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Abstract

We propose a data structure for d-dimensional simplicial complexes, that we call the Simplified Incidence Graph
(SIG). The simplified incidence graph encodes all simplices of a simplicial complex together with a set of boundary
and partial co-boundary topological relations. It is a dimension-independent data structure in the sense that it can
represent objects of arbitrary dimensions. It scales well to the manifold case, i.e. it exhibits a small overhead when
applied to simplicial complexes with a manifold domain. Here, we present efficient navigation algorithms for
retrieving all topological relations from a SIG, and an algorithm for generating a SIG from a representation of
the complex as an incidence graph. Finally, we compare the simplified incidence graph with the incidence graph,
with a widely-used data structure for d-dimensional pseudo-manifold simplicial complexes, and with two data
structures specific for two- and three-dimensional simplicial complexes.

1. Introduction

We consider the problem of representing and manipulating
non-manifold and non-regular arbitrarily dimensional ob-
jects described by simplicial complexes. A manifold object
is a subset of the Euclidean space for which the neighbor-
hood of each internal point is homeomorphic to an open ball
and the neighborhood of each boundary point to an open half
ball. Objects, that do not fulfill this property at one or more
points, are called non-manifold objects. A subset of the d-
dimensional Euclidean space containing parts of different
dimensionalities is called a non-regular d-dimensional ob-
ject.

Cell complexes are widely used to represent multi-
dimensional geometric objects in many applications. In par-
ticular, simplicial complexes have received great attention,
since their combinatorial properties make them easier to
understand, represent and manipulate than more general
cell complexes. In the literature, representations have been
developed for two-dimensional simplicial and cell com-
plexes describing the boundary of 3D non-manifold and non-
regular objects. Several data structures do not scale well
with the degree of “non-manifoldness" (i.e., the number of
geometric singularities) of the complex, thus becoming of-
ten verbose and inefficient when dealing with objects with

few non-manifold singularities. Representations developed
for cell or simplicial complexes in arbitrary dimensions,
(e.g., [2, 15, 17]), are restricted to a subclass of complexes,
namely manifold or pseudo-manifold complexes. The inci-
dence graph [9] has been developed for encoding cell com-
plexes in arbitrary dimensions. However, when restricted to
simplicial complexes, it results in a verbose representation,
which also does not scale well to the manifold case. Scal-
ability is an important property for data structures for cell
and simplicial complexes, since non-manifold objects often
present few non-manifold singularities.

In this paper, we propose a dimension-independent data
structure for d-dimensional simplicial complexes, that we
call the Simplified Incidence Graph (SIG). The SIG encodes
all simplices of a simplicial complex, the same boundary
relations as the incidence graph, but not the complete co-
boundary ones, thus exploiting the fact that we are deal-
ing with simplicial complexes. The boundary and partial co-
boundary relations encoded in the SIG are the basis for effi-
cient traversal algorithms which retrieve all boundary topo-
logical relations in constant time and all co-boundary and
adjacency relations in time linear in the number of entities
incident at the query entity.

A SIG also scales well to the manifold case, since it re-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


L. De Floriani & D. Greenfieldboyce & A. Hui / A data structure for non-manifold simplicial d-complexes

quires only a small amount of extra storage compared with
a simplified incidence graph specific for manifold simplicial
complexes. We will compare the storage cost and the per-
formances of the SIG with those of other data structures,
namely, the incidence graph in the d-dimensional case, the
indexed data structure with adjacencies for the restricted
class of d-dimensional pseudo-complexes complexes for
which this latter is defined, and specific compact data struc-
tures for 2D and 3D simplicial complexes, which do not ex-
tend to higher dimensions.

Novel contributions of this paper are:

• a dimension-independent and scalable data structure,
the simplified incidence graph, for representing non-
manifold, non-regular, d-dimensional objects described
by simplicial complexes;

• efficient navigation algorithms for retrieving adjacency
and incidence relations from a simplified incidence graph;

• an algorithm to generate a simplified incidence graph
from an incidence graph representation of a complex.

The remainder of this paper is organized as follows. In
Section 2, we summarize some background notions. In Sec-
tion 3, we review some related work. In Section 4, we present
the simplified incidence graph, its implementation and its
storage cost. In Section 5, we describe an algorithm for gen-
erating a SIG from an incidence graph. In Section 6, we
present algorithms for retrieving topological relations from
a SIG. In Section 7, we compare the simplified incidence
graph with other data structures. In Section 8, we draw some
concluding remarks.

2. Background

In this section, we review some basic notions about Eu-
clidean simplicial complexes in arbitrary dimensions, and
about topological relations among the cells of a simplicial
complex.

A Euclidean simplex σ of dimension d is the convex hull
of d+1 linearly independent points in the n-dimensional Eu-
clidean space En, with d ≤ n. We simply call a Euclidean
d-simplex a d-simplex: a 0-simplex is a vertex, a 1-simplex
an edge, a 2-simplex a triangle, and a 3-simplex a tetrahe-
dron. d is called the dimension of σ and is denoted dim(σ).
Any Euclidean k-simplex σ′, with k < d, generated by a set
Vσ′ ⊆ Vσ of cardinality k+1 ≤ d, is called a k-face of σ.
Where no ambiguity arises, the dimensionality of σ′ can be
omitted and σ′ is simply called a face of σ. The empty set is
a (-1)-face of all simplices.

