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Abstract

We present a new method for 3D shape modeling that achieves intuitive and robust deformations by emulating
physically plausible surface behavior inspired by thin shells and plates. The surface mesh is embedded in a layer
of volumetric prisms, which are coupled through non-linear, elastic forces. To deform the mesh, prisms are rigidly
transformed to satisfy user constraints while minimizing the elastic energy. The rigidity of the prisms prevents
degenerations even under extreme deformations, making the method numerically stable. For the underlying geo-
metric optimization we employ both local and global shape matching techniques. Our modeling framework allows
for the specification of various geometrically intuitive parameters that provide control over the physical surface
behavior. While computationally more involved than previous methods, our approach significantly improves ro-
bustness and simplifies user interaction for large, complex deformations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling Geometric Transformations;

1. Introduction

In recent years, significant progress has been made in es-
tablishing triangle meshes as a representation for advanced
geometric modeling. One of the most challenging geometry
processing operations for meshes is high quality shape defor-
mation. Ideally, mesh editing should be interactive and intu-
itive at the same time, but the large space of possible shape
modifications often leaves the effects of user-controlled con-
straints hard to predict. With presently available methods
achieving interactive or even real-time performance on large
triangle meshes [BK04, SCOL∗04, LSLCO05, BK05], the
amount of “guidance” required from the designer remains
a major bottleneck. Very often, the inherent limitations of
the underlying deformation models force designers to split
up complex deformations into a sequence of smaller ones.

Physically accurate surface deformations require the min-
imization of non-linear stretching and bending energies, re-
sulting in the well known thin-plate and thin-shell func-
tionals [TPBF87,CG91,WW92]. Linearization of curvatures
with respect to a fixed reference mesh, an approximation of-
ten utilized by current mesh modeling approaches, leads to
parametric distortions for large deformations and thus to a
degradation of the surface. As a consequence, complex de-
formations have to be split up into multiple smaller ones,
which complicates the overall modeling process.

We propose a new intuitive and robust shape modeling
approach based on a non-linear surface deformation model.
Our approach is inspired by the physical behavior of thin
shells and computes intuitive deformations by emulating the
natural material behavior of surfaces we experience in real-
life. Rather than simulating accurate deformation physics we
achieve physically plausible behavior while retaining inter-
active performance. Although our method is computation-
ally more involved than previous approaches, it trades com-
putational effort with the time the designer requires for guid-
ing the modeling process.

Our underlying surface deformation model is based on a
layer of rigid prisms which is enveloping the mesh faces.
The prisms are coupled through non-linear elastic energies,
which naturally resist stretching and bending and thus em-
ulate the mechanical behavior of thin shells and plates. The
rigidity of the prisms prevents them from degenerating even
under extreme deformations, thus making our method nu-
merically stable. The prisms’ rigid motions are guided by
a global shape matching procedure. We adapt and improve
techniques developed for simultaneous registration of multi-
ple objects [PLH02] for the efficient solution of the under-
lying geometric optimization. Its robustness and efficiency
enable our surface model to be incorporated into an interac-
tive and intuitive shape deformation application.
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Figure 1: The Goblin was posed by prescribing position and
orientation for its head and right hand. For the left hand and
foot positions were constrained only, thus enabling the auto-
matic optimization of their orientations. The natural bending
of joints was easily achieved by reducing the surface stiffness
in these regions. The whole editing session took less than 5
minutes (see the accompanying video).

Contributions. Our major contribution is a non-linear sur-
face deformation model based on elastically connected rigid
prisms, which features

• Robust and physically plausible large-scale deformations
• Intuitive preservation of surface details
• Hard constraints for positions and orientations
• Constraint-based and force-based deformations
• Intuitive geometric parameters for surface modeling

In addition, we present a robust and efficient numerical op-
timization method which combines local and global shape
matching techniques. Based on these components, our sur-
face deformation approach allows for intuitive and interac-
tive shape deformations, as shown in Figure 1.

2. Related Work

Several shape editing approaches, like freeform deforma-
tion [SP86] and Wires [SF98], focus on shape design rather
than on physically inspired shape deformation. While these
methods typically provide more flexibility than physically-
based ones, they in turn require more guidance if physically
plausible deformations are actually desired.

