
Eurographics Symposium on Geometry Processing (2004)
R. Scopigno, D. Zorin, (Editors)

Connectivity Transformation for Mesh Metamorphosis

Minsu Ahn1, Seungyong Lee1,2, and Hans-Peter Seidel2

1Pohang University of Science and Technology, Korea
2Max-Planck-Institut für Informatik, Germany

Abstract

In previous mesh morphing techniques, the vertex set and connectivity of an in-between mesh are fixed and only the
vertex positions are interpolated between input meshes. With this restriction, to accurately represent both source
and target shapes, an in-between mesh should contain a much larger number of vertices than input meshes. This
paper proposes a novel approach for mesh morphing, which includes connectivity changes in a metamorphosis.
With the approach, an in-between mesh contains only the vertices from the input meshes and so the in-between
vertex count does not exceed the sum of source and target vertex counts. The connectivity changes are realized
by a sequence of edge swap operations, determined by considering the geometric errors from the input meshes.
Experimental results demonstrate that the proposed approach generates almost same in-between shapes as the
metamesh-based approach with a much smaller number of vertices.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Metamorphosis, commonly referred to as morphing, deals
with the fluid transformation from one object into another.
3D mesh morphing handles two input polyhedral objects
and generates an animation in which the source mesh gradu-
ally changes to the target through in-between meshes. With
applications such as special effects and shape design, suc-
cessful techniques have been developed for mesh morphing
[LV98].

Most of previous mesh morphing techniques are based
on the construction and interpolation of a metamesh. A
metamesh is created by merging the vertex and edge sets
of input meshes on a common domain, such as a sphere
[KPC92, Ale00], 2D polygon [KSK97, BP98, GSL∗98],
and base mesh [LDSS99]. An in-between mesh can be gen-
erated by interpolating the vertices of a metamesh between
the source and target positions.

Another interesting approach for mesh morphing is
remeshing-based, where the input meshes are resampled to
have the same structure [PSS01, MKFC01]. Vertex positions
are obtained from the input mesh surfaces with a common
mesh parameterization, while the edges are determined by

recursive subdivision of a common base mesh. As in the
metamesh-base approach, the interpolation of vertex posi-
tions generates a sequence of in-between meshes.

The vertices of a mesh and its connectivity represented
by the edges are both important for representing the shape
approximated by the mesh. The vertices are sample points
of the shape and the connectivity determines the interpo-
lation of the sample points for non-sampled parts. In both
the metamesh- and remeshing-based approaches, the con-
nectivity of an in-between mesh is fixed in a morphing se-
quence. Only the vertex positions can change to interpolate
the shapes of source and target meshes. This restriction in-
evitably incurs the drawback that an in-between mesh con-
tains a much larger number of vertices than input meshes.

In a morphing sequence, an in-between mesh reflects
more the source shape at the beginning and the target at
the end. To precisely represent both the source and target
shapes with a fixed connectivity, a metamesh should contain
the source and target edges as well as source and target ver-
tices. Also, to merge the source and target edges, a metamesh
must include the intersection points of the edges as new addi-
tional vertices. In the case of the remeshing-based approach,
the vertices and edges of source and target meshes are not

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

directly used. However, to accurately approximate both the
source and target shapes with a fixed vertex set and connec-
tivity, we may need many subdivision levels, which results
in a large vertex count of an in-between mesh.

In this paper, we propose a novel approach for mesh mor-
phing, where a morphing sequence includes connectivity
transformation and an in-between mesh contains only the
vertices from the source and target meshes. Since no ad-
ditional vertices are introduced, the vertex count of an in-
between mesh does not exceed the sum of those of the in-
put meshes. The connectivity transformation is realized by a
sequence of edge swap operations, where the sequence is
determined by considering the geometric errors of an in-
between mesh from the source and target. In a metamor-
phosis, the connectivity transformation allows an in-between
mesh to contain the connectivity similar to the source at the
beginning and the target at the end. Hence, we can effec-
tively represent the source and target shapes throughout a
metamorphosis with a much smaller number of vertices than
previous approaches.

1.1. Related work

Hoppe et al. [HDD∗93] proved that the connectivity can be
transformed among two homeomorphic meshes with a se-
quence of three edge transformations: edge collapse, edge
split, and edge swap. However, they did not present an algo-
rithm to derive the edge transformation sequence that real-
izes the connectivity transformation.