A finite collection Σ of Euclidean simplices forms a Eu-
clidean simplicial complex if and only if (i) for each simplex
σ ∈ Σ, all faces of σ belong to Σ, and (ii) for each pair of
simplices σ and σ′, either σ∩σ′ = ∅ or σ∩σ′ is a face of
both σ and σ′. The domain, or carrier, of a Euclidean sim-
plicial complex Σ embedded in En, with d ≤ n, is the subset

of En defined by the union, as point sets, of all the simplices
in Σ.

The boundary b(σ) of a simplex σ is the set of all faces
of σ. The co-boundary, or star, of a simplex σ is defined
as ?σ = {ξ ∈ Σ | σ is a face of ξ}. A simplex σ is called a
top simplex of Σ if ?σ = {σ} In the following, we will call
restricted star of a simplex σ, ?σ−{σ}, and we will denote
it as st(σ).

Two distinct simplices are said to be incident if one of
them is a face of the other. Two simplices are called k-
adjacent if they share a k-face. Two p-simplices, with p > 0,
are said to be adjacent if they are (p−1)-adjacent. Two ver-
tices (i.e., 0-simplices) are called adjacent if they are both
incident at a common 1-simplex.

An h-path is a sequence of simplices (σi)
k
i=0 such that

two consecutive simplices σi−1 and σi in the sequence are
h-adjacent. Two simplices σ and σ∗ are h-connected if and
only if there exists an h-path (σi)

k
i=0 such that σ is a face of

σ0 and σ∗ is a face of σk. A subset Σ∗ of a complex Σ is
called h-connected if and only if any two simplices of Σ∗ are
h-connected. Any maximal h-connected sub-complex of a
complex Σ is called an h-connected component of Σ. We call
any (h−1)-connected component in which all top simplices
have dimension h an h-cluster. For example, a 2-cluster is a
set of edge-adjacent triangles.

A d-complex Σ in which all top simplices are d-simplices
is called regular, or uniformly d-dimensional. A regular
(d−1)-connected d-complex in which the star of all (d−1)-
simplices consists of one or two simplices is called a (com-
binatorial) pseudo-manifold (possibly with boundary).

Let Σ be a d-complex and let σ ∈ Σ be a p-simplex, with
0 ≤ p ≤ d. For g,q, 0 ≤ g,q ≤ d, we define the following
topological relations:

• For p > q, the boundary relation Bp,q(σ) consists of the
set of simplices of order q in the set of faces of σ.

• For p < g, the co-boundary relation Cp,g(σ) consists of
the set of simplices of order g in the star of σ.

• For p > 0, the adjacency relation Ap(σ) is the set of p-
simplices in Σ that are (p−1)-adjacent to σ.

• The adjacency relation A0(σ), where σ is a vertex, con-
sists of the set of vertices σ′ such that {σ,σ′} is a 1-
simplex of Σ.

Boundary and co-boundary relations are called incidence
relations.

To describe the g-clusters incident at a simplex σ, we de-
fine the following partial co-boundary relation:

• For p < g, C∗
p,g(σ) consists of one arbitrarily-selected g-

simplex for each g-cluster in the restricted star st(σ) of
σ

In particular, relation C∗
p,p+1(σ) consists of all top (p+1)-

simplices in the restricted star st(σ) of σ, since each (p+1)-
cluster consists of just one top (p+1)-simplex.
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3. Related Work

Dimension-independent data structures have been proposed
for d-dimensional manifold complexes, which include the
cell-tuple data structure [2], the n-G-map [15] for cell com-
plexes, and the Indexed data structure with Adjacencies (IA)
for simplicial complexes (also called winged representa-
tion [17]). In the IA data structure, 2(d+1) references are
needed for each d-simplex in a d-complex. Both the cell-
tuple data structure, and the n-G-map, when used to de-
scribe a simplicial complex, require (d+1)!(d+1) references
for each d-simplex. The IA can describe Euclidean pseudo-
manifolds embedded in the d-dimensional space. The n-G-
map and the cell-tuple data structures describe a larger sub-
class of pseudo-manifolds introduced in [15]. However, none
of them can encode arbitrary cell or simplicial complexes.

Selective Geometric Complexes (SGCs) [19] can describe
non-manifold and non-regular objects through cell com-
plexes whose cells can be either open, or not simply con-
nected. In SGCs, cells and their mutual adjacencies are en-
coded in an incidence graph [9]. The incidence graph is a
data structure for arbitrary cell complexes, which encodes
all the cells of the complex, and for each k-cell γ, all (k−1)-
cells bounding γ, and all (k+1)-cells in the restricted star of
γ. Thus, it provides a complete, but verbose description of
the complex.

Data structures for non-manifold, non-regular two-
dimensional cell complexes have been proposed for model-
ing non-manifold solids [12, 13, 20]: any three-dimensional
cell is encoded implicitly through the manifold 2-complex
partitioning its boundary. Experimental evaluations reported
in [14] show that these data structures do not scale well to
the manifold case, since their storage cost is between 2.1
and 4.4 times higher than that of the winged edge data struc-
ture [1]. The partial entity structure [14] has been shown
to require half of the space of the radial-edge structure. A
data structure for encoding two-dimensional simplicial com-
plexes, called the triangle-segment data structure, has been
proposed in [5], which extends the IA data structure to deal
with non-regular parts and with non-manifold adjacencies of
two-simplices at an edge. The triangle-segment data struc-
ture is compact, and scales very well to the manifold case,
since it requires just one byte per vertex more than the IA
data structure when applied to a manifold complex.