The design of high quality surfaces is typically based on
a constrained minimization of curvature energies [WW92,
MS92], which results in thin-plate surfaces with planar rest
states. Similarly, high quality physically-based deformations
minimize stretching and bending (i.e., the change of curva-
ture) under deformation constraints, which corresponds to
thin-shell models of non-planar rest states [TPBF87,CG91].

Most recent physically inspired mesh deformation ap-
proaches can be categorized into two classes, one minimiz-
ing bending energies, the other one modifying differential
coordinates. Figure 2 compares the behavior of a subset of
the methods outlined below on simple synthetic examples.

Shape modeling based on a discretization of variational
bending energy minimization (VARMIN in Figure 2) is
mathematically well understood and yields smooth and
tangent-continuous deformations [KCVS98, GSS99, BK04].
Similarly, [BK05] minimizes an analogous energy for space
deformations (RBF in Figure 2). However, since for these
approaches all computations and linearizations are per-
formed w.r.t. a fixed reference mesh, large deformations
might lead to shape distortions.

To correctly deform fine surface details, the above meth-
ods require a multi-scale decomposition, which splits a sur-
face into a smooth base surface (low frequencies) and dis-
placement vectors (high frequencies). Changing the smooth
base surface and adding the details back onto it then yields
the desired multi-scale deformation [KVS99]. The bottom
row of Figure 2 shows the advantage of the multi-scale tech-
nique VARMIN over the single-scale RBF method, although
even the multi-scale technique distorts the left-most bumps
in a counter-intuitive manner.

Displacement volumes [BK03] encode the high frequen-
cies by prism elements enclosed between the original and the
base surface, which avoids detail distortion, but comes at the
considerably higher cost of a non-linear detail reconstruc-
tion. Notice that displacement volumes are a multi-scale rep-
resentation only, not a surface deformation technique, like
the one presented in this paper. Although both representa-
tions (displacement vectors/volumes) can be combined with
any underlying deformation technique, the required multi-
scale decomposition can become quite involved for geomet-
rically or topologically complex models.

To avoid the multi-scale decomposition, other methods
modify differential surface properties instead of its spatial
coordinates, and then solve a linear Poisson system for a
deformed surface with the desired differential coordinates
[LSCO∗04, SCOL∗04, YZX∗04, ZRKS05, LSLCO05].

From this class, the methods of [YZX∗04, ZRKS05] use
gradients of affine deformations, i.e., their rotation and
scale/shear components, for transforming surface gradients
(GRAD), similar to [SP04, SZGP05]. As a consequence,
these methods work well for rotations, but are insensitive
to translations: Adding a translation to a given deformation
does not change its gradient, and thus has no influence on the
resulting surface gradients. But since even pure translations
induce local rotations of tangent planes (Figure 2, bottom),
these methods are counter-intuitive for modifications con-
taining large translations. Although a special treatment of
pure translations might be possible, deformations containing
rotations and translations remain problematic.

In contrast, the shape editing approach of [SCOL∗04]
implicitly solves for local rotations of vertex neighbor-
hoods, but due to linearizations their method has problems
with large rotations, as was shown in their follow-up pa-
per [LSLCO05]. In that paper, Lipman et al. minimize bend-
ing by preserving relative per-vertex orientations. They first
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Original VARMIN RBF GRAD ROTINV PRIMO

Figure 2: Comparison of VARMIN [BK04], RBF [BK05], GRAD [ZRKS05], ROTINV [LSLCO05], and the proposed PRIMO,
based on large, one-step deformations by rotations (top), rotations and translations (center), and pure translations (bottom).
While VARMIN and RBF work well for translations, they have problems with large rotations, whereas GRAD and ROTINV

exhibit exactly the opposite behavior. Deformations containing large rotations as well as translations are therefore difficult for
all of them. Moreover, the linear approaches lead to a noticeable loss of material for the two cylinder examples. In contrast,
our non-linear deformable surface model PRIMO successfully handles all cases.

solve a linear system for per-vertex orientations, and from
those reconstruct vertex positions in a second step. Since
the first system does not consider position constraints, their
technique also neglects the connection between translations
and rotations. While their method works very well even for
large rotations, it exhibits the same translation-insensitivity
as gradient-based methods (ROTINV in Figure 2).