Hanke and Ottmann [HOS96] presented an algorithm to
derive an edge swap sequence that changes a 2D triangu-
lation into another one with the same set of vertices. They
also showed that the number of edge swaps required for the
connectivity change is bounded by the number of intersec-
tions among the edges of the two triangulations. The algo-
rithm and the upper bound provide a theoretical basis for
the correctness of the connectivity transformation algorithm
proposed in this paper.

Ahn and Lee [AL02] proposed a mesh morphing tech-
nique that considers connectivity transformation. However,
the technique simplifies input meshes in a metamorphosis,
which may incur the loss of source and target details in an
in-between mesh. Furthermore, the technique performs a se-
quence of edge swaps in the source mesh to create an edge of
the target mesh. In this approach, the edge swaps for creat-
ing a target edge may increase the number of edge intersec-
tions between the source and target so that a larger number of
edge swaps may be needed to create other target edges later.
Hence, this approach may produce an unnecessarily large
number of edge swaps in the connectivity transformation.

In a recent technique of Lin and Lee [LL04], the vertices
and edges of the target mesh are incrementally created in the
source mesh to transform the connectivity in a morphing se-
quence. However, similar to [AL02], the technique creates

a target edge by applying a sequence of edge swaps to the
source mesh and does not try to reduce the number of edge
swaps used for the connectivity transformation. Hence, the
technique has the same drawback as [AL02] in that unnec-
essarily many edge swaps may be performed in a metamor-
phosis.

1.2. Contributions

In this paper, to realize mesh morphing with connectivity
changes, we present two algorithms;

connectivity transformation: Given two input meshes, we
first convert the meshes to have the same number of vertices
while preserving the shapes. Then, the connectivity of the
converted source mesh is transformed to the converted tar-
get by an edge swap sequence. We reduce the number of
edge swaps for connectivity transformation by performing
an edge swap only when it decreases the number of inter-
sections between the source and target edges. To generate
a smooth metamorphosis, geometric errors from the input
meshes are also considered in determining the edge swap
sequence. Experimental results in Sec. 5 show that the num-
ber of edge swaps produced by our algorithm is smaller than
that from the technique in [LL04].

connectivity interpolation: After we obtain the edge swap
sequence, an animation can be generated by applying geo-
morphs [Hop96] to the sequence while interpolating the ver-
tex positions from the source to the target. However, in this
case, the connectivity of an in-between mesh always changes
only at a single edge that is currently being swapped. To
avoid this limitation, we rearrange the edge swaps by con-
sidering the dependency among them and perform the inde-
pendent edge swaps simultaneously with geomorphs. In con-
trast, in [LL04], connectivity interpolation is not considered
and edge transformations are performed in sequence one by
one.

2. Preliminaries

A mesh is a polygonal approximation of an object, which
consists of connectivity and geometric information. In this
paper, we only consider triangular meshes. A triangular
mesh M can be represented by a pair (P,K), where P is a
set of 3D positions of the vertices and K is an abstract sim-
plicial complex that specifies the connectivity information
[Spa66].† In this paper, we use edge swap (eswap) as the
elementary operation for mesh connectivity transformation
(see Fig. 1). We assume that two input meshes are homeo-
morphic to each other and do not consider a genus change in
a metamorphosis.

† In the literature, K is often referred to the topological information
because it contains the vertex set as well as the connectivity between
vertices.

c© The Eurographics Association 2004.



M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

ESwap

v
l

vr

v
t

ea
e
b

vu

v
l

vr

v
t

vu

Figure 1: Edge swap operation

2.1. Problem definition

Given the source mesh, MS = (PS,KS), and the target mesh,
MT = (PT ,KT ), the problem of mesh morphing is to deter-
mine an in-between mesh, MI(r) = (PI(r),KI(r)), for a tran-
sition rate r between 0 and 1, where 0 and 1 imply the source
and target meshes, respectively. In both the metamesh-based
and remeshing-based approaches, the in-between connectiv-
ity KI(r) is fixed regardless of r, while the vertex positions
PI(r) are interpolated between PS and PT with respect to r.
These approaches are quite effective in representing a shape
blended from MS and MT but they have to pay the cost of
a complicated connectivity of MI(r). In contrast, in this pa-
per, KI(r) is allowed to change depending on r and MI(r)
is required to effectively represent a blended shape with a
simpler connectivity than in the previous approaches.