Two representations have been proposed in the literature
for three-dimensional manifold complexes, i.e., the facet-
edge [8] and the handle-face data structures [16]. Both of
them describe three-dimensional cells implicitly by encod-
ing the manifold complexes that form their boundary. In
[4], a compact data structure for arbitrary three-dimensional
simplicial complexes embedded in the three-dimensional
Euclidean space is described, called the Non-Manifold In-
dexed data structure with Adjacencies (NMIA). The NMIA
data structure scales well to the case of simplicial three-
dimensional manifold complexes, since it exhibits an over-

head of just one byte per vertex with respect to the IA data
structure when applied to manifold complexes.

An alternative approach to the design of non-manifold
data structures consists of decomposing a non-manifold ob-
ject into simpler and more manageable parts [7, 10, 11, 18].
Such techniques deal with the decomposition of the bound-
ary of a regular object into two-manifold parts. In [6], a
sound decomposition for d-dimensional non-manifold ob-
jects described through simplicial complexes is defined,
which is unique and produces a description of a d-complex
as a combination of nearly manifold components.

4. The Simplified Incidence Graph

4.1. Design of the Data Structure

The Simplified Incidence Graph (SIG) is a representation for
a d-dimensional Euclidean simplicial complex embedded in
n-dimensional Euclidean space, with d ≤ n. When d = n,
every (d−1)-simplex is shared by at most two d-simplices,
since any d-dimensional simplicial complex embedded in
the d-dimensional Euclidean space is a pseudo-manifold.

Given a d-dimensional simplicial complex Σ, the SIG en-
codes all p-simplices for p = 0,1, . . .d in Σ, and

• for each p-simplex σ, where 0 < p ≤ d, it encodes bound-
ary relations Bp,p−1(σ),

• for each p-simplex σ, where 0 ≤ p < d, partial co-
boundary relations C∗

p,g(σ) (where g > p)

Note that partial co-boundary relation C∗
d−1,d(σ) is the

same as co-boundary relation Cd−1,d(σ). Moreover, when
the domain is a manifold, all partial co-boundary relations
are empty with the exception of C∗

p,d(σ). In this case, rela-
tion C∗

p,d(σ) encodes one or two d-simplices incident at σ
when p = d−1, or just one d-simplex incident at σ when
p < d−1.

e
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Figure 1: Two examples showing the relations stored at a
vertex (a) and at an edge (b) in a SIG describing a two-
dimensional complex. In (a), the top simplices incident at
vertex v are triangles f1, f2, f3 and f4, and edge e. In (b),
the top simplices incdient at edge e are triangles f1 and f2.

Figure 1(a) shows an example of the encoding of a ver-
tex of a 2-complex in a SIG. Two partial co-boundary re-
lations are defined at v, namely, C∗

0,g(v), for g = 1,2. Re-
lation C∗

0,1(v) = {e} and relation C∗
0,2(v) = { f1, f2}. Figure
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1(b) shows an example of the encoding of an edge of a 2-
complex in a SIG. The partial co-boundary relation defined
at e is C∗

0,1(e), which consists of { f1, f2}.
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Figure 2: Two examples showing the relations stored at a
vertex (a) and at an edge (b) in a SIG describing a three-
dimensional complex. In (a), the top simplices incidnet at
vertex v are tetrahedra t1, t2 and t3, triangles d f1 and d f2,
and edge we. In (b), the top simplices incident at edge e =
{v1,v2} are tetrahedra t1, t2 and t3, and triangles d f1 and
d f2.

Figure 2(a) shows an example of the encoding of a ver-
tex of a 3-complex in a SIG. The restricted star of v st(v)
consists of edge we, of triangles d f1 and d f2, of the edges
of d f1 and d f2 which are incident at v, of tetrahedra t1, t2
and t3, together with all the faces and edges of t1, t2 and
t3 which are incident at v. Three partial co-boundary rela-
tions are defined at v, namely, C∗

0,g(v), for g = 1,2,3. Rela-
tion C∗

0,1(v) = {we}, relation C∗
0,2(v) = {d f1}, and relation

C∗
0,3(v) = {t1, t2}.

Figure 2(b) shows an example of the encoding of an edge
of a 3-complex in the SIG. The restricted star st(e) of edge
e is composed of triangles d f1 and d f2, of tetrahedra t1, t2,
and t3, and their faces which are incident at e. Since e 6∈
st(e), d f1 and d f2 are not 1-connected in st(e), and, thus,
they form two separate 1-clusters in st(e). Boundary relation
B∗

1,0(e), and the two partial co-boundary relations C∗
1,g(e),

for g = 2,3, are stored at edge e. Boundary relation B∗
1,0(e)

consists of the set of extreme vertices of e, namely {v1,v2}.
Partial co-boundary relations C∗

1,2(e) and C∗
1,3(e) consist of

{d f1,d f2} and {t1, t2}, respectively.

4.2. Implementation and Storage Cost

In this subsection, we describe the implementation of the
SIG, and discuss the storage cost for this implementation.
For simplicity, in our current implementation, we use one
integer to index a simplex.

All simplices are stored in ascending order of their di-
mensions. Each simplex has a unique index. A lookup-table
is used to encode the starting and ending indices of the sim-
plices for each dimension. For each simplex, we also store a
one-bit flag that is used by the navigation algorithms to mark
a simplex as visited during traversal, and reset after traversal
is completed.

