slightly bumpier away
from the extraordinary points but on the models that we have
considered the effect was not very pronounced. The fact that
the Gaussian curvature for the saddle becomes positive is
also undesirable and is likely to be correlated with bumpi-
ness. The visible ripple artifacts for valence 20 are due to the
artifacts present in the Loop basis function used for blend-
ing. While these artifacts are absent when standard Loop is
applied to the saddle eigenvector configuration, they imme-
diately appear once other eigenvectors are present as it is
the case for any real surface. One can hope that a blending
function with no ripple artifacts would produce even better
results, but it is not clear how to construct such functions
with k-gonal support or if it is possible to use different sup-
port shapes without introducing a different type of artifact
(in [Lev06] a different blending function is explored.)

6. Analysis of Flexibility

Parametric 2-flexibility at extraordinary vertices with respect
to the characteristic map parameterization was easily estab-
lished by construction.

However our construction does not a priori guarantee that
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Figure 6: Behavior of the standard Loop surface and the blended surface for valences 7,10 and 20. The range for curvature
plots is 0.01 to 0.5 measured barycentric coordinates along a line passing through the origin. The red curve is the curvature for
the blended surface and the green curve is the curvature for the red surface.

Figure 7: Left: A slight difference exists but hard to identify visually for this model. Right: the difference in the shape of
highlights for simple models is more apparent. We reiterate that our goal not as much improve surface fairness but retain it and
obtain surfaces with better mathematical properties in a simple way.
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the resulting surfaces are flexible away from the vertices of
the top-level mesh. While not very probable, it is possible
that as a result of blending we introduce inflexible points
at locations away from the extraordinary vertex. Thus, to
establish that the proposed approach is guaranteed to re-
sult in 2-flexible everywhere for a sufficiently broad class
of meshes further analysis is required. The analysis of flex-
ibility of blended at points away from extraordinary points,
while relatively straightforward conceptually proved to be
difficult technically. Here we outline the idea of the proof
which extensively uses computer algebra. More details, and
relevant computer algebra code is presented as a separate re-
port. A note to the reviewers: the report is included in the
paper submission.

We are able to show that the surfaces produced by the
scheme are flexible on closed control meshes with two addi-
tional constraints imposed:

C1: Extraordinary vertex separation. No two extraordi-
nary vertices are adjacent.

C2: Simple neighborhood topology. All k + 6 vertices in
the 1-neighborhood of any triangle which has a vertex of
valence k 6= 6 are distinct.

The argument can be also easily extended to the case when
any two adjacent extraordinary vertices both have valence
higher than six.

The case of meshes with adjacent low-valence extraordinary
vertices presents considerable difficulty. In some cases, the
resulting surfaces cannot be flexible as the number of basis
functions with support overlapping some of the points of the
surface can be less than six, the minimal number required for
flexibility. There are few configurations like this however,
and in most other case it is highly likely that the resulting
surfaces are flexible. A brute-force analysis would require
analyzing a large number of local configurations, computing
the explicit piecewise polynomial representation of the limit
surface for each. We leave such analysis for our scheme and
other C2 constructions which are potentially 2-flexible as fu-
ture work.

As we analyze parametric 2-flexibility, analysis can be per-
formed for each coordinate separately; therefore it is suffi-
cient to consider scalar functions defined by subdivision.

Theorem 1 For a closed mesh M satisfying constraints C1
and C2, the blended surface defined by (4) is parametrically
2-flexible at any point of M.

Outline of the proof. For the vertices of the control mesh,
flexibility immediately follows from the surface definition.
We need to prove 2-flexibility for all other points of the sur-
face. If any two extraordinary vertices are separated by reg-
ular vertices, we only need to consider triangles which have
a single extraordinary vertex.

Next, consider the part of the surface that is defined on the

1-neighborhood of an extraordinary vertex. This part of the
surface vertex depends on a double ring of control points
around this vertex. Rather than proving that one can choose
the positions of all of these control points to obtain the de-
sired result, we use a set of 6 coefficients in the eigenbasis
decompositions as degrees of freedom, i.e. we prove that for
some choice of these coefficients we can obtain any desired
first and second derivatives at any given point with barycen-
tric coordinates (u,v,w) in a triangle adjacent to the extraor-
dinary vertex (one can easily show that any set of these co-
efficients can be obtained using a suitable combination of
control points).

As we have already mentioned, the surfaces we are inter-
ested in can be evaluated using Stam’s algorithm at any point
(u,v,w), with u+v+w = 1. Recall that using this algorithm,
for a point (u,v,w), we evaluate the surface as a value of
a quartic box spline patch with control points expressed as
functions of control points of the subdivision surface and
subdivision level i depending on (u,v,w). More specifically,
the control points of this patch are linear combinations of
control points with coefficients of the form Cλ i

j, where λ j
are eigenvalues of the subdivision matrix. It turns out that
in the specific case that we consider a variable change sim-
plifies the expressions for the surface at an arbitrary loca-
tion to a polynomial F(u,v,w,ε,c) in 5 variables u,v,w,ε,c,
where c = cos(π/k), k is the valence, ε = 2−i is the sub-
division level, with coefficients linearly depending on ai j,
0 < j < i ≤ 2, and independent of k (the dependence on va-
lence is completely captured by c).

Differentiating this polynomial with respect to u and v to ob-
tain 6 derivatives of order ≤ 2; and prescribing the values of
these derivatives yields a system of 6 equations in 6 variables
ai j, with coefficients which are polynomials in u,v,w,ε and
c. The system has a solution whenever its determinant is not
zero. As all coefficients are polynomials, the determinant is
also a polynomial in the same variables; the ranges of the
variables are 0≤ u≤ 1, 0≤ v≤ 1, 0≤ u+ v≤ 1, 0 < c < 1
(for k ≥ 5), 0 < ε ≤ 1. To prove flexibility it is sufficient
to show that this polynomial is greater than a constant C on
the domain defined by listed inequalities. We achieve this
by converting it to Bezier form and verifying that all coeffi-
cients are positive. The case k = 3 is considered in the same
way but separately, with one less variable.

7. Conclusions and Future Work

The method that we have described easily extends to other
types (e.g. Catmull-Clark) or higher-smoothness subdivision
surfaces, e.g. if the subdivision rule is Ck in the regular
case, the technique can yield Ck surfaces. However, flexi-
bility away from extraordinary vertices needs to be verified
separately in each case.

The choice of subdivision basis functions as blending func-
tions in this paper was primarily motivated by considera-
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tions of simplicity and efficiency, as well as the possibility
of proving 2-flexibility away from extraordinary points. In
general, the construction of blending functions need not be
the same as this construction. Moreover, one can use blend-
ing functions to combine local surface patches of different
types.

While proposed surfaces are C2 and flexible, they still do not
allow exact reproduction of certain important simple shapes.
For example, it would be useful to be able to reproduce a
sphere without seams, a modeling task, which, to the best
of our knowledge, cannot be achieved by any existing para-
metric surface representation (a NURBS sphere has a seam),
except trigonometric schemes proposed in [MWW01].
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