The sketch-based deformation methods of [NSACO05,
ZHS∗05] provide more guidance to the system by deform-
ing curves on the surface and propagating their local rota-
tions over a region of interest. Since both methods are based
on differential coordinates, they are in principle affected
by translation-insensitivity, but the dense curve constraints
avoid these problems in general. While a curve-based mod-
eling metaphor would also be possible for our representa-
tion, we focus on sparse deformation constraints and a sim-
ple click & drag user interface.

Notice that all deformations of Figure 2 were done in a
single large step, although the linear methods would per-
form better when splitting them into multiple smaller ones.
But this requires to re-factorize the involved matrices in each
step, which considerably increases computation costs. More-
over, since it changes the reference parametrization, a simple
“undo” operation by moving the constrained vertices back to
their original positions is disabled.

These inherent limitations of linear methods motivated
us to investigate non-linear deformation techniques. In this
context, Sheffer and Kraevoy [SK04] proposed non-linear,
rigidly invariant pyramid coordinates. Their method corre-
sponds to a non-linear extension of differential coordinates,
and was shown to be capable of large deformations.

In contrast, we employ a constrained minimization of a
non-linear bending energy. Since we aim at a qualitative em-
ulation of the mechanical behavior of thin shells, we can
provide more intuitive parameters for controlling the sur-
face deformation. Notice that our method does not require
a multi-scale decomposition, since our non-linear optimiza-
tion correctly accounts for the coupling of translations and
local frame rotations.

Although our approach is related to recent sophisticated
shell simulations [GHDS03, WSG05], the latter usually fol-
low different goals, since they are interested in the dynamic
behavior of objects, including masses, inertia, and collisions.
Their involved computations typically are not designed to ro-
bustly handle the arbitrarily extreme user constraints of in-
teractive modeling applications. Instead of a physically ac-
curate fully dynamic simulation we are explicitly targeting
physically plausible shape deformations only, and thus can
trade off physical accuracy for computational efficiency and
numerical robustness.
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Figure 3: After extruding prisms from the faces of the in-
put mesh along vertex normals (top), the distortion of elastic
joints between neighboring prisms is used to measure defor-
mation energy, e.g., for bending or stretching.

3. Prism Representation

Thin shells are volumetric objects of almost vanishing thick-
ness and can therefore be modeled by a thin volumetric layer
wrapped around a center surface [Bat95]. Following this in-
tuition we consider the input mesh as the center surface, and
the volume enclosed between two offset surfaces as the vol-
umetric layer. This layer is built by an extrusion along ver-
tex normals, which results in a (in general non-orthogonal)
prism Pi for each mesh face Fi (cf. Figure 3, top).

A standard FEM formulation would be the straightfor-
ward way to generalize the shell’s deformation energy to
these prisms. However, most finite element techniques be-
come numerically instable as soon as elements degenerate,
since then neither volumes, areas, nor gradients can be com-
puted robustly [ITF04]. Unfortunately, this kind of degen-
eracies is particularly likely to occur in interactive model-
ing applications, for instance due to extreme forces or con-
straints applied by the user.

In order to ensure numerical robustness even under ex-
treme deformations, we prevent prisms from degenerating
by keeping them rigid. We connect the rigid prisms along
their common faces by elastic joints, which are stretched un-
der deformations. The amount of stretching then yields the
desired deformation energy (cf. Figure 3).

For the definition of the elastic joint energy we consider
two neighboring prisms Pi and Pj. In the undeformed state
the two prisms share a common face, but after a deforma-
tion these side faces might no longer coincide. The face of
Pi neighboring Pj is a rectangular bi-linear patch f i→ j (u,v),
(u,v) ∈ [0,1]2, which interpolates its four corner vertices
{f i→ j

00 , f i→ j
10 , f i→ j

01 , f i→ j
11 }. Analogously we denote the oppo-

site face by f j→i (u,v)⊂ Pj (cf. Figure 4).

Pi

Pj

f
i→j

0

f
i→j

1

f
j→i

1

f
j→i

0

Figure 4: Notation for prism elements.