For each p-simplex σ, with 0 < p ≤ d, boundary rela-
tion Bp,p−1(σ) is stored in a fix-sized array, each element
of which is an index to a simplex on the boundary of σ. For
each p-simplex σ, with 0≤ pr < d, partial co-boundary rela-
tions C∗

p,g(σ) for p < g ≤ d are stored, in decreasing order of
g, in a variable-sized array. Each entry of the array consists
of the index of a simplex containing σ in its boundary. The
end of the array is marked by a stop code. An integer pointer
is associated with simplex σ, which is the starting index of
the variable-sized arrays of the co-boundary relations. In the
manifold case, for all p-simplices σ, with p < d−1, only
relation C∗

p,d(σ) exists. Thus, the integer pointer associated
with σ references directly the d-simplex in C∗

p,d(σ) relation.
A flag is used to indicate whether the manifold condition
holds at a p-simplex, when p < d−1.

We denote with np, for 0 ≤ p ≤ d, the number of
p-simplices in a simplicial complex Σ, with κg(σ), for
dim(σ) < g ≤ d, the total number of g-clusters in the
restricted star of a simplex σ in Σ, and with κg

p =

∑dim(σ)=p κg(σ), for 0 ≤ p < d, and g > p, the total num-
ber of g-clusters summed over the restricted stars of all the
p-simplices in Σ.

The lookup-table, that stores the starting and ending in-
dices for the simplices in each dimension, requires d+1 inte-
gers. A total of ∑0≤p≤d np bits is needed for the flag used for
navigation. The space use for all boundary relations Bp,p−1
for 0 < p ≤ d is equal to ∑0<p≤d(p+1)np integers.

The storage space required for encoding the partial co-
boundary relations can be evaluated as follows. Each p-
simplex, 0 ≤ p < d, has a link to the partial co-boundary
relations C∗

p,g associated with it. This requires ∑0≤p<d np
integers in total. In addition, the flag, that indicates whether
the manifold condition holds at a simplex, requires one
bit for each simplex, and, thus, ∑0≤p<d np bits in total.
The total space use for all the variable-sized arrays that
store the partial co-boundary relations C∗

p,g is equal to
∑0≤p<d ∑p<g≤d κg

p + ∑0≤p<d np integers, where the first
term accounts for the indices of the simplices and the sec-
ond term ∑0≤p<d np accounts for the stop codes.

Thus, the total space used for encoding all topologi-
cal relations (i.e., both boundary and partial co-boundary
relations) is equal to ∑0≤p<d ∑p<g≤d κg

p + 2∑0≤p<d np +

∑0<p≤d(p+1)np integers and ∑0≤p<d np bits.

If Σ is a manifold complex, the variable-sized arrays are
not used for the partial co-boundary relations associated
with the p-simplices, when 0 ≤ p < d−1. For the (d−1)-
simplices, the variable-sized arrays are still used because
each (d−1)-dimensional simplex may be shared by either
one or two d-simplices. The space used for encoding the
partial co-boundary relations thus becomes ∑0≤p<d np +

κd
d−1 + nd−1 integers and ∑0≤p<d np bits. Also, κd

d−1 =
2nd−1. The space used for the simplices and the boundary
relations is the same as in the non-manifold case. Thus, the
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overhead with respect to a simplified incidence graph spe-
cific for a d-complex with a manifold domain is equal to
∑0≤p<d np bits + nd−1 integers.

5. Generating a Simplified Incidence Graph

In this section, we present an algorithm for generating the
simplified incidence graph from the incidence graph. Given
a d-dimensional simplicial complex Σ, the Incidence Graph
(IG) encodes all the p-simplices σ, 0 ≤ p ≤ d. Also, for each
p-simplex, σ, for 0 ≤ p < d, it encodes co-boundary relation
Cp,p+1(σ), and, for each p-simplex σ, 0 < p ≤ d, boundary
relation Bp,p−1(σ).

Boundary relations Bp,p−1(σ), for 0 < p ≤ d, in the SIG
can be directly obtained from the incidence graph. To build
partial co-boundary relations C∗

p,g(σ) for g > p, the set S of
top simplices that are incident at σ are retrieved from the
IG. For each g-simplex σ′ in S, boundary relation Bg,g−1(σ′)
and co-boundary relation Cg−1,g(σ′) are used in combina-
tion to find all the simplices in S that are (g−1)-adjacent to
σ′, i.e., which form a g-cluster with σ. For each g-cluster
in S, one simplex is arbitrarily selected to form the partial
co-boundary relation C∗

p,g(σ).

Algorithm BuildSIGFromIG provides a pseudo-code de-
scription of the technique for constructing all the entities,
boundary relations and partial co-boundary relations in a
SIG G from an IG I. It makes use of two auxiliary proce-
dures: RetrieveTopSimplexes and VisitCluster. Retrieve-
TopSimplexes retrieves, from an IG I, all top simplices in-
cident at a simplex σ. Given an r-simplex σ in a set of sim-
plices S, VisitCluster visits all the simplices that form one
r-cluster with σ.

6. Retrieving Topological Relations

In this section, we present navigation algorithms to retrieve
all incidence and adjacency topological relations from a sim-
plified incidence graph.

6.1. Retrieving Boundary Relations

Boundary relation Bp,q(σ), with q < p, consists of all q-faces
of p-simplex σ. It is retrieved as follows. Given a p-simplex
σ and q < p, we examine Br,r−1 relation for each of the r-
faces of σ, r = p, · · · ,q+1. Algorithm Boundary provides a
pseudo-code description of such technique.

