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Abstract
Catmull & Clark subdivision is now a standard for smooth free-form surface modeling. These surfaces are ev-
erywhere curvature continuous except at points corresponding to vertices not incident on four edges. While the
surface has a continuous tangent plane at such a point, the lack of curvature continuity presents a severe problem
for many applications. Topologically, each n-valent extraordinary vertex of a Catmull & Clark limit surface corre-
sponds to an n-sided hole in the underlying 2-manifold represented by the control mesh. The problem we address
here is: How to fill such a hole in a Catmull & Clark surface with exactly n tensor product patches that meet the
surrounding bicubic patch network and each other with second order continuity. We convert the problem of filling
the hole with n tensor product patches in the spatial domain into the problem of filling the hole in the n frequency
modes with a single bidegree 7 tensor product patch.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Subdivision techniques for modeling smooth free-form sur-
faces have become popular in recent years due largely to
their ability to represent surfaces of arbitrary topological
type. The surfaces of Catmull & Clark [CC78] have sup-
planted NURBS in many graphics applications [DKT98].
However, these techniques have not seen wide acceptance in
the CAD and engineering world due to the lack of second
order continuity at so-called extraordinary vertices - ver-
tices not incident on four edges. Catmull & Clark surfaces
are everywhere C2 except at finite collection of such points.
This defect is a severe limitation for applications that require
class A surfaces.

A Catmull & Clark surface is a smooth approximation to
a 2-manifold control mesh. The subdivision operator itera-
tively refines and smoothes the control mesh resulting in a
limit surface. Refinement preserves topology, meaning the
topology of the limit surface is identical to that of the con-
trol mesh minus a singularity corresponding to each extraor-
dinary vertex. Each singularity corresponds to a hole in the
2-manifold represented by the control mesh. Such a hole has

a circular boundary that we model, up to second order be-
havior, with a 2-ring of control points about an extraordinary
vertex. The cyclic nature of an extraordinary vertex 2-ring
suggests a transformation from the spatial domain of control
points to a corresponding frequency domain using Fourier
methods. This has been used to great affect in the analysis
of subdivision surfaces [DS78, Rei95]. We use this transfor-
mation to convert the problem of smoothly filling an n-sided
hole with n tensor product patches, into n instances of the
problem of smoothly filling each spectral band, or mode with
a single tensor product patch. These mode patches are trans-
formed back to the spatial domain resulting in a curvature
continuous surface.

Several previous curvature continuous surface schemes
have been developed. In [GH89], (non-polynomial) patches
are constructed that meet with curvature continuity to fill an
n-sided hole in a tensor product patch network. In [Pet96],
n degree 8 triangular patches are used to fill an n-sided hole
in a generalized four direction box spline surface. Prautzsch
[Pra97] proposed a G2 scheme for hole filling in a quad mesh
using bidegree 6 tensor product patches. This approach re-
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quires at least three subdivision steps to ensure proper ex-
traordinary vertex separation, and data on perimeter of the
hole is modified. Similarly, the construction of [GZ99] con-
sists of biquintic tensor product surfaces, but also modifies
the hole and requires 4n patches to fill it. Prautzsch and Um-
lauf [PU00] construct a curvature continuous surface from
a triangular mesh after one level of subdivision. Their sur-
face is composed of degree 8 Bézier triangles; requiring 4n
to fill each hole in a generalized triangular box spline sur-
face. In [Pet02], an n-sided hole is filled with a combination
of bicubic and degree 5× 3 tensor product surface patches.
This approach does not extend to high valence [Pet03], and
the low degree again comes at a cost of a high patch count.

Our approach differs from others in that we address the
following specific problem: How to fill each n-sided hole,
corresponding to an extraordinary vertex in a Catmull &
Clark surface, with exactly n tensor product patches that
meet the surrounding bicubic tensor product patch network
and each other with second order continuity.

This paper is organized as follows. In Section 2 we review
background material and discuss some details of our nota-
tion. We consider the problem in the frequency domain in
Section 3. We construct boundary data in Bézier form in Sec-
tion 4, followed by a derivation of the constraints needed for
a pair of surfaces to meet with second order contact in Sec-
tion 5. Our construction is presented in Sections 6 through
9, and we gives results in Section 10. We discuss various as-
pects of this and future work in Section 11, and we finish
with conclusions in Section 12.

2. Background

Readers not familiar with Bézier and B-spline curves and
surfaces, and the basics of subdivision surfaces are encour-
aged to consult a good text such as [Far01].

We write a degree d Bézier curve as the product

w(t) = Bd(t)w,

where w is a set of control points that govern the shape of
the curve, and Bd(t) are the Bernstein polynomials defined

Bd
i (t) =

(d
i
)
(1− t)d−itd

,

with i = 0, . . . ,d. We write a degree r×s Bézier tensor prod-
uct surface

w(u,v) = Br(u)w (Bs(v))T
,

where w is an r× s array of points referred to as the control
net.

