
Eurographics Symposium on Geometry Processing (2005)
M. Desbrun, H. Pottmann (Editors)

Sparse Low-degree Implicit Surfaces with Applications to
High Quality Rendering, Feature Extraction, and Smoothing

Yutaka Ohtake Alexander Belyaev Marc Alexa
RIKEN MPI Informatik TU Darmstadt

Abstract
We propose a new surface representation delivering an accurate approximation to a set of points scattered over
a smooth surface by Sparse Low-degree IMplicits (SLIM). The SLIM surface representation consists of a sparse
multi-scale set of nonconforming surface primitives which are blended along view rays during the rendering
phase. This new representation leads to an interactive real-time visualization of large-size models and delivers a
better rendering quality than standard splatting techniques based on linear primitives. Further, SLIM allows us
to achieve a fast and accurate estimation of surface curvature and curvature derivatives and, therefore, is very
suitable for many non-photorealistic rendering tasks. Applications to ray-tracing and surface smoothing are also
considered.

1. Introduction

Efficient approximation, representation, and processing of
complex large-size signals, images, and shapes is of pri-
mary importance in many information-processing areas.
Sparse approximation techniques aimed to build an eco-
nomical and accurate representation of an input sig-
nal as a combination of elementary signals have be-
come increasingly popular in signal and image process-
ing [CDS01] (see also references therein). Sparse repre-
sentations of 3D shapes and, in particular, 3D point scat-
tered data have received so far considerably less attention
although radial basis functions [SPOK95, TO99, CBC∗01],
partition of unity [OBA∗03, OBS04b], moving least
squares [ABCO∗01, AK04, SOS04], and point splatting
[PZ∗00, RL00, KV01, BSK04] surface representation tech-
niques fit in the framework of sparse surface approximations.

In this paper, we propose a novel sparse shape representa-
tion which approximates a scattered set of points by Sparse
Low-degree IMplicits (SLIM for short). Following the gen-
eral approach of [PZ∗00] let us define a surface element, sur-
fel, as the triplet

s = (c,ρ, f (x)) , (1)

where c is the center of a ball of radius ρ and

f (x) = 0 (2)

delivers a local surface approximation inside the ball. Given

Figure 1: A SLIM-based approximation of the Stanford
Happy Buddha model consisting of only 25K cubic sur-
fels. Left: the surfel balls are colored according to their
size which decreases from blue to red. Middle: The model
is shaded using the first-order surface derivatives. Left: the
mean curvature map.

a set of points P = {p1, . . . ,pN} sampled from a sur-
face in R

3 and equipped with normals, our SLIM rep-
resentation consists a sparse and hierarchical set of sur-
fels {s1, . . . ,sM}, M � N, and delivers an accurate multi-
resolution shape adaptive approximation of the surface.
Since we want to achieve an interactive real-time visualiza-
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tion of large-size models [LPC∗00], we use low-degree poly-
nomials (quadratic and cubic) as local approximations in (1).

The SLIM surfaces are not globally smooth (they are C−1

smooth in terminology of [WK04]) since they are composed
by nonconforming overlapping surfels (1) (an analogy with
cabbage leaves seems appropriate here). It is worth to men-
tion here that approximating surfaces by a set of noncon-
forming smooth elements is now a standard FEM technique
(the so-called variational crime) for numerical solving hy-
drodynamics and thin-plate problems [BS02].

Once the SLIM representation of a given surface is built,
we achieve a fast high-quality surface rendering by blend-
ing local approximations (2) along view rays. Further we
estimate surface curvatures using the same blending-along-
view-rays procedure applied to derivatives of local approxi-
mations (2).

Figures 1, 2, and 3 demonstrate merits of the SLIM ap-
proach in high-quality rendering (photo-realistic and not)
and accurate curvature estimation.