The time complexity Bp
q of the algorithm for retrieving

boundary relation Bp,q(σ) is thus Bp
q = cΠr=q+1,p+1r, which

is bounded by a constant which depends on the dimension
p of the simplex and on the dimension q of its faces. For
instance, for Bd,0, Bd

0 is O((d+1)!).

Algorithm 1 : BuildSIGFromIG(I, G)
given an Incidence Graph, I, it constructs all the entities,
boundary relations and partial co-boundary relations for the
Simplified Incidence Graph, G.
BuildSIGFromIG(I, G)
Input : an Incidence Graph, I
Output : a Simplified Incidence Graph, G

create all entities σ in G

{define the boundary relations in G}
for all σ ∈ I do

let p := dim(σ)
if p > 0 then

define Bp,p−1(σ) in G to be the same as that in I
end if

end for

{define the partial co-boundary relations in G}
for all σ ∈ I do

let p := dim(σ), and C∗
p,g(σ) := ∅ for g > p

S :=RetrieveTopSimplexes(I, σ)
while there exists σ′ ∈ S, σ′ 6=σ and

not visited(S, σ′) do
let r := dim(σ′)
C∗

p,r(σ) := C∗
p,r(σ)∪{σ′}

if r = p+1 then
mark σ′ as visited in S

else
S := VisitCluster(S, σ′)

end if
end while

end for

6.2. Retrieving Co-boundary Relations

Co-boundary relations Cp,g(σ) for a p-simplex σ and g > p
are retrieved in two steps. The first step consists of retrieving
all top simplices of dimension ≥ g in the restricted star st(σ)
of σ. The second step consists of retrieving, from each of
these top simplices, their g-faces that are in st(σ).

In the first step, for each r-simplex µ that belongs to
C∗

p,r(σ), for g ≤ r ≤ d and g > p+1, we retrieve all the r-
simplices, that are in the same r-cluster as µ and are in st(σ).
To this aim, we examine the (r−1)-faces of µ in boundary
relation Br,r−1(µ) to see whether they contain σ as a p-face.
For each of the (r−1)-faces µ′, that is incident at σ, all top
simplices µ′′ in relation C∗

r−1,r(µ
′) are retrieved. The same

procedure is applied to each of these simplices µ′′ until all
top simplices in the same r-cluster as µ in st(σ) are visited.
When g = p+1, each (p+1)-simplex µ in relation C∗

p,p+1(σ)
forms a cluster by itself. Algorithm RetrieveCluster pro-
vides a pseudo-code description. Given a simplified inci-
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Algorithm 2 :RetrieveTopSimplexes(I, σ)
it retrieves from an Incidence Graph, I, the set of top sim-
plices, S, that are incident at a simplex σ.
RetrieveTopSimplexes(I, σ)
Input : an Incidence Graph, I,

a simplex, σ
Output : a set of top simplices, S, incident at σ if σ is not

a top simplex, otherwise, a set containing σ

let p := dim(σ), S := ∅
if not visited(I, σ) then

mark σ as visited in I
if Cp,p+1(σ) = ∅ then

S := {σ}
else

for all σ′ in Cp,p+1(σ) do
S := S ∪ RetrieveTopSimplexes(I, σ′)

end for
end if

end if
return S

Algorithm 3 : VisitCluster(S, σ)
given a set S of simplices and a r-simplex σ ∈ S, it visits the
simplices in S, that are (r−1)-adjacent to σ.
VisitCluster(S, σ)
Input : a set of top simplices, S,

a simplex, σ, of dimension r in S
Output : a set of top simplices, S, in which simplices that

are (r−1)-adjacent to σ are marked as visited

let r := dim(σ)
if not visited(S, σ) then

mark σ as visited in S
for all σ′ in Br,r−1(σ) do

for all σ′′ in Cr−1,r(σ′) do
if σ′′ ∈ S then

S := VisitCluster(S, σ′′)
end if

end for
end for

end if
return S

dence graph G, a p-simplex σ, and an r-simplex µ incident
at σ, RetrieveCluster retrieves all top simplices in st(σ) be-
longing to the same r-cluster as µ.

The second step consists of retrieving, for each top r-
simplex µ incident at σ, the g-faces of µ that are incident
at σ. When µ is of dimension greater than g, the g-faces θ
of µ are obtained from boundary relation Br,g(µ). Boundary
relation Bg,p(θ) is examined for each θ to check whether θ

Algorithm 4 : Boundary(G, q, σ)
it retrieves the q-simplices on the boundary of p-simplex σ.
Boundary(G, q, σ)
Input : a Simplified Incidence Graph, G,

a dimension, q < p,
a simplex, σ

Output : a set of q-simplices, S, on the boundary of σ

let p := dim(σ), S := ∅
for all σ′ ∈ Bp,p−1(σ) do

if not visited(G, σ′) then
mark σ′ as visited in G
if p = q+1 then

S := S∪{σ′}
else

S := S ∪ Boundary(G, q, σ′)
end if

end if
end for
return S

is incident at σ. Algorithm Coboundary provides a pseudo-
code description of the two-step technique for retrieving a
co-boundary relation.