We make extensive use of the Discrete Fourier Transform
pair, DFT and IDFT[BH95]. Given a set of n points ak ∈
R

m
, k ∈ Z mod n, we define

â = DFT(a), and a = IDFT(â),

to be

âl = 1
n

n−1

∑
k=0

Ēkl
n ak

, and ak =
n−1

∑
l=0

Ekl
n âl

,

where k, l = 0, . . . ,n− 1,

E i
n = Ci

n + ISi
n, and Ē i

n = Ci
n− ISi

n

are the Euler relations with

Ci
n = cos

2πi
n

, Si
n = sin

2πi
n

, and I =
√
−1.

Note that we drop the superscripts when i = 1. The DFT
transforms points in the spatial domain to spectral bands, or
frequency modes. Its inverse, the IDFT transforms frequency
modes to spatial domain points. The spatial domain con-
sists of points in R

m, while the frequency domain consists
of points in C

m. Readers not familiar with the special prop-
erties of complex numbers can find an excellent overview in
[Nee97].

We make general use of the concept of a d-ring about an
extraordinary vertex. We define a d-ring p to be a rank 3
tensor consisting of n overlapping (d + 1)× (d + 1) arrays
of points. We refer to a single point belonging to a d-ring as
pl

i j , where l ∈ Z mod n refers to an array and i and j are array
indices (since these are never double digits here we ignore
a ’,’ separator). The n arrays pairwise share points along an
edge

pl
i0 = pl+1

0i i = 0, . . . ,d,

and all arrays share the point

p0
00 = p1

00 = · · · = pn−1
00 .

3. Problem Transformation

We begin our construction with a 2-ring of control points
a that enclose a valence n extraordinary vertex represented
by a00, see Figure 1. This configuration of points might be
the result of two or more steps of Catmull & Clark subdi-
vision, or they could be specified arbitrarily. Our goal is to
construct n tensor product patches, corresponding to the n
arrays of the 2-ring, that meet with second order continuity
along adjacent boundaries, and with the implied bicubic ten-
sor product patch network that surrounds the extraordinary
vertex.

More formally, we seek a surface A : Ωk → R
m
, k ∈

Z mod n, where each Ωk is a unit square domain with param-
eters u,v∈ [0,1]× [0,1]. We writeA as a linear combination

A(k,u,v) = A(k,u,v)a, (1)

where A is a collection of basis functions and a is a 2-ring
of control points.

We will construct this surface so that edges u = 1 and
v = 1 correspond to the perimeter of the extraordinary ver-
tex hole; we refer to these as external edges. The edges
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Figure 1: A 2-ring a with point labeling.

where u = 0 and v = 0 will correspond to the shared edges
A(k,u,0) = A(k + 1,0,v); we refer to these as internal
edges.

We will formulate constraints for second order contact on
the internal edges in Section 5. If we solve for the smooth-
ness constraints in the spatial domain, we need to solve an
O(n) system of equations. By transforming the problem into
the frequency domain we instead solve n O(1) systems. We
make use of the Discrete Fourier Transform (DFT) and find
the related surface

Â(l,u,v) = Â(l,u,v) â

where

â = DFT(a),

and Â are transformed basis functions. We transform
Â(l,u,v) back to the spatial domain to get A(k,u,v).

Next, we consider the constraints imposed by the sur-
rounding tensor product network in both the spatial and fre-
quency domains.

4. Boundary in Bézier Form

We characterize up to second order, the behavior of the ten-
sor product patch network on the boundary of the hole that
surrounds an extraordinary vertex. We can think of the sur-
rounding tensor product patch network as n adjacent rectan-
gular B-spline surfaces that are each missing a single patch
because the rectangular control point structure needed to de-
fine B-splines breaks down at the extraordinary vertex. How-
ever, enough of the rectangular structure remains to con-
struct 15 out of 16 of the Bézier control points of each miss-
ing bicubic patch. These 15 points completely characterize
the second order behavior of the external boundary, see Fig-
ure 2.

We find the control points of these bicubic Bézier patches
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Figure 2: The n bicubic Bézier nets that characterize second
order behavior on the boundary of an extraordinary vertex
hole.

by applying a linear operator on our 2-ring control points to
convert from the B-spline basis

bk = Q






· ak+2
10 ak+1

11 ak+1
12

ak−1
10 ak

00 ak+1
10 ak+1

20
ak−1

11 ak
10 ak

11 ak
12

ak−1
12 ak

20 ak
21 ak

22




QT

,

where

Q = 1
6





1 4 1 0
0 4 2 0
0 2 4 0
0 1 4 1



,

and bk are arrays of a 3-ring b. The · represents a point that
does not affect second order boundary behavior.