We define the energy between Pi and Pj as

Ei j :=
Z

[0,1]2

f i→ j (u,v)− f j→i (u,v)


2
dudv , (1)

which corresponds to an integral over infinitesimal elastic
forces, that can be thought of as fibers of the elastic joint.
As shown in the appendix, the above equation evaluates to
a simple quadratic expression in the four difference vectors
(f j→i

kl − f j→i
kl ), k, l ∈ {0,1}. The deformation energy of the

whole mesh can now be defined as an accumulation of pair-
wise energies Ei j

E := ∑
{i, j}

wi j ·Ei j , wi j :=

ei j
2

|Fi|+
Fj

 , (2)

where the energy contribution of each pair Pi, Pj is weighted
by the areas of the corresponding mesh faces Fi, Fj, and the
squared length of their shared edge ei j [GHDS03]. Notice
that due to the zero rest length of the elastic joints the initial
(undeformed) configuration of prisms is the unique global
minimum of the energy, and any bending, shearing, twisting,
or stretching increases it.

Our prism-based modeling metaphor works as follows:
The user prescribes positions and/or orientations of an arbi-
trary subset of prisms. The optimization technique described
in the next section then finds individual rigid motions for all
unconstrained prisms, such that the global deformation en-
ergy (2) is minimized. The deformed surface mesh is finally
derived from the resulting prisms by updating the position of
each unconstrained vertex using the average transformation
of its incident prisms.

As an additional benefit besides robustness, the prism
formulation provides geometrically intuitive parameters for
controlling the surface behavior: The extrusion amount h,
i.e., the layer’s thickness, determines the local surface stiff-
ness, since for taller prisms the same bending angle induces
a higher joint stretching (cf. Figure 5).

Another important property of our formulation is that it
is not restricted to pure triangle meshes, but can also be ap-
plied to arbitrary polygonal meshes. Extruding a prism from
an n-gon then simply generates an n-sided prism instead of
a triangular one. Especially when dealing with regular quad
meshes generated by CAD systems, inserting an arbitrary
diagonal edge to split quads into triangles leads to asymme-
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Figure 5: The prisms’ height intuitively controls the sur-
face’s resistance to bending. Local stiffness adjustment ad-
ditionally allows to concentrate bending at desired joint lo-
cations, like the Goblin’s shoulders and elbows in Figure 1.

tries. In contrast, our method allows to directly process these
meshes and thereby preserve their inherent symmetries.

Notice that the initial prism generation might lead to local
self-intersections in the offset surfaces in regions of high cur-
vature, which would lead to locally inverted prisms. How-
ever, as our energy only considers the elastic joints between
prisms, it is not negatively affected by these configurations,
which also holds for prisms interpenetrating during defor-
mations, like those inside the cylinder in Figure 5.

4. Numerical Solution

In this section we propose a robust and efficient technique
for the constrained minimization of the deformation energy
defined in Equation (2). Our approach is based on general-
ized shape matching and adapts both local and global shape
matching techniques in order to combine them to a hierar-
chical multigrid solver.

The user controls the surface deformation by constrain-
ing the position and/or orientation of certain prisms (respec-
tively faces). The optimization then finds optimal rotations
Ri and translations ti for the unconstrained prisms Pi, such
that the deformation energy (2) is minimized (we replace
(u,v) by u for notational convenience):

min
{Ri,ti}

∑
{i, j}

wi j

Z
[0,1]2

∥∥∥Ri f i→ j(u)+ ti−R j f j→i(u)− t j

∥∥∥2
du.

(3)

This minimization actually corresponds to a generalized
global shape matching problem: Discretizing the integrals
by summations over sample points f i→ j (uk,vk) would lead
to a global alignment problem for multiple point sets, where
rigid motions are to be found to minimize the sum of squared
point distances.

As a consequence, the minimization (3) can be thought
of as global alignment of prisms based on continuous face
correspondences, instead of discrete point correspondences.
This continuous formulation is mathematically more elegant
compared to a sufficiently dense point-sampling of prism
faces, and is also quite efficient, since the involved integrals
evaluate to simple quadratic functions, as shown in the ap-
pendix.

For the global alignment of multiple point sets a large va-
riety of techniques has been proposed, being based on either
local pairwise alignment or simultaneous global registration.
We will adapt both techniques to our problem in Section 4.1
and Section 4.2, and combine both them to an efficient multi-
grid solver in Section 4.3.