To analyze the complexity of the algorithm, given a p-
simplex σ, we define λr(σ), for p < r ≤ d, to be the num-
ber of top simplices of dimension r in the restricted star
st(σ) of σ. In the first step, algorithm RetrieveCluster vis-
its every r-simplex in st(σ) exactly once. For each r+1
(r−1)-faces of each top r-simplex, with r > p+1, bound-
ary relation Br−1,p is retrieved to test whether p-simplex
σ belongs to Br−1,p. Recall that the worst-case time com-
plexity of retrieving boundary relation Br−1,p is equal to
Br−1

p . Thus, the complexity of algorithm RetrieveCluster
is O(λg(σ)+∑g<r≤d rBr−1

p λr(σ)).

To analyze the complexity of the second step, we de-
note with Kr

g the number of g-faces of an r-simplex. The
worst-case time complexity for retrieving the g-faces of an
r-simplex is Br

g. Testing whether a g-face is incident at
σ takes Bg

p operations. In total, the second step requires
O(∑g<r≤d λr(σ)(Br

g +Kr
pB

g
p)) operations.

Let Cg
p denote the number of operations per-

formed by algorithm Coboundary. Then Cg
p =

O(λg(σ) + ∑g<r≤d λr(σ)(Br
g + Kr

pB
g
p + rBr−1

p )) in the
worst case. Cg

p is linear in the number of top simplices of
dimension from p+1 to g incident at p-simplex σ. The
multipliers (Br

g, Kr
pB

g
p and rBr−1

p ) for the terms λr(σ), for
g < r ≤ d, are bounded by constants that depend only on
the dimensions p and g.

For instance, retrieving C0,d(v) relation for a vertex v re-
quires O(λd(v)) time, which is equal to the number of d-
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simplices incident at v, regardless of whether the manifold
condition holds at v.

Algorithm 5 : Coboundary(G, g, σ)
it retrieves the g-simplices in the restricted star of p-simplex
σ.
Coboundary(G, g, σ)
Input : a Simplified Incidence Graph, G,

a dimension, g > p,
a simplex, σ

Output : a set of simplices, T , in the restricted star of σ

let p := dim(σ), T := ∅
for all σ′ ∈C∗

p,r(σ) for g ≤ r ≤ d do
{Step 1:}
S := RetrieveCluster(G, σ, σ′)
{Step 2:}
if r = g then

T := T ∪S
else

for all µ ∈ S do
S′ := Boundary(G, g, µ)
for all θ ∈ S′ do

if σ ∈ Boundary(G, p, θ) then
T := T ∪{θ}

end if
end for

end for
end if

end for
return T

6.3. Retrieving Adjacency Relations

Adjacency relation Ap(σ) for a p-simplex σ, when p > 0 is
retrieved by first extracting the p+1 (p−1)-faces of σ, and
then retrieving, for each (p−1)-face σ′ of σ, co-boundary
relation Cp−1,p(σ′). For p = 0, adjacency relation A0(v) for
a vertex v is obtained by first retrieving the set of edges in
co-boundary relation C0,1(v), and then retrieving the other
extreme vertex of each edge e in C0,1(v) through boundary
relation B1,0(e). Algorithm Adjacency provides a pseudo-
code description of the technique for retrieving adjacency
relations.

For p > 0, the worst-case time complexity of the algo-
rithm for adjacency relation Ap(σ) is equal to O(pC p

p−1),
and, thus, it is linear in the total number of simplices incident
at the p-faces of σ. The time complexity of the algorithm for
retrieving A0(v) is equal to O(C1

0), and, thus, it is linear in
the number of top simplices incident at vertex v.

7. Comparisons

In this section, we compare the space complexity and the
performances of the simplified incidence graph with those

Algorithm 6 : RetrieveCluster(G, σ, µ)
given a simplified incidence graph, G, a p-simplex σ, and an
r-simplex µ in the restricted star of σ, st(σ), it retrieves all
the simplices that are (r−1)-connected to µ in st(σ).
RetrieveCluster(G, σ, µ)
Input : a Simplified Incidence Graph, G,

a simplex, σ, of dimension p,
a simplex, µ, of dimension r > p, incident at σ

Output : a set of simplices in the same r-cluster as µ, S

let p := dim(σ), r := dim(µ), and S := ∅
if not visited(G, µ) then

mark µ as visited in G
S := S∪{µ}
if r > p+1 then

for all µ′ ∈ Br,r−1(µ) do
if σ ∈ Boundary(G, p, µ′) then

for all µ′′ ∈C∗
r−1,r(µ

′) do
S := S ∪ RetrieveCluster(G, σ, µ′′)

end for
end if

end for
end if

end if
return S

of the incidence graph for general d-dimensional simpli-
cial complexes, and of the indexed data structure with ad-
jacency for d-dimensional simplicial pseudo-manifolds. We
also compare two- and three-dimensional instances of the
SIG with specific data structures for two-dimensional and
three-dimensional simplicial complexes, respectively, which
cannot be generalized to higher dimensions. The notations
used in this section are the same as those defined in Subsec-
tion 4.2.

7.1. Comparison with the Incidence Graph

Both the SIG and the Incidence Graph (IG) store boundary
relations Bp,p−1(σ) for all p-simplices σ, 0 < p ≤ d, in the
complex. The total cost of encoding such boundary relations
is equal to ∑0<p≤d(p+1)np integers.