Since we are primarily interested in these Bézier nets in
the frequency domain, we find â = DFT(a) to get complex
valued points b̂ as

b̂l
= Q






· E2l
n âl

10 E l
n âl

11 E l
n âl

21

Ē l
n âl

10 âl
00 E l

n âl
10 E l

n âl
20

Ē l
n âl

11 âl
10 âl 11 âl 12

Ē l
n âl

12 âl
20 âl 21 âl 22




QT

, (2)

where l = 0, · · · ,n − 1. We then form complex valued
patches

B̂(l,u,v) = B3(u)







· E l
n b̂l

10 E l
n b̂l

20 E l
n b̂l

30

b̂l
10 b̂l

11 b̂l
12 b̂l

13

b̂l
20 b̂l

21 b̂l
22 b̂l

23

b̂l
30 b̂l

31 b̂l
32 b̂l

33







(B3(v))T
.

These patches are C2 with the surrounding tensor product
patch network, but in general are only C0 with each other.
These patches are close to the surface that we will ultimately
construct; for many applications, they can serve as a lower
cost proxy geometry for the final surface. The missing con-
trol points correspond to bk

00 (similarly b̂l
00). Specifying a
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position for bk
00 is not necessary for our construction, but for

proxy purposes it should agree withA(k,0,0)

The surface B̂(l,u,v) (similarly B(k,u,v)) completely
characterizes second order behavior on the external bound-
ary. Next, we consider the constraints needed for second or-
der contact.

5. Second Order Contact

We now derive constraints on a pair of surface patches neces-
sary for second order contact. We must consider a more gen-
eral characterization than strict derivative continuity since,
in general, we will not have a global parameterization where
derivatives can be taken. We follow the notion put forth
in [DeR85] where a parameterization independent form of
smoothness is defined. The idea is that two surfaces meet
smoothly if one can be reparameterized, via a composition,
so that their derivatives agree.

In the following, we avoid the use of more cumbersome
differential symbols by placing derivative directions on a
function as a superscript sequence; subscripts are used to
distinguish vector components.

Definition 1 If F and G are maps from R
2 → R

m, then F
and G are said to meet with kth order contact, also called kth

order geometric continuity denoted Gk, if there exists a map
φ from R

2→ R
2 such that

(F ◦φ)

j
︷ ︸︸ ︷
v . . .v(u,0) = G

j
︷ ︸︸ ︷
v . . .v(u,0) j = 0, . . . ,k.

Note that (u,v) are parameters in the domain of φ and G, and
(x,y) will be used for parameters in the domain of F .

We consider the symmetric case where r is a reflection
about the x axis and

G(u,0) = (F ◦φ) (u,0), (3)

H(u,0) = (F ◦ r ◦φ) (u,0), (4)

see Figure 3. Our goal here is to find relations between
the derivatives of G and H that are needed for second or-
der contact. Assume Definition 1 holds for Equations (3)
and (4) when k = 0,1,2. Since G and H share a common
boundary curve, we drop (u,0), and (φx(u,0),0) to simplify
our notation, and we note that Gu = Hu, Guu = Huu, and
φy = φu

y = φuu
y = 0 along the edge u = 0. Using the chain

rule, we have

G = F ·Φ and H = F ·R ·Φ,

where

F = [Fx
,Fy

,Fxx
,Fxy

,Fyy]T ,

G = [Gu
,Gv

,Guu
,Guv

,Gvv]T ,

H = [Hu
,Hv

,Huu
,Huv

,Hvv]T ,

and

Φ =








φu
x φv

x φuu
x φuv

x φvv
x

0 φv
y 0 φuv

y φvv
y

0 0 (φu
x)

2 φu
xφv

x (φv
x)

2

0 0 0 φu
xφv

y 2φv
xφv

y
0 0 0 0 (φv

y)
2








,

and

R =








1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1








.

From this we have two representations for F, namely

F = G ·Φ−1 and F = H · (R ·Φ)−1
.

Equating these and extracting the components correspond-
ing to Fy and Fyy, we arrive at the symmetric G1 and G2

constraints

2φv
xGu = φu

x
(
Gv +Hv)

, (G1)

2φv
xφv

y
(
Guv−Huv) =

(
2φv

xφuv
y −φu

xφvv
y

)(
Gv−Hv)

+ φu
xφv

y
(
Gvv−Hvv) (G2)

6. Our Solution

We use the ideas of Section 5 in two distinct ways to build
a G2 surface. We will construct a cyclically ordered set of
tensor product surface patches that satisfy constraints of the
form G1 and G2 along their shared internal boundaries u = 0
and v = 0, with a suitable chosen φ. This surface will also
maintain second order contact with the boundary surface B
along the external boundaries u = 1 and v = 1. The later goal
will be accomplished by a reparameterization of the form
B◦ψ evaluated on u = 1 and v = 1. We discuss the derivation
of ψ in Section 8.