2.2. Preprocessing for vertex mapping

Let MS and MT be the given source and target meshes. To
control the shape of an in-between mesh, a user specifies the
corresponding feature vertices on MS and MT . The vertex
mapping between MS and MT can be obtained by embedding
MS and MT onto a common domain. For the embedding,
although other approaches (e.g., [LDSS99]) can be used, we
adopt the spherical embedding proposed by Alexa [Ale00].
With the embedding, the vertices of MS and MT have the
corresponding positions on the surfaces of the MT and MS,
respectively. Note that, in this paper, the embedding is used
only for determining the vertex mapping and no metamesh
is constructed.

The corresponding feature vertices of MS and MT are
mapped onto the same position on the common domain and
represented by one vertex in an in-between mesh. Similarly,
we can merge source and target vertices that are close to each
other on the common domain. This vertex merging reduces
the number of vertices in an in-between mesh without much
degrading the in-between shape quality.

For vertex merging, we adopt the technique proposed by
Jeong et al. [JYL∗03]. The technique merges the mutually
closest vertex pairs in the source and target meshes, where
the merged position is the middle of the original vertex posi-
tions. The vertex merging is not allowed when it introduces
a fold-over in the source or target embedding. Additional
relaxation on the embedding is performed to reduce the dis-
tortions introduced in the vertex merging.

3. Connectivity Transformation

Let ns and nt be the vertex counts of MS and MT , respec-
tively. Let nc be the number of merged vertices by vertex
merging mentioned in Sec. 2.2. To perform a metamorpho-
sis, we first convert MS and MT to M′

S and M′
T , respectively.

The vertex counts of M′
S and M′

T are the same as ns +nt −nc

and the vertices have an 1-to-1 correspondence between M′
S

and M′
T . However, M′

S has the same shape as MS and so con-
tains a different connectivity from M′

T , which has the same
shape as MT . Then, we obtain a sequence of eswap opera-
tions that changes the connectivity of M′

S into that of M′
T .

With the eswap sequence, we can generate a metamorphosis
from the source shape to the target in which the vertex count
of an in-between mesh is constantly ns + nt − nc. Note that
ns + nt − nc is the minimal number of vertices required for
representing the details of both MS and MT at the same time.

3.1. Input mesh conversion

In this section, we explain how to convert MS into M′
S. In the

same way, MT can be converted to M′
T .

The vertices of MT can be mapped onto the surface of
MS with the vertex mapping determined in Sec. 2.2 (see Fig.
2(a)). For a target vertex vt , we first find the face fs of MS
which contains the mapped position of vt . Then, a vertex vs

is created at the mapped position and connected to the three
vertices of fs. By repeating this process for each vertex of
MT , we can obtain a mesh M′′

S that contains all the source
and target vertices. Although its vertex set and connectivity
differ from MS, M′′

S has the same shape as MS (see Fig. 2(b)).

(a) (b) (c)

Figure 2: Embedding of vertices onto the other mesh: (a)
original configuration of target vertices mapped onto a
source triangle; (b) result of simple embedding; (c) en-
hanced result after edge swaps

However, the edges in M′′
S connecting the vertices mapped

from MT may much differ from the edges in MT . To reduce
the difference, we perform eswap operations on the edges
in M′′

S . An edge e′′s of M′′
S is swapped if the eswap reduces

the number of edge intersections between M′′
S and MT on the

common embedding. To preserve the shape of MS, no eswap
is allowed for the original edges of MS. We consider each
edge e′′s of M′′

S in sequence and perform an edge swap until
no more edge swap is possible. As a result of the eswap op-
erations, we obtain the converted mesh M′

S, which contains
as many as possible of the target edges among the vertices
mapped from MT (see Fig. 2(c)). Fig. 3 shows an example
of input mesh conversion.

c© The Eurographics Association 2004.



M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

(a) source mesh MS (b) converted source M′
S

(c) target mesh MT (d) converted target M′
T

Figure 3: Input mesh conversion: Input meshes MS and MT
are converted to M′

S and M′
T , respectively, where the vertices

of M′
S and M′

T have an 1-to-1 correspondence.

3.2. Transformation sequence computation

We can obtain an eswap sequence for the connectivity trans-
formation from M′

S to M′
T by adapting the algorithm pro-

posed by Hanke and Ottmann [HOS96]. Although the algo-
rithm is developed for 2D triangulations, it also works for
3D meshes if we check the edge intersections on the com-
mon domain for embedding. However, the algorithm does
not consider the geometry of triangulations at all because it
was aimed to minimize the number of eswap operations.