4.1. Local Shape Matching

A common approach to global registration is based on iter-
ated pairwise alignment. In each iteration one prism Pi is ran-
domly chosen and its position and orientation is optimized
w.r.t. the remaining ones, which are kept fixed. Since each
iteration minimizes the local shape matching error of Pi and
does not change the other prisms, the global shape matching
error decreases monotonically.

When picking a prism Pi for optimization, we have to
match its faces f i→ j to the corresponding faces f j→i of its
neighbors, which we denote as Pj , j ∈ Ni. Finding the best
rigid motion (Ri, ti) yields a weighted pairwise shape match-
ing problem

min
Ri, ti

∑
j∈Ni

wi j

Z
[0,1]2

∥∥∥Ri f i→ j (u)+ ti − f j→i (u)
∥∥∥2

du ,

(4)
for which a simple closed-form solution can be computed
by generalizing the method of [Hor87] to continuous face
correspondences (see appendix).

This iterated pairwise matching is efficient and simple to
implement, since each matching only requires an eigenvec-
tor decomposition of a 4× 4 matrix (67k matches/sec on a
3.2GHz P4). Müller et al. [MHTG05] successfully used a
similar discrete formulation for their deformation approach,
but the number of clusters to be matched in their case is
rather small compared to our number of prisms.

The main limitation of the local matching is that it corre-
sponds to an error diffusion, and hence exhibits the typical
behavior of iterative smoothers: for large systems the high
frequencies of the error are rapidly attenuated, but the low
frequencies — which correspond to the desired global de-
formations — take impractically long to converge.
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4.2. Global Shape Matching

Instead of iterated pairwise registrations, several techniques
for the simultaneous registration of multiple point sets have
been proposed, see [KLMV05] and the references therein.
Most of these methods factorize dense matrices, whose di-
mensions are proportional to the number of objects to be
matched. While this is not critical when matching < 100 ob-
jects, in our setting a large number of prisms would lead to
prohibitively complex matrices.

In contrast, Pottmann et al. [PLH02] propose an iterative
simultaneous registration which involves solving sparse lin-
ear systems only, and hence can be adapted to our problem.
Their technique corresponds to a Newton-type minimization
of the registration error: In each iteration a linear system is
solved for a descent direction, which corresponds to an affine
motion per prism. A projection of those onto the manifold of
rigid motions results in a rigid update for each prism. This
process is iterated until convergence.

The descent direction of the Newton-type iteration re-
quires first-order approximations Ai of rigid motions (Ri, ti),
which can be formulated in terms of linear and angular ve-
locities vi and ωi:

Ri (·)+ ti ≈ (·) + ωi× (·) + vi =: Ai (·) . (5)

Reformulating the energy minimization (3) in terms of these
first-order approximations yields

min
{vi,ωi}

∑
{i, j}

wi j

Z

[0,1]2

Ai


f i→ j (u)


−A j


f j→i (u)


2

du .

(6)
As all integrals can again by evaluated analytically, (6) rep-
resents a standard quadratic minimization in the linear and
angular velocities, the optimal values for which can be found
by solving a sparse linear system [PLH02].

The resulting optimal velocities (vi,ωi) correspond to the
Newton descent direction and represent first-order approxi-
mations Ai. Since those are affine transformations, they have
to be projected back onto the manifold of rigid motions be-
fore applying them to the prisms Pi. For this step, [PLH02]
propose to choose (Ri, ti) as the helical motion associated
with (vi,ωi). However, this method turned out to be re-
stricted to very small update steps, which is sufficient for
registering pre-aligned point sets, but in our case leads to
impractically slow convergence for large deformations.

We therefore propose to project Ai by finding the “clos-
est” rigid motion (Ri, ti), where we measure distances of
transformations by comparing their effects on the prism Pi.
We find the closest rigid motion by minimizing

min
Ri, ti

Z

[0,1]2

Ri f i→ j (u)+ ti − Ai


f i→ j (u)


2

du , (7)

which yields another local shape matching problem, as de-
picted in the following figure.

Pi

R
i P

i + t
i

Ai(Pi)

This geometrically intuitive projection operator allows for
much larger update steps compared to the helical motions
of [PLH02], which reduces the number of required Newton-
type iterations by a factor of about 50 in all our examples.
Although our projection is computationally more involved,
its costs are still small compared to solving (6). Hence, the
overall performance increases by roughly the same factor.