In order to keep the degree of our G2 surface as low as
possible, the degrees of φ and ψ should be minimal. There
is a tradeoff between the degrees of these two functions. If
ψ is minimal (the identity), then φ must be at least cubic to
have enough degrees of freedom to allow our surface to meet
the boundary with a C2 join. This situation will to lead to a
binonic (bidegree 9) solution for C(l,u,v). We can do better
if we minimize the bidegree of φ.

Our approach is to use the simplest possible (polynomial)
φ and then to solve for a the function ψ that preserves second
order contact with the boundary surface B. We choose φ to
be the bilinear function

φx(u,v) = B1(u)

[
0 Cn
1 1

]

(B1(v))T
,

φy(u,v) = B1(u)

[
0 Sn
0 Tn

]

(B1(v))T
,
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Figure 3: We illustrate the mapping used in our definition of second order contact.

where Cn = cos 2π
n , Sn = sin 2π

n , and Tn = tan π
n . The geom-

etry of φ is illustrated in Figure 3.

We can now expand G1 and G2 using φ and patches G and
H of any degree. The derivatives of these surfaces at the end-
points (1,0) and (0,1) will be determined from the boundary
surface B. This will give us a collection of known, and un-
known, derivatives for G andH in G1 and G2. We could pro-
ceed in the spatial domain to build an O(n) system of linear
equations. The resulting system would be block circulant,
and block diagonalized using the DFT. Each block would
represent an O(1) linear system. These blocks would come
in complex conjugate pairs, corresponding to the various fre-
quencies decomposed by the DFT. Alternatively, we could
formulate our constraint system directly in the frequency do-
main and consider the geometric object being constructed.
Either approach is valid, but we chose the later as a more
direct approach.

7. Mode Patches

We now construct a single patch Ĉ(l,u,v) in each frequency
mode l that satisfies the second order smoothness conditions
G1 and G2, while maintaining second order contact with cor-
responding boundary surface B̂(l,u,v). We refer to the sur-
faces Ĉ(l,u,v), l = 0 . . .n−1 as mode patches to underscore
their geometric significance in solving the problem at hand.

In the spatial domain, the Bézier form of surface C(k,u,v)

will be piecewise polynomial, where the index k refers to in-
dividual tensor product patches ordered in a cyclic fashion
about an extraordinary vertex. In the frequency domain, the
surface Ĉ(l,u,v) is a single complex vector valued polyno-
mial; the index l refers to a distinct frequency band, or mode.
Surface patches adjacent to Ĉ(l,u,v) are found by a complex
rotation. That is, by multiplication with E l

n (clockwise), or
Ē l

n (counter-clockwise).

The importance of mode patches is that they are a geomet-
ric entity resulting from the diagonalizing nature of the DFT.
They are not unlike the geometrically significant eigen sur-
faces from subdivision surface theory. The DFT transforms
a problem involving O(n) constraints in the spatial domain
to n problem instances involving O(1) constraints in each
frequency mode. Each of these problem instances can be in-
terpreted geometrically as solving for a single tensor product
mode patch.

In Section 5 we formulated conditions that a pair of sur-
face patches G and H must satisfy for the join along their
common boundary G(u,0) = H(u,0) to be G2. We called
these conditions symmetric due the presumed reflective sym-
metry of φ. In addition to this reflective symmetry, the φ we
chose in the last section has rotational symmetry.

We will leverage the results of Section 5 by making the
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assignments

G(u,v)←Ĉ(l,u,v),

H(v,u)← Ē l
nĈ(l,u,v),

and then expanding G1 and G2. Note that these smoothness
conditions are now between the derivatives of Ĉ(l,u,v) and
a rotated copy of itself E l

nĈ(l,u,v)

For reasons to be explained shortly, we parameterize
Ĉ(l,u,v) as a biseptic polynomial and represent its Bézier
coefficients as a complex vector valued 7-ring ĉl

i j . We form
the products involving φ and derivatives of Ĉ(l,u,v) accord-
ing to G1 and G2 to get polynomials of degree 7 and 8,
respectively. We represent the Bézier coefficients of these
polynomials as g1 and g2; we list these in Appendix A.
The second order smoothness constraints on mode patch
Ĉ(l,u,v) correspond to these coefficients vanishing.