Figure 2: Shading and reflection lines are used to reveal
the quality of approximations. Top: SLIM approximations
of a sphere with linear and quadratic surface elements: the
sphere is approximated by 128 linear surfels (left), 450 lin-
ear surfels (middle), 105 quadratic surfels (right). Bottom:
reflection lines on the Phong-shaded Stanford Buddha mesh
consisting of about 1M triangles (left) and on a SLIM-based
approximation of the model with 50K quadratic primitives
(right).

While most of components of our approach are rather
known (our hierarchical representation of splats is similar to
that of [LPC∗00], our local fitting procedure is an extension
of that developed in [OBS04b], the idea of using high-order
local approximations for better rendering was also exploited
in [KV01], various blending-along-view-rays schemes were
used in [PZ∗00, SJ00, PSG04], and only the idea of blending
of derivatives of local approximations (2) seems completely
new), it delivers a unique combination of fast high-quality
rendering and interactive curvature feature detection.

In the field of interactive high-quality surface splatting,
the main competitors of our approach are Differential Points

of Kalaiah and Varshney [KV01] and Phong Splatting of
Botsch et al. [BSK04]. Roughly speaking, both Differen-
tial Points and Phong Splatting deliver a quadratic accuracy
in surface approximation. However rendering with quadratic
patches (or using equivalently accurate linear patches in the
space of surface normals) fails to deliver accurate results in
a small vicinity of the surface curves with vanishing Gaus-
sian curvature (the so-called parabolic lines) where a cu-
bic accuracy approximation is required [OY93]. In contrast,
quadratic and cubic patch blending procedures used within
the SLIM approach are capable to deliver higher-order sur-
face approximations.

Our simple SLIM-based procedure of estimating high-
order surface derivatives leads to a robust and fast detection
surface features based on curvatures and curvature deriva-
tives. For large-size models, it can compete with such so-
phisticated feature detection techniques as one proposed
recently in [DFR04]. This makes our approach extremely
useful for various non-photorealistic rendering applications
[GG01, DFRS03].

The SLIM surface rendering toolkit accompanying the pa-
per allows the reader to verify our claims made above. Due to
an out-of-core preprocessing stage and sparsity of the SLIM
surface representation, practically there is no limit to the size
of models to be processed with the toolkit.

In this paper, we also demonstrate that the projection-
based framework of our SLIM-based shading approach (see
Section 3 for details) can be easily combined with ray-
tracing rendering techniques.

Finally, to stress importance of our approach to geomet-
ric modeling tasks, we consider a simple application of the
SLIM-based surface representation to surface denoising.

Figure 3: Shading of - and detecting suggestive contours on
- a lower part of the David statue model represented as a
SLIM surface at different levels of detail.

2. Creating SLIM surface representation
The SLIM representation of a smooth surface consists of a
set of surfels (1) delivering overlapping local approxima-
tions of the surface. Our approach to generating the SLIM
representation can be considered as a multi-scale extension
of the method of generating an adaptive partition-of-unity
surface approximation [OBS04b] and consists of three com-
ponents: selecting a center c of a new surfel s, computing the
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surfel radius ρ , determining the corresponding local poly-
nomial approximation f (x) = 0. Loosely speaking, we first
select randomly a new surfel center c among hose points of
P which are not sufficiently covered by the already con-
structed surfels. Then we search an optimal ρ such that the
local approximation f (x) = 0 (which depends on c and ρ)
minimizes a certain error metric.

Local polynomial approximation. Given the two first
components of a surfel s defined by (1), our task is to con-
struct the third component, local polynomial approximation
f (x). Various schemes for local polynomial fitting were an-
alytically and experimentally studied in [CP03, GI04]. For
our purposes, the following simple procedure suffices. First
the surface normal at surfel center c is roughly estimated by
averaging the surface normals assigned to the points of P

from the surfel ball {|p− c| < ρ}. Then a local coordinate
system (u,v,w) with the origin at c is introduced, such that
the plane (u,v) is orthogonal to the normal at c. Finally, the
bi-quadratic polynomial associated with surfel s is given by

f (x) = w−
(

a11u2 +2a12uv+a22v2 +a1u+a2v+ao
)

,

where, x = (u,v,w) and the unknown coefficients are deter-
mined by minimizing the sum ∑ωi f (pi)2 taken over Ps =
P ∩{|c− p| < ρ}. Here ωi are Gaussian-like weights pe-
nalizing points which are “too far” from surfel center c. Es-
timating the linear and cubic local surface approximations is
similar.