The IG stores also co-boundary relations Cp,p+1(σ) for ev-
ery p-simplex σ, where 0 ≤ p < d. Encoding the indexes of
the simplices in all such co-boundary relations requires the
same amount of space as encoding all boundary relations,
i.e., ∑0<p≤d(p+1)np integers. Moreover, since co-boundary
relations are not constant, they are stored in variable-sized
arrays, requiring an additional ∑0≤p<d np integers for index-
ing the start and the end of such arrays.

Instead of co-boundary relations Cp,p+1(σ), the SIG stores
partial co-boundary relations C∗

p,g(σ) for any p-simplex σ,
where 0 ≤ p < d and g > p.

c© The Eurographics Association 2004.

91



L. De Floriani & D. Greenfieldboyce & A. Hui / A data structure for non-manifold simplicial d-complexes

Algorithm 7 : Adjacency(G, σ)
given a simplified incidence graph G, and a p-simplex, it
retrieves the set of p-simplices that are adjacent to σ.
Adjacency(G, σ)
Input : a Simplified Incidence Graph, G,

a simplex, σ
Output : a set of simplices, A, that are adjacent to σ

let p := dim(σ), A := ∅
if p > 0 then

for all σ′ ∈ Bp,p−1(σ) do
A := A ∪ Coboundary(G, p, σ′)

end for
else

S := Coboundary(G, 1, σ)
for all σ′ ∈ S do

A := A∪ (B1,0(σ′)−{σ})
end for

end if
return A

In the manifold case, partial co-boundary relations C∗
p,g,

for all p-simplices, with p < d−1, degenerate into relation
C∗

p,d , which has only one element. Thus,

• the SIG uses only ∑0<p≤d(p+1)np +∑0≤p<d np +3nd−1
integers and ∑0≤p<d np bits;

• the IG uses 2∑0<p≤d(p+1)np +∑0≤p<d np integers.

For d = 2, the SIG uses approximately 21n0 integers and
4n0 bits, while the IG uses 28n0 integers, since from Euler’s
formula we have that n1 ≈ 3n0 and n2 ≈ 2n0. In the case of
three-dimensional manifold complexes, it has been shown
experimentally that n3 ≈ 6n0 [3], and thus n2 ≈ 12n0 and
n1 ≈ 7n0. Thus, in this case, the SIG requires approximately
110n0 integers and 46n0 bits, while the IG requires 168n0
integers.

In the general case, we conjecture that the number of top
q-simplices incident at a p-simplex σ is less or equal to the
number of p+1 simplices incident at σ, where p < d.

7.2. Comparison with the Indexed Data Structure with
Adjacencies

The Indexed data structure with Adjacencies (IA) can de-
scribe d-dimensional simplicial pseudo-manifolds. It en-
codes vertices and d-dimensional simplices as well as
boundary relation Bd,0 and adjacency relation Ad for all d-
simplices. Since the IA data structure is specific for pseudo-
manifolds, adjacency relation Ad is bounded by a constant
that depends on dimension d. Given a complex with n0 ver-
tices and nd d-simplices, both boundary relation Bd,0 and
adjacency relation require (d+1)nd integers. Thus, the IA
data structure requires 2(d+1)nd integers for topological re-
lation in total.

When restricted to pseudo-manifolds, the partial co-
boundary relations Cp,g in the SIG will be empty for g 6= d,
since the only top simplices in a pseudo-manifold are the d-
simplices. Moreover, each (d−1)-simplex is on the bound-
ary of one or two d-simplices. Thus, the SIG requires:

• ∑0<p≤d(p+1)np integers for boundary relations
• ∑0≤p<d np +κd

d−1 +nd−1 integers (where κd
d−1 = 2nd−1),

and ∑0≤p<d np bits for co-boundary relations

If we consider three-dimensional manifold complexes, the
storage cost of the IA data structure is equal to 8n3 integers,
while the cost of the SIG is equal to n0 +3n1 +7n2 +4n3 in-
tegers and 2(n0 +n1 +n2)+n3 bits since κ3

2 is equal to 2n2.
The cost of the IA data structure is thus approximately 48n0,
while that of the SIG is approximately 130n0 integers and
46n0 bits. Thus, the storage space of the SIG, in the mani-
fold case and for d = 3, is about 2.7 times the storage space
of the IA data structure.

On the other hand, the IA data structure encodes only ver-
tices and d-simplices, and only the boundary relations and
Ad relations can be retrieved in time linear in the entities in-
volved in the relation. Retrieving all other relations requires
a number of operations which is linear in the total number of
simplices in the complex.

7.3. Comparison with the Triangle-Segment Data
Structure

The Triangle-Segment (TS) data structure is a data structure
for two-dimensional simplicial complexes embedded in E3.
It encodes the vertices, and the triangles in a complex Σ. The
TS data structure encodes also the following relations:

• for each vertex v in Σ: relation A0(v) for each edge in-
cident in v which is a top simplex (called a wire edge),
and relation C∗

0,2(v), which stores one triangle for each
1-connected component of the restricted star of v.

• for each triangle t in Σ: boundary relation B2,0(t), and par-
tial adjacency relation A∗

2 (t). which stores, for each edge
e of t, the triangles preceding and succeeding t in counter-
clockwise order around t

Note that A0(v) is equivalent to C∗
0,1(v) relation in the SIG.

The total storage cost for the TS data structure is equal to
n0 + 9n2 + κ1

0 + κ2
0 integers and n0 + n2 bits, of which 3n2

integers are for relation B2,0, 6n2 integers for relation A∗
2 ,

and n0 + κ1
0 + κ2

0 integers, where κ1
0 and κ2

0 denote the total
number of wire edges and the total number of 2-connected
components in the restricted star of a vertex v, respectively,
for relations C∗

0,1(v) and C∗
0,2(v).