To reflect the geometry changes in the connectivity trans-
formation from M′

S to M′
T , we define an error metric for

eswap. Let es be an edge of M′
S. When es is swapped to

change M′
S, a geometric error from M′

S happens around es.
We measure the error by the shortest distance in 3D between
es and the edge created by swapping es. The error of eswap
performed in the middle of the connectivity transformation
can be defined in a similar way. Let es be an edge created by
applying several eswap operations to an edge of M′

S. Then,
es may intersect several edges in M′

S, where the intersections
are checked on the common domain for embedding. We de-
fine the error of es from M′

S as the maximum of the shortest
distances from es to the intersecting edges. For eswap per-
formed on es, we define the error as the difference between
the errors of es before and after eswap. The error for eswap
performed on an edge et from M′

T is defined in a similar way.

We have investigated other possible error metrics for
eswap, such as an error volume. However, it is difficult to
compute the error volume from M′

S after several eswap op-
erations are performed on an edge of M′

S. Hence, we chose
the distance based metric, which approximates the error vol-
ume.

With the error metric for eswap, the connectivity trans-
formation from M′

S to M′
T can be obtained by the following

algorithm;

1. For each edge e of M′
S and M′

T , we first check if there ex-

ists the corresponding edge in M′
T and M′

S, respectively.
If not, we compute the swapping error of e and insert e
into a priority queue Q with the computed error as the
priority.

2. An edge e with the smallest error is extracted from Q.
Suppose that e is from M′

S. The case that e has come from
M′

T can be handled in a symmetric way. We test if the
intersection count of e with the edges of M′

T decreases by
swapping e.

3a. If yes, we perform eswap on e to update M′
S. After eswap,

if e corresponds to an edge e′ of M′
T in Q, we remove e′

from Q. If there exists no such edge in Q, we insert e into
Q with the updated error.

3b. If no, e is put back to Q but not extracted again from
Q until one of its four neighbor edges is swapped. The
neighborhood change will make the result of eswap on e
varied from the previously tested one.

4. We repeat from Step 2 until no edge remains in Q.

In the algorithm, the given M′
S and M′

T are gradually trans-
formed to each other in connectivity as eswap operations are
performed. The priority queue Q contains the edges of M′

S
and M′

T for which the 1-to-1 correspondence has not been
established yet. When the algorithm terminates, the trans-
formed M′

S and M′
T have the same connectivity, which we

can consider as an in-between connectivity of the given M′
S

and M′
T . The algorithm generates two eswap sequences, one

for M′
S and the other for M′

T . The eswap sequence from M′
S

to M′
T can be obtained by concatenating the sequence for M′

S
with the reverse of the sequence for M′

T .

In Step 3a of the algorithm, if eswap on e generates a tri-
angle flip in the embedding of M′

S, we do not perform the
eswap and e is put back to Q as in Step 3b. Although some
edges of M′

S and M′
T can be inserted into Q more than once,

we can guarantee the termination of the algorithm by adapt-
ing the proof in [HOS96]. In practice, only a small portion
of the processed edges, about 2% in our experiments, are put
back into Q, which does not degrade the performance of the
algorithm.

The algorithm performs eswap operations for M′
S and M′

T
in the increasing order of errors from M′

S and M′
T , respec-

tively. In the final concatenated sequence, an eswap for M′
S

with a smaller error comes earlier, while a smaller error
eswap for M′

T is around the end. Hence, when we perform
the eswap sequence, the in-between shape gradually changes
from M′

S and M′
T .

4. Connectivity Interpolation

To generate an in-between mesh MI , we should interpolate
the connectivity between the converted source and target
meshes, M′

S and M′
T , with the eswap sequence determined in

Sec. 3. If we simply apply the eswap operations one by one,
the connectivity of MI will locally change on the swapped
edge. To obtain global connectivity changes of MI , we de-
termine the time interval for each eswap in the sequence. A

c© The Eurographics Association 2004.



M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

time interval specifies the part of a morphing sequence dur-
ing which an eswap should be performed with a geomorph.
At time r, the eswap operations whose time intervals contain
r simultaneously happen on different parts of MI(r).