Optimal surfel radius. Given the surfel center c we deter-
mine the surfel radius ρ using a slightly modified version of
the MDL-based procedure proposed in [OBS04b]. The ab-
breviation MDL stands for the Minimal Description Length
principle, a scientific generalization of Occam’s razor. Let
ε(ρ) denote a local L2 error measure estimating the devia-
tion of points Ps from local approximation f (x). We con-
sider a regularization of ε(ρ)2

E(ρ) = ε(ρ)2 +λ (TMDL/ρ)2 , (3)

where λ is constant and parameter TMDL is a user-specified
parameter which controls the trade-off between the sparse-
ness and approximation quality. Indeed the second term in
the right-hand side of (3) prevents overfitting and penal-
izes the number of primitives used to approximate P , see
[OBS04b] for a statistical nature of such regularization. To
determine λ in (3) we compute the smallest eigenvalue of
the co-variance matrix for each point of P with its ten near-
est neighbors and set λ equal to the arithmetic mean of the
eigenvalues over all the points of P .

The images of Figure 4 show typical behaviors of func-
tions ε(ρ) and E(ρ) for surface regions of various geomet-
ric complexity. We emphasize here that the both the energies
ε(ρ) and E(ρ) may have multiple minima. We use Brent’s
method [PTVF93] to find essential minimums of E(ρ). The
method is based on parabolic interpolation and starts from

three points ρl < ρm < ρr such that the value of E(ρ) at the
middle point is less than its values at the end points. Mo-
tivated by the right image of Figure 4 we also require that
ε(ρl), ε(ρm), and ε(ρr) be monotonically increasing:

E(ρl) > E(ρm) < E(ρr) and ε(ρl) < ε(ρm) < ε(ρr). (4)
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Figure 4: Graphs of E(ρ) and ε(ρ) for surface regions of
different geometric complexity.

Apparently, it is not obvious how to determine the desired
triplet (ρl ,ρm,ρr) in practice. In the following, we use a slid-
ing segment strategy for detecting essential minima of (3)
and building a tree-like hierarchical surfel-based shape rep-
resentation.

Multi-scale surfel-based approximation. Let us denote by
L the main diagonal of the bounding box of P , set ρ0 =
L/10, and generate a sequence of overlapping segments

(

ρ(k)
l ,ρ(k)

m ,ρ(k)
r

)

= ρ0(gk+1,gk,gk−1), (5)

where g = (
√

5−1)/2 is the golden ratio, as seen in Figure 5
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Figure 5: Sliding intervals for minimum finding of E(ρ).

To ensure that a set of surfel regions B = {b j}, b j = {|x−
c j| < ρ j}, delivers a sufficient cover of P , for each x we
introduce an overlap measure

o(B,x) = ∑
b j∈B

GR j (‖x− c j‖),

where GR j (ρ) = G(ρ/R j) is a Gaussian-like function whose
tails are smoothly splined to zero and R j = αρ j . This addi-
tional parameter α plays an important role in our rendering
scheme and will be discussed in the next section. We say
that point p ∈P is γ-covered by B if o(B,p)≥ γ . We have
found that γ = 0.1 works well for all models we tested.

An initial set of balls B1 is chosen as follows. Initially all
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the points of P are marked as uncovered. We pick c ∈ P

randomly and remove from the set of uncovered points those
points pi for which {‖pi − c‖ < ρ0}. Then we chose an-
other uncovered point and repeat the whole procedure until
no points of P remain uncovered.