Two of the constraints, corresponding to g1
7 and g2

8, are
automatically satisfied by our choice of φ. We can satisfy
four more constraints g1

5, g1
6, g2

6 and g2
7 by finding a repa-

rameterization ψ that modifies the derivatives along the two
external boundaries (u = 1, v = 1) while preserving second
order contact with the boundary surface B.

8. Boundary Reparameterization

We now construct a reparameterization

C = B◦ψ,

where ψ : R
2 → R

2 so that C and B will have second order
contact along the boundary edges u = 1 and v = 1. We find
ψ subject to the four smoothness constraints g1

5, g1
6, g2

6 and
g2

7.

At the outset we want ψ to be the identity along the edges
of the unit square; and to be diagonally symmetric, that is
ψ(u,v) = ψ(v,u). Due to this symmetry, we need only con-
sider one of the edges, we choose v = 1. We assume in the
following that functions are evaluated on (u,1). From Defi-
nition 1 we see that

5
︷︸︸︷

Ĉv =

3
︷︸︸︷

ψv
x

2
︷︸︸︷

B̂x +

2
︷︸︸︷

ψv
y

3
︷︸︸︷

B̂y
, (5)

7
︷︸︸︷

Ĉvv =

5
︷︸︸︷

ψvv
x

2
︷︸︸︷

B̂x +

4
︷︸︸︷

ψvv
y

3
︷︸︸︷

B̂y

+

6
︷ ︸︸ ︷

(ψv
x)

2

1
︷︸︸︷

B̂xx +2

5
︷ ︸︸ ︷

ψv
xψv

y

2
︷︸︸︷

B̂xy +

4
︷ ︸︸ ︷

(ψv
y)

2

3
︷︸︸︷

B̂yy
, (6)

where we have placed the degree of each polynomial above
it. We substitute (5) and (6)into g1

5, g1
6, g2

6 and g2
7 and find

that the smoothness constraints can be solved (put to zero)
if ψv

x and ψv
y are at least cubic and quadratic respectively.

This implies by degree counting that each Ĉ(l,u,v) must be
bidegree 7. The polynomial degrees placed above terms in

Equations (5) and (6) are intended as an aid in making this
degree counting argument.

The degree restrictions on ψv
x and ψv

y, together with the
identity and symmetry constraints, and by requiring that g1

5,
g1

6, g2
6, and g2

7 vanish, determines ψ up to two degrees of
freedom. We remove this freedom by minimizing the bide-
gree of ψ. This gives us ψx as the degree 4×3 tensor product
ψx(u,v) = B4(u)Ψ(B3(v))T , where

Ψ =












0 0 0 0

1
4

5C3
n−3C2

n−15Cn+18
12 (Cn−2) (2Cn−3)

C2
n+2Cn−6

12 (Cn−2)
1
4

1
2

Cn+3
6

C2
n+3Cn−9
9 (Cn−2)

1
2

3
4

Cn+9
12

Cn+9
12

3
4

1 1 1 1












.

Note that the symmetric ψy is degree 3×4, so we illustrate
ψ for various values of n in Figure 4 as a bidegree 4 tensor
product.

n= 8n= 5n= 3 n→
∞


Figure 4: The boundary edge reparameterization function ψ
for various values of n. This missing control point does not
come into play in our construction and has been omitted.

Once the boundary derivatives of Ĉ(l,u,v) have been de-
termined from Equations (5) and (6), we are able to com-
pute three layers of Bézier control points along the external
boundary. We find ĉl

7i by degree elevation of b̂l
3i. If ĉv

i and
ĉvv

i , are the Bézier coefficients of (degree raised) Ĉv and Ĉvv

respectively, we have

ĉl
6i = ĉl

7i− 1
7 ĉv

i , (7)

ĉl
5i = ĉl

7i− 12
42 ĉv

i + 1
42 ĉvv

i , (8)

(9)

where i = 0, . . . ,7. Symmetric expressions hold for ĉl
i6 and

ĉl
i5. These points are shown connected by lines in Figure 5.

Next, we solve the linear systems implied by the unsatis-
fied constraints among g1 and g2.

9. Internal Join

In the previous section we constructed a subset of the con-
trol points of the mode patches Ĉ(l,u,v), by reparameteriz-
ing B̂(l,u,v) along the external boundary corresponding to
u = 1 and v = 1. Next, we consider the linear systems that
must be solved to find the remaining control points among
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Figure 5: The Bézier control points of the constructed bisep-
tic patches. The points connected by lines on the interior
come from boundary derivative reparameterization. The free
floating points are found by solving the linear systems. The
remaining hollow dots are found using a simple averaging
procedure, see the text

.

ĉl
i j . Note that since mode patches Ĉ(l,u,v) come in complex

conjugate pairs, only d n
2e systems need to be solved.