4.1. Time interval calculation

To determine the time interval for each eswap, we consider
the partial order existing in the eswap sequence. For exam-
ple, if an edge ea is created by an eswap operation τa and
is a neighbor of an edge eb to be swapped by eswap τb (see
Fig. 1), τb cannot be performed until τa has been finished. To
represent the partial order, we construct a transformation de-
pendency graph D (see Fig. 4(a)). In the graph D, each node
is an eswap and a directed edge represents a precedence re-
lationship between two eswap operations.

1 2

4

3

5 6

7

τ τ τ
τ

ττ
τ

1 2

4

3

5 6

7

r

depth 4

depth 0

depth 1

depth 2

depth 3

height = 4

τ τ τ
τ

ττ
τ

(a) dependency graph D (b) graph D′ with the root

Figure 4: Transformation dependency graph

To construct the graph D, we use the precondition of
eswap determined by edges. An eswap can be applied to an
edge e only if the four edges surrounding e are active in the
current mesh M (see Fig. 1). Hence, if an eswap τa creates
one of the four surrounding edges of another eswap τb, D
includes a directed edge from τa to τb.

To specify the time interval for an eswap τ, we determine
the start time and end time of τ using the graph D. We first
convert the graph D into a graph D′ with a root, where the
root is connected to all nodes in D with no incoming edges
(see Fig. 4(b)). Then, we can define the depth of a node τ in
D′ as the length of the longest path from the root to τ.

The end time of a node τe in D′ with no outgoing edges
should be 1, i.e., the end of metamorphosis, because no other
eswap is performed after τe. For a node τ in D′ with an out-
going edge whose depth is d, let de be the maximum of the
depths among the descendants of τ. Then, we set the end
time of τ as d/de because τ is the d-th node on the length de

path in D′ from the root to a node having no outgoing edges.
The start time of a node τb in D′ which is connected to the
root is 0, i.e., the beginning of metamorphosis, because no
other eswap is performed before τ. The start time of a node
τ with an incoming edge is determined as the maximum of
the end times of the parent nodes of τ. That is, τ starts as
soon as its preceding eswap operations have been finished.

4.2. In-between mesh generation

To generate an in-between mesh MI(r) at time r, we first se-
quentially apply the eswap operations whose end times are

less than r to the converted source mesh M′
S. Let M′ be the

resulting mesh. Then, MI(r) is obtained by applying geo-
morphs to M′ with the eswap operations whose time inter-
vals contain r. The vertex positions during the geomorphs
are determined by linear interpolation with the vertex map-
ping obtained in Sec. 2.2. The eswap operations whose start
times are greater than r have no effect on MI(r).

When we make an animation of a metamorphosis between
input meshes, we should generate a sequence of in-between
meshes by incrementally increasing the time. In this case,
we do not need to sequentially apply the eswap operations
to M′

S for each generation of an in-between mesh. Instead,
the in-between mesh computed up to the current time can be
incrementally updated to obtain the in-between mesh at the
next time step.

The original geomorphs proposed by Hoppe [Hop96] han-
dle edge collapse and vertex split transformations. The con-
cept of a geomorph can easily be extended to eswap. Fig. 5
illustrates the process.

(a) (b) (c) (d)

Figure 5: Geomorph for eswap operation: (a) a vertex is
created at the center of the edge to be swapped; (b) & (c)
the vertex is moving during the geomorph; (d) the vertex is
removed and the edge has been swapped

5. Experimental Results

We have implemented the proposed mesh morphing tech-
nique on a Pentium IV 2.5 GHz PC. Fig. 6 shows meta-
morphosis examples. In each example, an in-between mesh
contains only the vertices from the input meshes and so has
a much simpler structure than previous techniques. For ex-
ample, in [LDSS99], the triangle count of a metamesh is
five to ten times larger than the bigger one of input meshes.
In contrast, Table 1 shows that the vertex count of an in-
between mesh is less than the sum of the vertex counts of
input meshes. Fig. 6 demonstrates that the proposed tech-
nique generates visually pleasing metamorphoses with the
smaller numbers of vertices.

Table 1 summarizes the statistics of the morphing exam-
ples. For each example, feature vertices were specified by the
user to establish the feature correspondence between input
meshes. In Table 1, the size of an in-between mesh does not
include the vertices temporarily introduced for geomorphs.

In Table 1, we can see that the number of edge swaps re-
quired for connectivity transformation is quite smaller than
the edge count of an in-between mesh. Note that the edge
swaps are applied to the converted source and target meshes,
M′

S and M′
T , which have the same number of edges as an

c© The Eurographics Association 2004.