For each selected point p we define a surfel s =
(c,ρ, f (x)) whose radius ρ is determined by minimizing (3)
with the triplet (5) with k = 1. Surfel s defines a node at
the level k = 1. If both the conditions of (4) are satisfied, a
value of r minimizing (3) on [ρl ,ρr] is found and assigned
to the surfel s which is considered as a leaf node. Otherwise
ρ = ρr is assigned to the surfel. This procedure creates two
families of surfels: the leaf surfels whose regions are balls
B1 and remaining surfels which will serve as internal nodes
in a tree-like structure that we are building. We call the latter
internal surfels. The local approximations f (x) of the inter-
nal surfels at level k = 1 are found with ρ = ρ (1)

r = ρ0.

On subsequent levels k, parts of the input point set P

are covered by the balls of the sets B1, . . . ,Bk−1. The re-
maining points are uncovered (more precisely, covered only
by the regions of internal surfels). As on the first level, ap-
proximation centers are chosen randomly from the set of un-
covered points until a covering set of centers for level k is
constructed. The balls whose radii are determined using the
triplet (5) satisfying (4) form Bk and their surfels are con-
structed. The remaining balls are the surfel regions or inter-
nal surfels whose local approximations f (x) are constructed
with ρ = ρ(k)

r = ρ0gk−1. The procedure is repeated until all
points P are covered by B =

⋃

k Bk.

At the next stage, a rendering tree-like structure of balls
and their surfels is built. The internal surfels at level k are
connected with surfels at the (k + 1)-level: a link between
an internal surfel s = (c,ρ, f ) at the level k and a surfel s′ =
(c′,ρ ′, f ′) (either leaf or internal one) at the (k + 1)-level is
created if c′ lies inside the region of s, as demonstrated in
the right image of Figure 6. Finally, a ball enclosing all the
constructed balls is added as the root node, see the left image
of Figure 6.

level 0
level 1
level 2

Figure 6: Surfel/ball tree-like structure built for multi-scale
rendering. Left: the leaf nodes are colored in red. Right: es-
tablishing links between two subsequent level of the hierar-
chy of surfels (balls).

Figure 7 visualizes building the surfel hierarchy for the
Stanford Happy Buddha model.

3. SLIM-based Shading
As mentioned in Introduction, typically the primitives of a
composite implicit surface (RBF/PU/MLS) are blended in

k = 2 k = 3 k = 4 k = 5 k = 6
Figure 7: Converting internal surfels (blue) into leaf surfels
(pink) for the Stanford Happy Buddha model.

space. Usually direct rendering of such composite implicit
surfaces is computationally expensive: blending simple sur-
face primitives leads to an algebraically and geometrically
complex surface for which the basic rendering problem, an
accurate detection of intersections between a ray and a sur-
face, has high computational complexity. See the left image
of Figure 8.

Our simple, yet effective idea is to first find the inter-
sections between a viewing ray and the few low-degree
(quadratic/cubic) polynomial patches corresponding to sur-
fels closest to the viewer and then interpolate the resulting
points on the ray, as shown in the right image of Figure 8.
This is in a sense similar to splatting [ZPBG01] when linear
functions are used, however, here we use weights that are
derived from the construction of the representation.

Figure 8: Left: blending surface primitives in space greatly
complicates practical detection of intersections with viewing
rays. Right: blending of intersections between surface prim-
itives and viewing rays is computationally simple.

Generating intersections on rays. Given a ray, we first
need a ray point q̂ that is expected to be close to the re-
sulting ray-surface intersection. Once q̂ is determined, a
set q̂-supported surfels {si = (ci,ρi, fi(x)) : ‖q̂− ci‖ < ρi}
is collected. For each such surfel, intersection qi between
fi(x) = 0 and the ray is computed (if there are several inter-
section, we choose the one closest to q̂). Then the resulting
intersection on the ray is obtained by simple averaging:

q =
∑Gri(‖qi − ci‖)qi
∑Gri(‖qi − ci‖)

. (6)

Differential properties of the individual implicit primi-
tives fi(x) = 0 are averaged in the same way, and can be used
to compute normals or curvatures. For example, the normal
in q is set to

n =
∑Gri(‖qi − ci‖)∇ fi(qi)
‖∑Gri(‖qi − ci‖)∇ fi(qi)‖

, (7)
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as demonstrated in the left image of Figure 9.