There are 11 remaining constraints from g1 and g2. The
15 points involved in g1 and g2 that we have found thus far
are shown to the right of line in following diagram

ĉ22 ĉ32 ĉ42 ĉ52 ĉ62 ĉ72
ĉ11 ĉ21 ĉ31 ĉ41 ĉ51 ĉ61 ĉ71

ĉ00 ĉ10 ĉ20 ĉ30 ĉ40 ĉ50 ĉ60 ĉ70
ĉ12 ĉ13 ĉ14 ĉ15 ĉ16 ĉ17

ĉ23 ĉ24 ĉ25 ĉ26 ĉ27

and the 17 unknown points are shown to the left. We must
now solve linear systems involving 11 equations in 17 un-
knowns. Since the systems are under determined, we have
degrees of freedom that must be removed. Our current ap-
proach to removing this freedom is to introduce additional
constraints.

We constrain the degree of boundary curves. In general,
the internal boundaries curves can be as high as degree
7. However, we constrain these curves to be cubic when
l = 0,1, quartic when l = 2, and quintic when l > 2. In
addition to the boundary curve, we constrain the degree of
the functions relating to transversal derivatives. Let h0, h1,
and h2 be the power basis coefficients of the degree 7 poly-
nomials G, Gv −Hv, and Gvv +Hvv, respectively (where
G(u,v)← Ĉ(l,u,v), and H(v,u)← Ē l

nĈ(l,v,u)).

Precisely which set of constraints are needed to form in-
dependent sets will depend on l. All systems need the fol-

lowing 14 constraints to vanish

g1
i ,g2

i+1, i = 0, . . . ,4, and h0
6,h0

7,h2
6,h2

7.

We also require the following to vanish, depending on l

l = 0 h0
4 h0

5 h2
5

l = 1 g2
0 h0

5 h2
5

l = 2 h0
5 h1

7 ĉ00
l > 2 h1

7 ĉ10 ĉ20

For each l = 0, . . . ,b n
2c, we now have a 17× 17 system that

can be solved analytically with symbolic algebra software.
Note that the matrix associated with each system depends
only on valence n and frequency mode l, and not on the con-
trol mesh. There are three (known) exceptions to the con-
straint formation rules just given. These correspond to n = 3
with l = 0,1, and n = 6 with l = 3. In these cases, we modify
the constraint sets slightly. The control points found as solu-
tions to the linear systems are shown (in the spatial domain)
as isolated solid dots in figure 5.

We still have 4 unknown control points ĉ33, ĉ43, ĉ34, and
ĉ44 at the center of each patch. We find positions for these
points by minimizing the degrees of the curves represented
by ĉ3i, ĉ4i, ĉi3, and ĉi4, i = 0, . . . ,7, and averaging the result.
These are shown as hollow dots in figure 5.

The points found in this section complete the biseptic
mode patches Ĉ(l,u,v). We transform the mode patches
Ĉ(l,u,v) back to the spatial domain to obtain the final G2 sur-
face C(k,u,v), as illustrated in Figure 5. Recovering the ba-
sis functions A(k,u,v) needed to form the surface A(k,u,v)
(see Equation 1) is a straightforward linear algebra exercise.

10. Results

We illustrate our construction on a few control meshes in
Figure 6.

11. Discussion

The issue of curvature continuity for subdivision surfaces
will likely stimulate considerable research in the coming
years. Subdivision algorithms in general, and the Catmull
& Clark algorithm in particular, are popular because 1) their
ability to model surfaces of arbitrary topological type, and
2) their simplicity of specification and implementation. Ide-
ally, in addition to producing fair shapes, one would like a
curvature continuous free form surface that is also simple to
specify and implement.

One possibility would be a new subdivision algorithm.
However, Prautzsch [Pra98] uses a degree argument to show
that no modification to the spectrum of the subdivision ma-
trix can generate G2 surfaces. This leaves non-stationary
schemes, where the subdivision masks do not stay constant.
For such a scheme to be G2 it must reproduce quadratic poly-
nomials. However, for the surface to be fair the masks must
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Figure 6: Our construction applied to three control meshes. The top row shows the control mesh and resulting surfaces. The
bottom row illustrates the corresponding bicubic and biseptic patches.

also dampen high frequencies present in the control mesh.
To date, these challenges remain open, and it is unclear if
the resulting algorithm(s) will possess the simplicity of pop-
ular stationary subdivision schemes. Even so, subdivision
will never remove topologically singular extraordinary ver-
tices, it will only shrink them. This motivates alternatives to
recursive refinement and smoothing.