A SIG for a 2-complex embedded in E3, uses three inte-
gers and ∑0≤p≤2 np bits for topological entities, and 2n0 +

4n1 + 3n2 + κ1
0 + κ2

0 + κ2
1 integers and n0 + n1 bits for topo-

logical relations.
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For a manifold 2-complex, κ1
0 = 0, κ2

0 = n0 and κ2
1 = 2n1.

Thus, the SIG uses 3n0 + 4n1 + 5n2 integers and n0 + n1
bits, which is approximately equal to 25n0 integers. In the
manifold case, the TS has a storage cost of approximately
20n0 integers. Thus, the SIG uses roughly 5

4 as much stor-
age space with respect to the TS data structure. On the other
hand, edges are not explicitly represented in the TS data
structure, and only boundary relations and co-boundary re-
lations C0,g can be extracted in optimal time from it.

7.4. Comparison with the Non-Manifold Indexed Data
Structure with Adjacencies

Simplicial 3-complexes embedded in E3 consist of vertices,
edges, triangles and tetrahedra. Non-manifold properties ex-
hibited by 3-complexes include the presence of top simplices
of dimensions 1 and 2 (which we call wire edges and dan-
gling faces), the presence of many 1-connected components
at vertices, and the presence of many 2-connected compo-
nents at edges.

The Non-manifold Indexed Data Structure with Adja-
cencies (NMIA), described in [4], is specialized for three-
dimensional simplicial complexes embedded in E3. The
NMIA data structure encodes the vertices, the top 1-
simplices (wire edges), the top 2-simplices (dangling faces),
and the tetrahedra of a simplicial 3-complex Σ. Boundary re-
lation Bp,0 is stored for each top p-simplex, with p = 1,2,3.
For each top 2-simplex or top 3-simplex σ, the simplices
preceding and succeeding σ around each of its edges are en-
coded. One top-simplex is stored for each connected compo-
nent of the restricted star st(v) of each vertex v.

To evaluate the storage cost of the NMIA data struc-
ture, we denote with n′1 and n′2 the number of wire edges
and dangling faces, respectively. For each vertex v, we de-
note with c1(v) the number of connected components in
the restricted star st(v), and with c1 = ∑v∈Σ c1(v) the to-
tal number of connected components summed over all the
vertices in the complex. The storage cost of the NMIA data
structure is equal to n0 + n′1 + n′2 + n3 bits for entities, and
n0 +2n′1 +9n′2 +16n3 +c1 integers for topological relations.
2n′1 +3n′2 +4n3 integers are required for boundary relations,
n0 + c1 integers are required for storing the connected com-
ponents at vertices, 6n′2 integers are necessary for encoding
the neighbors around each edge of a top 2-simplex, and 12n3
integers are needed for encoding the neighbors around each
edge of a 3-simplex.

Since 3-complexes embedded in E3 are necessarily
pseudo-manifolds, the SIG for such complexes can be spe-
cialized so that relation C∗

2,3(t) for each triangle t needs only
to be stored in a fix-sized array of size 2, and the flag that
indicates whether the manifold property holds at an entity
does not apply to the triangles and tetrahedra of the com-
plex. The storage cost of the SIG for such a complex is equal
to 4 integers and ∑0≤p≤3 np bits for topological entities and

2n0 +4n1 +5n2 +4n3 +∑g=1,2,3 κg
0 +∑g=2,3 κg

1 integers and
n0 +n1 bits for topological relations.

For manifold complexes, the storage cost of the NMIA is
approximately 98n0 integers since c1 = n0 and n′1 = n′2 = 0.
The storage cost of the SIG is n0 +3n1 +5n2 +4n3 +κ3

2 in-
tegers and 2(n0 +n1)+n2 +n3 bits, which is approximately
equal to 130n0 integers.

8. Concluding Remarks

We have described a new data structure for d-dimensional
simplicial complexes, the Simplified Incidence Graph (SIG),
and we have presented efficient algorithms for retrieving in-
cidence and adjacency relations from such a representation
as well as for generating it from an incidence graph. The
SIG is dimension-independent. It is scalable, since it exhibits
an overhead equal to nd−1 integers, where nd−1 denotes the
number of (d−1)-simplices in the complex, when applied to
manifold simplicial complexes. We have also shown that all
the co-boundary and the adjacency relations can be retrieved
from a SIG in time linear in the number of top simplices
incident in the query simplex.

Our comparisons have shown that the SIG is more com-
pact and efficient than the incidence graph, since it exploits
the fact that it is not necessary to encode the complete co-
boundary relations when dealing with simplicial complexes.
It requires more space than an indexed data structure with
adjacencies, but this latter is limited to describe pseudo-
manifold complexes, and only boundary and Ad relations can
be retrieved from it in optimal time. The SIG is also quite
compact and efficient when compared with optimized data
structures specific for two- and three-dimensional simplicial
complexes, which, however, do not describe all simplices in
a complex, and from which not all topological relations can
be extracted in optimal time.

Current and future developments of this work involve an
in-depth comparison with the incidence graph in the gen-
eral case of arbitrary simplicial complexes in terms of com-
putational efficiency, and the development of update oper-
ations, like edge contraction, on a simplicial complex de-
scribed through a simplified incidence graph.
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