Figure 9: Left: computing normals for SLIM-approximated
surfaces. Right: illustrating our forward rendering proce-
dure. The red circles are used to mark initial approximations
q̂s. The green dot and green arrow denote intersection q de-
fined by (6) and its normal n determined by (7), respectively.

Forward rendering. Computing (6), (7) and determining q̂
can be efficiently performed using a forward rendering ap-
proach including a z-buffer. Our rendering method consists
of two stages: First, all primitives are forward projected to
determine a lower bound on the z value per pixel, and then
the surfels supporting the front-most points are evaluated
and averaged on each ray.

In the first stage, a point q̂uv for each pixel (u,v) is com-
puted. The depth of q̂uv is initialized to the far clipping plane.
Then all leaf surfels si = (ci,ρi, fi(x)) are projected to the z-
buffer as follows:

Step 1: Project the α-shrunken surfel region ‖x− ci‖ < R j ,
R j = αρi, to the screen space.

Step 2: For each pixel (u,v) in the projected region:

Step 2.1: Find the first intersection q̃ of fi(x) = 0 and the
view-ray through (u,v). If there is no intersection, then
continue .

Step 2.2: If the depth of q̃ is less than the depth of q̂uv,
set q̂uv = q̃.

Here and everywhere below we use the continue state-
ment in the standard programming sense.

A kind of α-trimming in Step 1 is used to exclude regions
that are only minimally supported by the surfels. Based on
our numerical experiments, we recommend to set α = 2/3.

The right image of Figure 9 illustrates computing q̂uv.

During the second stage, we compute (q-position) and
(q-normal) as follows. The variables Σquv, Σguv, and Σwuv
used below store sums required to evaluate (6) and (7) and
are initialized to zero.

Step 1: Project the spherical support region ‖x−ci‖< ρi to
the screen space.

Step 2: For each pixel (u,v) in the projected support region:

Step 2.1: If ‖q̂uv − ci‖ ≥ ρi, then continue .
Step 2.2: Find closest to q̂ intersection quv between

fi(x) = 0 and the corresponding view-ray through
(u,v). If there is no intersection, then continue .

Step 2.3: Compute the gradient guv = ∇ fi(quv) and the
spatial weight w at quv.

Step 2.4: Σquv+ = wquv, Σguv+ = wguv, Σwuv+ = w.

After traversing all balls, we perform normalizations, quv =
Σwquv/Σwuv and nuv = Σguv/‖Σguv‖, for each pixel (u,v)
with Σwuv 6= 0. Finally, Phong shading is used.

View dependent refinement. So far we have simply pro-
jected the surfel regions to the screen. This might result in
many (very small) surfels projected to one pixel. It is un-
likely that this is necessary for a good visual result. So our
tree-like structure described in Section 2 is used for imple-
menting a view-dependent LOD refinement. We simply tra-
verse the tree-like structure as long as

• the surfel region (ball) corresponding to the node inter-
sects the view frustum,

• and the size of the surfel region projected on the screen
space is larger than a few pixels (four pixels in our current
implementation).

We pay no special attention to the contours.

LOD shading of SLIM-approximated 1mm David statue
is illustrated in Figure 10.

Figure 10: LOD shading of SLIM-approximated David
statue. Left: 730 × 650 pixels, 1.7 sec. Middle: 590 × 650
pixels, 1.0 sec. Right: 250× 650 pixels, 0.4 sec. The image
heights are equal and about 650 pixels. Computations were
performed on a 3.0 GHz Pentium 4 CPU.

4. Results & Discussions
In Figures 2,11, 12, 13, and 17 we use reflection lines, sug-
gestive contours and crest lines [DFRS03], curvature maps,
and shadings for demonstrating advantages of the quadratic
and cubic SLIM approximations and comparing them with
each other.