Finally, the Newton-like descent direction has to be scaled
by a suitable step size λ. We thus derive the rigid motions
(Ri, ti) by projecting scaled velocities (λvi, λωi) instead,
where we simply start with λ = 1 and subsequently halve
λ until the new rigid motions are found to decrease the en-
ergy (3). Although more elaborate methods exist [PHYH04],
this simple technique turned out to be sufficient.

The computational complexity of the non-linear optimiza-
tion is dominated by factorizing and solving the linear sys-
tem corresponding to the minimization of (6) in each iter-
ation. Since the matrix is sparse (about 16 non-zeros/row
on average), symmetric, and positive definite, an efficient
sparse Cholesky solver can be used [TCR03]. We can addi-
tionally exploit that the non-zero structure of the matrix stays
fixed throughout all iterations. This allows us to precompute
the symbolic part of the factorization [BBK05], which saves
about 40% of the total time per iteration.

Combining the matching-based projection (7) with the
symbolic pre-factorization reduces computation time by two
orders of magnitude compared to [PLH02]. However, the op-
timization still achieves only 6500 prism updates per second
on a 3.2GHz P4, which is not sufficient for interactive defor-
mations of complex meshes. Given these limitations, neither
the local nor the global shape matching yields a practically
useful minimization technique by itself. But combining their
respective strengths allows us to derive an efficient hierarchi-
cal method, as we will show in the next section.

4.3. Hierarchical Shape Matching

To maximize computational efficiency, we perform the
shape matching on a multigrid hierarchy. For multigrid
methods on irregular triangle meshes the successively
coarser levels are built by mesh decimation [AKS05]. How-
ever, our framework does not require the hierarchy levels
to represent consistent triangulations, since prisms can be
generated from arbitrary polygons. This enables us to con-
veniently build the hierarchies levels (typically about 4) by
successive clustering of neighboring faces and combining
their corresponding prisms by considering them as one sin-
gle rigid group.
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A common practice for hierarchical multigrid solvers of
linear systems [AKS05] is to use a direct solver on a coarse
hierarchy level to obtain a low frequency approximation of
the solution, which then is successively refined on higher
levels using iterative techniques. Similarly, we start by ap-
plying the global shape matching on the coarsest hierarchy
level in order to efficiently compute the low frequencies of
the deformation. Since even for detailed surface meshes the
shape deformations generally are smooth (low frequency)
functions, this initial approximation typically is already very
close to the exact solution. Since the local shape matching
corresponds to an iterative error diffusion, we apply a few
iterations (typically 2) on each finer hierarchy level, which
rapidly smooths out the remaining high frequency errors.

Since we do not require consistent triangulations or
sophisticated multigrid pre-conditioning, our hierarchical
solver is considerably easier to implement compared to tra-
ditional multigrid techniques. The efficient combination of
global and local shape matching yields a robust hierarchical
non-linear optimization, which provides shape deformations
of moderately complex models at interactive rates. Even our
two most complex models, the 100k triangle Dragon of Fig-
ure 8 and the 180k triangle Goblin of Figure 1, can be edited
interactively at one frame/sec (see the accompanying video).

4.4. Robustness

One of the main advantages of our method — and the main
difference to existing shell-based techniques — is that dur-
ing a deformation the shape quality of prisms will not de-
grade, since the individual prisms are kept rigid, which guar-
antees numerical robustness even for extreme deformations.

Even the initial shape quality of the prisms — which de-
pends on the input mesh — only has a minor influence on
the robustness of our method. The local and global shape
matching techniques only fail for prisms that degenerate to
a single line, which requires their corresponding triangles to
degenerate to single points. However, the more likely cases
of needle triangles (one extremely short edge) or caps trian-
gles (one large angle) do not cause numerical problems, as
long as stable normals can be computed for the prism extru-
sion. This allows us to process even meshes of low initial
quality, which would be very likely to cause problems for
classical FEM simulations.

A thorough convergence analysis of the Newton-like
global shape matching can be found in [PHYH04]. In all our
experiments the global matching converged robustly, with
even extreme deformations requiring < 10 iterations. In the-
ory, the minimization cannot be guaranteed to find the global
minimum. Extreme user constraints that enforce the surface
to form self-intersections might steer the iteration into a local
minimum. However, as soon as the constraints are relaxed
again, the optimization typically recovers, which is shown
in Figure 6 and the accompanying video.