Parametric surfaces are one such alternative. A frame-
work is needed to compare the merits of various G2 paramet-
ric surface schemes. From a strictly quantitative standpoint,
the issues to consider are the number of subdivision steps
needed, the number of patches required to fill the hole, and
the polynomial bidegree of the solution. The most closely
related previous schemes [Pra97, GZ99, Pet02] assume ex-
traordinary vertex isolation consistent with at least a 2-ring.
In order to fill the hole without modifying the boundary data
using any of these schemes, at least 4n patches are needed.
While the bi-degree of tensor product patches produced are
less than the 7× 7 patches presented here, many more con-
trol points in total must be computed. The tradeoff becomes
one of patch count versus polynomial bidegree. We suggest
that slightly lower degree may not be an advantage if 4×
as many surface patches must be computed, stored and pro-
cessed. While each lower degree patch may have less cost,

one must consider entire system throughput as a deciding
factor.

From a qualitative standpoint, fairness of the resulting
shapes is the important metric. Unfortunately, this is a sub-
jective notion that may depend on the shape and connectiv-
ity of the control mesh. We have generated surfaces from a
wide variety of control meshes using our scheme and found
the surfaces to behave much like the corresponding Catmull
& Clark surface. A more rigorous side by side comparison
of available methods is needed.

It is important to point out that the shapes generated by
strictly adhering to the procedure outlined in this paper may
not be as fair as is possible, given the available degrees of
freedom in our construction. In Section 9, we needed to re-
move degrees of freedom in under determined linear sys-
tems. Our approach of adding additional constraints resulted
in unique solutions to these systems, but is admittedly ad-
hoc.

Constraining the positions of ĉ00, ĉ10, and ĉ20, en-
sures that mode patches have the property that only
Ĉ(0,u,v), Ĉ(1,u,v), and Ĉ(2,u,v) contribute to the second
order behavior at the shared corner point C(k,0,0). Only
Ĉ(0,u,v) contributes to the position and Ĉ(1,u,v) to the tan-
gent plane of C(k,0,0). All other higher order mode patches
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Ĉ(l,u,v), l ≥ 3, are ’flat’, having zero curvature at (0,0).
Note that only the higher order l ≥ 3 mode patches are flat
at (0,0), not the resulting spatial domain surface.

Other methods of finding surfaces in our solution space
are certainly possibly. This might include better affine com-
bination, that yield better shapes. Or, a non-linear optimiza-
tion procedure could be used to find the shape that minimizes
some energy functional. Ideally, we would like to express the
Bézier control points of the hole filling surfaces, in either the
spatial or frequency domains, as simple affine combinations
of an extraordinary vertex 2-ring.

From a modeling systems perspective, our approach is
straightforward. We represent the initial control mesh as an
edge based graph that represents the primal (vertices) and
dual (faces). The surface is completely defined by a collec-
tion of 2-rings that are in one-to-one correspondence with
the vertices, faces, and edges of this graph. For 2-rings as-
sociated with edges, valence is always 4 resulting in bicubic
patches. The patches may be processed independently, or as
a 2-ring depending on what part of the graphics pipeline they
are in. Adaptive rendering might take place on a per patch
basis, while transforms and vertex processing could happen
on 2-rings. Each bicubic patch is encoded by 4×4 = 16 ver-
tices; each biseptic patch is encoded by 8× 8 = 64 vertices.

The advantage of our approach is the built in compatibility
with the now standard Catmull & Clark modeling paradigm.
At least two steps of Catmull & Clark subdivision must be
performed. The first step of Catmull & Clark turns an arbi-
trary 2-manifold control mesh into a quad mesh. The second
step guarantees that all extraordinary vertices are surrounded
by 2-rings. More steps could be performed locally or glob-
ally to get arbitrarily close to the corresponding Catmull &
Clark limit surface.

Using the mode patch construction technique, we are able
to significantly reduce the cost of dealing with high valence
vertices. For a general valence n vertex, we need to find n
mode patches (counting each complex component). We can
considerably reduce this number by effectively low pass fil-
tering the DFT of a 2-ring control net. That is, if we truncate
all frequencies beyond, say l = 2, we do not need to compute
the corresponding mode patches since their coefficients will
be zero. This is a reasonable proposition when one consid-
ers that this is related to what happens in a subdivision step.
The highest frequency terms are shrinking the fastest, as a
low pass filter. By applying such a filter, the cost of storing
and processing a high valence vertex is reduced from O(n)
to O(1). We need only store a mode patch for each surviv-
ing frequency. The n spatial domain patches are instantiated,
then rendered. Such a low pass filter will affect the positions
of 2-ring control points; this is, the boundary data will be
modified. Filtering should happen on a mesh that has been
subdivided at least 3 times to ensure proper 2-ring isolation.