Table 1 presents numbers of leaf surfels, threshold values,
computational time measurements for quadratic and cubic
SLIM approximations of various point datasets. Notice how
compact the SLIM shape representation is.

The rendering results of our approach demonstrate that
unconnected higher order primitives do represent a very
good compromise between a useful modeling representation
and the possibility of direct, fast, high quality visualization.
In addition, differential information is readily available in
every pixel, and can be used for NPR. Further, it turns out
that a separate blending of surface derivatives often leads to
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Figure 11: Two left images: the original Phong-shaded
mesh model of the Stanford dragon (871K triangles) and
its suggestive contours computed in the image plane. Two
right images: the model is SLIM-approximated using 44K
quadratic surfels. The suggestive contours (also drawn in
the image plane) are much cleaner.

Figure 12: Quadratic (left) vs. cubic (right) SLIM approxi-
mations. Top: coloring by kmax, the maximal principal cur-
vature. Bottom: blue ridges consisting of kmax-maxima and
red ravines. Using cubic SLIMs leads to a better curvature
feature detection.

Figure 13: High-quality suggestive contours (left) and crest
lines (right) are easily detected on SLIM-approximated Ar-
madillo (middle). These feature lines are computed in the
image space as suggested by DeCarlo et al. [2003].

a better estimation of differential surface attributes than a
conventional approach consisting of surface reconstruction
and then estimating differential characteristics of the recon-
structed surface [OBS04a, GCO05]. It is especially true if a
partition-of-unity reconstruction is used and advantages of

∑wi(x)D [ fi(x)]
∑wi(x)

over D
[

∑wi(x) fi(x)
∑wi(x)

]

, (8)

where D is a linear differential operator, are obvious. Here
{ fi(x)} denote local surface approximations and {wi(x)} are
blending functions. The sketch of Figure 14 and Figure 15
illustrate advantages of the left approximation in (8) over

the right one (PU) for D = ∇ in the blending-along-view-
rays case. Figures 16 demonstrates that the same idea with D
used to denote the matrix-valued operator the second-order
derivatives can be applied for robust curvature estimation.

Wiggly junction

pun
View direction

slimn

Figure 14: Illustrating advantages of the left approximation
in (8) over the right one in the blending-along-view-rays
case, D = ∇.

Figure 15: Left: shading w.r.t. normals obtained via
blending-along-view-rays (the left equation of (8)). Right:
shading w.r.t. normals estimated from a partition-of-unity
surface reconstruction (the right equation of (8)).

Figure 16: Coloring by mean curvature. Blending-along-
view-rays of 1st- and 2nd-order derivatives is used for
quadratic (left) and cubic (middle-left) SLIM primitives.
Necessary derivatives are estimated according to the right
part of (8) with quadratic (middle-right) and cubic (right)
surface patches.

In Figures 12, 16, and 17 we compare approximation
properties of SLIM surfaces composed of quadratic and cu-
bic patches. Using cubic patches allows for slightly better
shading results and gives a significant improvement in esti-
mating surface curvatures and curvature derivatives. On the
other hand, sometimes cubic surfels may fail to deliver an
appropriate approximation at high-curvature regions due too
poor estimation of surface normals, see a small defect in the
upper part of the wing in the top-right image of Figures 17.

The tree-like structure described in the third part of Sec-
tion 2 and containing the multi-scale surface representation
can be created offline and out-of-core. Out-of-core process-
ing is simple, because all calculation are local. The timing
results of Table 1 show that even large data sets (like the
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Figure 17: The Caltech feline model (200K points) is SLIM-
approximated with 31K linear surfels (left), 16K quadratic
surfels (middle), and 12K cubic surfels (right) using the
same thresholding: TMDL = 0.02. Computational times for
generating top-row images (approx. 450×600 pixels) are
0.45 sec. for linear elements, 0.72 sec. for quadratic ones,
and 1.66 sec. for cubic surfels.