Figure 6: The robust global optimization is able to fully re-
cover the dragon model after fixing two prisms on the feet,
collapsing all other prisms into one point, and randomly per-
turbing their orientations (left). The images show results af-
ter 1, 10, and 25 iterations of the global matching procedure.

5. Results

In this section we show the flexibility of our prism-based
modeling framework on a range of examples, including com-
plex shape deformations and general surface processing.

In addition to robustness, our prism formulation also pro-
vides interesting, geometrically intuitive parameters for con-
trolling the surface behavior. The rest state of the optimiza-
tion can be adjusted by explicitly changing the prism shapes.
Figure 5 already showed how surface stiffness can be spec-
ified in terms of prism heights. In addition to that, adjusting
the prisms’ widths allows to locally increase or decrease sur-
face area. In the left image of Figure 7 the dragon model is
T-Rex’ed by shrinking its arms and super-sizing its head.

Besides height and width, the prisms’ deviation from
orthogonality yields another interesting parameter. When
prisms are generated by extrusion along vertex normals (as
described in Section 3), the initial configuration is the rest
state of the optimization. In contrast, extruding orthogonal
prisms along face normals leads to a non-vanishing initial
energy, which tries to achieve a locally planar state. Interpo-
lating the extrusion directions between vertex normals and
face normals therefore blends between a thin shell and thin
plate behavior.

The latter tries to locally decrease curvature, which
smooths the surface. However, since the size of prisms is
kept fixed, the surface area is preserved, which avoids the
typical shrinkage of Laplacian smoothing (cf. Figure 7, cen-
ter). Moreover, extrapolating the face normals across vertex
normals locally increases curvature and thus can be used for
surface detail enhancement (cf. Figure 7, right).

Having these geometrically intuitive surface parameters
at hand, the user can deform surfaces by simply selecting
handle regions and moving them to their desired position.
The respective transformations of the underlying prisms are
automatically derived from these face constraints. Figure 8
shows a large-scale deformation of a complex dragon model
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Increase prism width Decrease prism angle Increase prism angle

Figure 7: Changing the prism shapes provides geometrically intuitive parameters for controlling the surface behavior. Ad-
justing the width of prisms can be used to locally shrink or enlarge surface area, which was done to convert the dragon to a
T-Rex (left). Changing the prism’s deviation from orthogonality blends between thin-shell and thin-plate behavior, which allows
for non-shrinking smoothing (center). Increasing the prism angles instead amplifies surface curvature, and therefore enhances
local surface details (right).

and compares the result to the linear methods discussed in
Section 2. While all linear methods fail to produce the de-
sired result, our non-linear surface model deforms naturally,
which can also be observed in the accompanying video.

Instead of fully constraining a prism’s position and ori-
entation, both the local and global shape matching formu-
lations also allow to freeze either of them separately, such
that the other term is free to be optimized. This enables a
simple click & drag metaphor, where the user constrains the
position of a dragged surface point, while its orientation is
automatically optimized. This kind of interface would not
be possible with methods based on differential coordinates,
which require both rotation and translation constraints.

In addition to controlling surface deformations by en-
forcing hard constraints, our method also supports user-
specified forces acting on the model. The squared point dis-
tances in Equation (3) can be interpreted as energies of zero-
length springs, such that the shape matching solves for the
steady-state of a (mass-less) spring system. User-defined
spring forces can therefore be incorporated by adding sur-
face points and corresponding target positions to the shape
matching system. Depending on the application, this force-
based modeling metaphor might provide physically more in-
tuitive results, since enforcing hard constraints would corre-
spond to extremely high forces.

The force-based metaphor, in combination with local stiff-
ness control, was used to pose the Goblin model shown in
Figure 1 in less than 5 minutes. Another example is shown in
Figure 9, where a user-defined force pulls the Beetle’s front
upwards, performed for both a rather stiff and a more flexible
surface material.

The limitation of our method is its computational perfor-
mance, which restricts the global shape matching to about
10k prisms for interactive modeling. However, our hierarchi-
cal optimization provides interactive response rates even for
complex meshes by performing the global optimization on
a coarser level, for which 10k triangles are sufficient, since
global shape deformations typically correspond to smooth
functions.

