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Abstract
Surface geometry is commonly represented by a collection of primitives. Conforming representations consist of
primitives meeting at their boundaries (e.g., in a triangle mesh two triangles are incident upon an edge). Without
the restriction to conforming elements there are no dependencies among primitives, leading to more degrees of
freedom for each primitive. This yields more efficient and flexible algorithms for reconstruction, processing, and
rendering, as well as compact and accurate representations.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Extended Abstract

Shapes are represented in computer graphics mostly by col-
lections of primitives. Typically, primitives are connected,
yielding at least aC0 approximation of the surface. Lately,
surface representations based on disconnected primitives are
becoming more and more popular.

Piecewise approximations of curves and surfaces could be
classified based on the complexity of each piece and the de-
gree of continuity along the boundaries of pieces. A canon-
ical example are piecewise polynomial surfaces. The com-
plexity of pieces equates with the polynomial order. Usually,
higher polynomial order is exploited to maximize the degree
of continuity among patches.

Following this reasoning, piecewise linear curves are con-
tinuous but have discontinuous tangents (i.e.C0 continu-
ous curve); piecewise quadratic curves are tangent continu-
ous but have discontinuous curvatures (C1), piecewise cubic
curves have continuous curvatures (C2), and so on. A point
based representation would complement this set of represen-
tations at the lower end of degrees and continuities. Based on
the correspondence of polynomial degrees and continuities it
could be viewed asC−1 continuous.

Points are interesting because they naturally result from
most acquisition systems and are could be used as a render-
ing primitive [ZPvG01]. By connecting a surface to the set
of points [Lev03, AA03, AK04] points can also be used for
modeling shapes [ZPKG02].

However, one could well deviate from the idea of using
the degrees of freedom per segment (i.e. the polynomial de-
gree) to maximize the continuity of the compound represen-
tation and rather optimize other measures as the error to the
original shape. The promise is that more degrees of freedom
lead to more accurate shape approximations. The idea of rep-
resentations with individually varying degrees of freedom
per segment and continuity among segments is illustrated
in Figure 1. In particular, we can show that a set of linear
surface patches (i.e. polygons) can approximate a given sur-
face with smallersymmetric Hausdorff errorthan connected
linear pieces.

Continuity among segments
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Figure 1: Representations of a curve with polynomial pieces
of varying order and different continuity at segment bound-
aries.
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Note that most shape approximation approaches only op-
timize one sided approximation errors, i.e. the distance of
each point on the surface being approximated to the closest
point on the approximation. A cardinal example is the recon-
struction of a surface from points, where mostly the distance
of the input points to the reconstructed surface is optimized;
yet, parts of the reconstructed surface might be arbitrarily far
away from the point set.

Figure 2 illustrates the problem of one-sided distances and
how disconnected primitives can improve the Hausdorff er-
ror: A unit circleC is approximated by three line segments
L – connected in the upper row (i.e., a triangle) and discon-
nected in the lower row. In the first column vertices of the
triangle are placed on the circle, which is the common ap-
proach for computing PL approximations. The distance is
symmetric and we haved(C,L) = d(L,C) = 1/2. Discon-
necting this set of lines and changing the length cannot im-
prove this distance. If line segments are chosen to be tangent
to the circle, we find that the distance from circle to trian-
gle d(C,L) = 1/2 but the distance from triangle to circle is
(.L,C) = 1. Disconnecting the line segments and optimizing
their length leads to an overall distanceh(C,L) = 1/2. Op-
timizing the line segments for a symmetric error yields the
results shown in the right column. The triangle hash(C,L) =
1/3 but for the line segments we findh(C,L) = 1/4.

The other main advantage of using disconnected pieces
is computational: Each piece can be approximated indepen-
dently from others. This results in algorithms that can pro-
cess large sampled surfaces with only a small memory over-
head.

The basic idea for computing sets of disconnected shape
representations is to use a spatial partitioning and to approx-
imate the surface individually in each cell. Common types
of cells are boxes resulting from spatial subdivisions (i.e. an
octrees or kd-tree) [OBA∗03], or spheres resulting from a
bounding hierarchy [OBS04].

Figure 2: Approximation of a circle by three connected (up-
per row) or disconnected (lower row) line segments.

If the individual pieces have very small error they could
be rendered directly [ABCO∗01]. However, commonly the
individual would leave visible gaps. Several better options
for rendering are:

• If the pieces are described in implicit form and sufficiently
overlapping, they could be blended and the resulting zero
set is a smooth surface. [OBA∗03, OBS04].

• The set could be converted to a closed surface using recent
reconstruction approaches [Lev03, SOS04].

• Similarly to recent splatting approaches [BSK04] the
pieces could be scan converted and blended in images
space.

The last approach leads to fast and high quality rendering of
the representation. In addition, it also provides smooth nor-
mals and curvatures by blending these quantities in screen
space as well.
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