12. Conclusions

We have demonstrated that n-valent extraordinary vertex
holes, present in Catmull & Clark subdivision surfaces can
be filled, to second order contact, with n bidegree 7 tensor
product patches. Our approach has been to solve the prob-
lem in the frequency domain where we fill the hole in each
spectral band with a single tensor product patch we call a
mode patch. Combining these mode patches back in the spa-
tial domain leads to second order continuity over extraordi-
nary vertices.

Our construction has involved transformations between
the spatial and frequency domains, and the analytic solutions
to multiple 17× 17 systems. While these steps have been
used to derive our solution, they are not strictly necessary
parts of an implementation. Ultimately, the control points of
the biseptic patches in the spatial domain are found as affine
combinations of the corresponding spatial domain 2-ring. It
should be possible to derive these affine combinations, or
masks, explicitly.

We have not resolved the important issue of the convex
hull property. That is, is there a solution for the control points
of the biseptic patches C(k,u,v) that are strictly convex com-
binations of the 2-ring points a? Explicitly computing the
various masks for the Bézier control points ck will result in
corresponding trigonometric functions parameterized by va-
lence n. If the functions are entirely positive, then the convex
hull property would be realized. If these functions are not en-
tirely positive, it might be possible to arrange for settings of
the degrees of freedom found in our construction that do lead
to positive functions. These issues are left for future work.

We have not considered surfaces with boundary. In this
extension, the surface should interpolate the cubic B-spline
defined by the boundary edges (as is done with Catmull &
Clark surfaces). Also, the modeling of sharp creases and
other surface features should be included in this framework,
we leave this to future work as well.
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Appendix A: Appendix

We expand the second order smoothness constraints G1 and
G2 with Ĉ(l,u,v) as a bidegree 7 tensor product and using
φ defined in Section 6. We simplify our notation in the fol-
lowing by making the assignments C ← Cn,S← Sn,T ←
Tn,E← E j , and c← ĉ

G1

g1
0 = (C − 1) c0 + (C j

−C) c10

g1
1 = 2 (6C − 7) c10 + 7 (1 + Ē) c11 − 12C c20

g1
2 = 7 Ē c12 + 2 (5C − 7) c20 + 7 c21 − 10C c30

g1
3 = 7 Ē c13 + 2 (4C − 7) c30 + 7 c31 − 8C c40

g1
4 = 7 Ē c14 + 2 (3C − 7) c40 + 7 c41 − 6C c50

g1
5 = 7 Ē c15 + 2 (2C − 7) c50 + 7 c51 − 4C c60

g1
6 = 7 Ē c16 + 2 (C − 7) c60 + 7 c61 − 2C c70

g1
7 = Ē c17 − 2 c70 + c71

G2

g2
0 = 98C S (Ē − 1) c11 + 28 IS j

((6 (C − 1)S +C T )c10 + 3 Sc20)

g2
1 = 2 IT S j

((7C − 6)c10 + 3c20)− 7 S ((5C − 6) (Ē − 1)c11

− 3 (1 + 2C Ē) c12 + 3 (2C + Ē) c21)

g2
2 = 2 (1−C)T (Ē − 1) c11 + (T + ((6− 4C)S +C T ) Ē) c12 + 5C S Ē c13

+((4C − 6)S−C T −T Ē) c21 − 3 S (Ē − 1) c22 − 5C S c31

g2
3 = 3 (5C − 6)T c21 + 9 T c22 + Ē (3 (6− 5C)T c12

− 5 (3 (C − 2)S− 2C T ) c13 + 20C S c14 − 9 T c22 − 15 S c23)

− 10C T c31 + 15 S ((C − 2) c31 + c32)− 20C S c41

g2
4 = Ē ((6 − 4C)T c13 +(6 S− 2C S + 3C T ) c14 + 3C S c15

− 3 T c23 − 3 S c24) + 2 (2C − 3)T c31 + 2 (C − 3)S c41

+ 3 S c42 − 3 (C T c41 +C S c51 −T c32)

g2
5 = Ē (5 (C − 2)T c14 +((C − 6)S − 4C T ) c15 − 2C S c16

+ 5 T c24 + 3 S c25)− 5 (C − 2)T c41 − 5 T c42

− (C − 6)S c51 + 4C T c51 − 3 S c52 + 2C S c61

g2
6 = Ē (6 (3 −C)T c15 +(6 S + 5C T ) c16 +C S c17 − 9 T c25 − 3 S c26)

+ 6 (C − 3)T c51 + 9 T c52 − 6 S c61 − 5C T c61 + 3 S c62 −C S c71

g2
7 = Ē (7 (6 −C)T c16 +((6 +C)S + 6C T ) c17 − 3 (7 T c26 + S c27))

+ 7 (C − 6)T c61 − (6 +C)S c71 + 3 T (7 c62 − 2C c71) + 3 S c72

g2
8 = Ē (2 c17 − c27)− 2 c71 + c72
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