6. Conclusion

We presented a non-linear surface deformation model based
on elastically coupled rigid prisms, which allows for intu-
itive and physically plausible geometric modeling. In the
past, non-linear techniques were rarely considered for in-
teractive modeling applications because of their seemingly
prohibitive computation costs, complicated implementation,
and notorious numerical instabilities. In contrast, our new
method combines ease of implementation and extreme ro-
bustness, while still achieving interactive rates for moder-
ately complex models.

One promising direction for future work would be the
application of our prism-based framework to physically in-
spired dynamic simulations, since in this context numerical
robustness is also of major importance. The generalization
of our global shape matching framework from thin shell sur-
faces to fully volumetric objects would also be an interesting
extension.
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Figure 8: The crouching dragon was lifted by fixing its hind feet and moving its head to the target position in a single step.
Similar to Figure 2 the linear deformation methods yield counter-intuitive results, which even contain severe self-intersections.
In contrast, our PRIMO technique leads to a very natural deformation.

Figure 9: In addition to hard constraints, our framework can also incorporate user-defined forces. In this example a force tries
to lift the car’s front, and center and right image show results for the same force on a rather stiff and a more flexible surface
material, respectively.
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Appendix A: Continuous Face-Based Shape Matching

We show how to extend the local and global shape matching ap-
proaches of [Hor87] and [PLH02] from discrete point correspon-
dences to continuous face correspondences.

Suppose we are given two functions a (u) and b (u) defined
by bi-linear interpolation of four values {a00,a10,a01,a11} and
{b00,b10,b01,b11}, respectively. Then their L2 inner product sim-
plifies to a weighted sum of 16 combinations of corner values:Z

[0,1]2

a (u) ·b (u)du =
1
9

1

∑
i, j,k,l=0

ai j ·bkl ·2(−|i−k|−| j−l|)

=: 〈a, b〉2 .

Using this, the continuous pairwise energy of Equation (1) evaluates
to

Ei j =
〈
f i→ j − f j→i, f i→ j − f j→i〉

2 .

In order to generalize the local shape matching of [Hor87], we
first compute the weighted centroids ci and c∗ of the two face sets
to be aligned, which leads to

ci

c∗

}
=

1

∑ j∈Ni
wi j

∑
j∈Ni

wi j

4

1

∑
k,l=0

{
f i→ j
k,l

f j→i
k,l

.

To derive the optimal rotation Ri according to [Hor87], we build the
matrix N =

Sxx + Syy + Szz Syz −Szy Szx −Sxz Sxy −Syx

Syz −Szy Sxx −Syy −Szz Sxy + Syx Szx + Sxz

Szx −Sxz Sxy + Syx −Sxx + Syy −Szz Syz + Szy

Sxy −Syx Szx + Sxz Syz + Szy −Sxx −Syy + Szz


from the component-wise L2 inner products

Sxx = ∑
j∈Ni

wi j

〈(
f i→ j − ci)

x ,
(
f j→i − c∗

)
x

〉
2

,

Sxy = ∑
j∈Ni

wi j

〈(
f i→ j − ci)

x ,
(
f j→i − c∗

)
y

〉
2

,

and analogously for the other components. The eigenvector corre-
sponding to the largest eigenvalue of N gives the optimal rotation
Ri when interpreted as a unit quaternion. The optimal translation
finally is ti = c∗−Ri ci.

For the generalization of the global shape matching approach
of [PLH02] we have to adjust the linear system corresponding
to the minimization of Equation (6). Assume two corresponding
points p i→ j and p j→i sampled from neighboring faces f i→ j (u)
and f j→i (u). Their contribution to the global energy is

wi j
∥∥(

p i→ j + ωi ×p i→ j + vi
)
−

(
p j→i + ω j ×p j→i + v j

)∥∥2
,

which gives four 6× 6 matrix blocks. From those the global block
structure of the matrix and the numeric values are easily derived.
The continuous formulation then only requires to replace the in-
volved products of the form (p i→ j)x ·(p j→i)y by the inner products〈(

f i→ j
)

x ,
(
f j→i

)
y

〉
2

in the respective matrix entries.
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