1mm David statue model with 28 million points) can be pro-
cessed in a matter of minutes, while smaller data sets are
typically a matter of seconds. In general, running times are
quasi-linear in the input and output, where the factor in the
output is much larger due to the minimization for each ball.
The resulting multi-scale representation is not only better
suited for rendering, it is also much more compact.

Model #points #leafs TMDL SLIM type Timing

Dinosaur 56K 6K 0.02 quadratic 8 s
Dragon 438K 44K 0.01 quadratic 67 s
Dragon 438K 31K 0.01 cubic 86 s
Thai Statue 5M 345K 0.005 quadratic 15 m
David Statue 28M 933K 0.002 quadratic 64 m

Table 1: Timing results for generating SLIM-approximations
(timings for IO file operations are included) on a 3.0 GHz
Pentium 4. It requires about 100 Mb per 1 million points.
The 1 mm David statue model is processed in an out-of-
core manner: the model was sliced in several parts along
the longest axis of its bounding box. The slices are ρ0-
overlapped for computing local approximations correctly.

The projection-based framework of our shading approach
described in Section 3 is nicely adapted for implementing
ray-tracing methods. The top image of Figure 18 demon-
strates standard ray-traced rendering of a quadratic SLIM-
based approximation of the Michelangelo’s "Night" model
(courtesy of the Digital Michelangelo Project) with two light
sources. Since the original model has multiple gaps, as seen
in the bottom images of Figure 18, the ray-traced image con-
tains small white spots which, if necessary, can be easily
eliminated by image processing tools.

The bottom images of Figure 18 present a visual compar-

Figure 18: Top: standard ray-traced rendering of a
quadratic SLIM-based approximation of the "Night" model
with two light sources; original 11 M points are approxi-
mated by 432 K quadratic patches; it took 86 sec. for gener-
ating the image (1000×1000 pixels). Bottom-left: a zoomed
fragment of the model approximated and rendered using
quadratic SLIM patches. Bottom-right: the same fragment
is rendered with our implementation of the Stanford QSplat
Multiresolution Point Rendering System (we use our imple-
mentation instead of the original one proposed in [RL00]
and available online in order to equalize shading effects for
the bottom images).

ison of the SLIM and QSplat [RL00] approximations. While
SLIM delivers a significantly better surface approximation
than QSplat, SLIM can create small bumpy defects because
of its attempts to cover missed data gaps. These gaps are
mostly untouched by QSplat because it uses splats of con-
stant size.
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Figure 19: Left: a noisy mesh used for testing in [JDD03]. Middle: the noisy mesh is smoothed by non-iterative, feature-
preserving, bilateral filtering scheme [JDD03]. Right: the same data is smoothed by projecting the noisy points onto the corre-
sponding SLIM surface.

Our SLIM surface representation that we use for render-
ing purposes does not deliver an accurate surface approxima-
tion. Strictly speaking, our SLIM-based visualization proce-
dure is not invariant w.r.t. rigid transformations. This is the
price we pay for fast rendering and curvature feature extrac-
tion. On the other hand, we found out that the crest lines
[DFRS03, OBS04a], very delicate surface features based on
1st and 2nd curvature derivatives, change only slightly when
we rotate the surface.

Smoothing. There are several possibilities to use the SLIM
surface representation for smoothing scattered point data
(equipped with normals) and meshes. One simple idea con-
sists of using the averaging procedure defined by (6). Given
an oriented point (p,n), we set q̂ = p, consider the ray p+tn,
and use (6) to define the smoothed location q of the initial
noisy point p.

For a comparison we choose the non-iterative bilateral fil-
tering mesh smoothing method of Jones et al. [JDD03] since
it is simple and elegant, the authors accurately recorded their
experiments, the source code and meshes used in [JDD03]
are available online, and last but not least, the method was
presented in a recent Siggraph paper. In Figure 19 we com-
pare the method with our simple SLIM-based smoothing
procedure by smoothing a model used in [JDD03].

A slightly more complex SLIM-based smoothing scheme
can be used for processing noisy meshes. Given a trian-
gle mesh, let us apply the projection operation described
above to each triangle centroid, estimate the normals by
(7) and then find positions of the new mesh vertices by
minimizing the Quadric Error Metric (QEM) [GH97]. This
mesh smoothing scheme is motivated by the feature sensitive
surface extraction method [KBSS01] exploiting QEM. Fig-
ure 20 demonstrates performance of the scheme by smooth-
ing a noisy mesh reconstructed from point data data acquired
by an inexpensive computer-vision system [BP]. The result
has a comparable quality to that obtained in [OBS02] where
a computationally expensive but powerful mesh smoothing
method was developed and the same noisy dataset was used
for testing.

Sparsity analysis. We use the hand model mesh (courtesy
of FarField Technology Ltd [Far]) to analyze sparsity prop-

Figure 20: Left: a noisy mesh reconstructed from data ac-
quired by a computer-vision system [BP]. Right: the mesh
is smoothed via projecting the mesh centroids onto a SLIM
surface and generating new vertices by a QEM-based opti-
mization procedure.

erties of the SLIM approximations with linear, quadratic,
and cubic primitives. To determine the approximation er-
ror we consider the projection procedure define in our first
smoothing scheme described above. Then the L2 approxima-
tion error is computed by normalized averaging of squared
projections of the mesh vertices. Figure 21 delivers a visual
comparison of the SLIM approximations of the same accu-
racy. Note that we need 7 floats to describe a linear SLIM
primitive (the coordinates of the center, the support size, and
the coefficients) 12 floats for a quadratic primitive, and 16
floats for a cubic one. Thus the sparsity of the quadratic and
cubic SLIM approximations are nearly equal while the spar-
sity of the linear SLIM is 1.5 times smaller. As seen in Fig-
ure 22, even a significant increasing of the number of linear
primitives is not sufficient to achieve a comparable rendering
quality.

However rendering with linear primitives as in [RL00] is
always faster than with nonlinear ones. Indeed the rendering
cost does not depend on the number of primitives. It is de-
termined by the number of ray/implicit intersections that we
have to compute and depends on the number of rays.

c© The Eurographics Association 2005.



Y. Ohtake & A. Belyaev & M. Alexa / SLIM Surfaces and Their Applications

Figure 21: The same 0.01% L2-approximation accuracy is
achieved with 5.4K linear primitives (left), 1.9K quadratic
patches (middle), and 1.3K cubic patches (right).

Figure 22: Left: a zoomed part of the hand model approxi-
mated by 1.9K quadratic patches. Right: the SLIM approxi-
mation with 25K linear primitives is not enough to achieve
a comparable rendering quality.

5. Conclusion and Future Work
We have presented a new point-based surface representation
and demonstrated its usefulness for various rendering and
geometric modeling tasks.

The SLIM surface rendering toolkit accompanying the pa-
per allows the reader to verify a high efficiency of our ren-
dering approach. The source code, binaries, and some mod-
els are available from http://www.riken.go.jp/lab-www/V-
CAD/VCAD-Team/members/ohtake/slim/

A general open problem is to construct a good approx-
imation of a given surface with a small number of higher
order elements. The large number of unknowns (position,
support region, parameters of the polynomial) makes an op-
timal solution intractable. Particular avenues are very impor-
tant though: Adding elements for representing sharp features
or ellipsoidal supports are likely to enhance the system.

As the reader probably has noted, the SLIM and
MLS surface representations have many similarities. Thus
SLIM can serve as a bridge between various splatting
techniques [RL00, SJ00, KV01, BSK04], partition-of-unity
approximations [OBA∗03, OBS04b], and MLS surfaces

[Lev04, ABCO∗01, AK04]. Equipping SLIM surfaces with
necessary mathematical rigor and clarifying relations be-
tween various surface representations constitute an interest-
ing direction for a future research.

Our current implementation performs all operations on
the CPU. We would expect a considerable speed-up by per-
forming some parts of the necessary steps on programmable
hardware, however, have not exploited this option so far.
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