M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

in-between mesh. When we compare the results with the re-
lated work [LL04], we can see that our approach generates
smaller number of edge swaps. In Table 1 of this paper, the
number of edge swaps is about a half of the edge count of
the bigger input mesh. In Table 1 of [LL04], the edge swap
count is similar to the bigger edge count.

Table 1 also shows the height of a dependency graph con-
structed for connectivity interpolation described in Sec. 4.
The height depends on the geometry and connectivity differ-
ences of input models. However, the height is always quite
smaller than the number of edge swaps, which implies many
edge swaps can be performed simultaneously in connectivity
interpolation.

Table 2 shows the computation times for the steps of the
proposed approach. After the edge swap sequence for con-
nectivity transformation has been obtained, the time inter-
vals of the edge swaps are computed only once. With the
time intervals, an in-between mesh MI(r) can be generated
for any rate r. Note that, e.g., MI(0.7) takes more time
to generate than MI(0.4) because the edge swap sequence
should always be performed from the beginning. However,
this restriction does not much increase the morphing time.

As mentioned in Sec. 4.2, when we generate a sequence of
in-between meshes, the current in-between mesh can be ef-
ficiently obtained by updating the one at the previous time
step. This property is verified by the sixth column in Ta-
ble 2, which gives the computation time for generating 100
in-between meshes for a metamorphosis. Note that the time
for 100 in-between meshes is much less than 100 times the
average time for generating a single in-between mesh.

The right part of Table 2 shows the sizes of metameshes
and the shape differences of in-between meshes among the
proposed and metamesh-based approaches. In Table 2, we
performed the vertex merging mentioned in Sec. 2.2 before
a metamesh was constructed. Although the vertex merging
may reduce the size of a metamesh, the edge intersections
still makes the vertex count of a metamesh two or three times
larger than the in-between vertex count of the proposed ap-
proach. The in-between shape errors in Table 2 were mea-
sured by the Metro tool [CRS98]. From the small error val-
ues, we can confirm that the proposed approach produces
almost same in-between shapes as the metamesh-based ap-
proach with a much smaller number of vertices.

6. Discussion and Future Work

The algorithm proposed by Hanke and Ottmann [HOS96]
provides a theoretical basis for the connectivity transforma-
tion algorithm presented in Sec. 3. However, the algorithm
of Hanke and Ottmann deals with 2D triangulations with
boundaries, while in this paper, the algorithm is applied to
the spherical embedding of triangular meshes. Since a sphere
with a hole can be projected onto a plane, we expect that the

results of Hanke and Ottmann also hold for the case of spher-
ical embedding. Although this is not a rigorous proof, in
our experiments, the connectivity transformation algorithm
in Sec. 3 always worked correctly.

In the algorithm presented in Sec. 3, an edge swap is per-
formed only when it decreases the number of intersections
between the source and target edges. As shown by Hanke
and Ottmann [HOS96], this strategy helps a lot in reducing
the number of edge swaps required for connectivity transfor-
mation. However, the resulting number of edge swaps may
not be minimal because we consider the mesh geometry in
determining the priority of edge swaps. The minimal number
can be achieved when we ignore the mesh geometry and con-
sider only the number of edge intersections in determining
the priority. On the other hand, the priority with a geometric
error is very important to generate smooth shape changes in
a metamorphosis. Hence, the algorithm in Sec. 3 provides
a nice compromise between the connectivity and geometry
changes in computing a morphing sequence.

The current implementation of the proposed approach
cannot handle morphing between non-zero genus objects.
This drawback is totally because we currently use spherical
embedding for common parameterization, not due to a fun-
damental limitation of the approach. With parameterization
such as used in [LDSS99], the approach can immediately be
applied to non-zero genus objects. The only component to
be revised is the intersection test routine for the edges em-
bedded on the common domain. In the current implementa-
tion for spherical embedding, edge intersection is tested by
adapting the signed area to handle spherical arcs. Edge in-
tersection tests for the other types of common domains can
be implemented in a similar way.

In the proposed approach, the connectivity of an in-
between mesh dynamically changes in a metamorphosis. Al-
though the dynamic connectivity is an important property to
generate a simpler in-between mesh, it may make it difficult
to fully utilize the power of a graphics card with a GPU. In
contrast, the static connectivity of metamesh or remeshing
based approach allows the vertex position interpolation to
be accelerated by vertex programming on a GPU. Also, with
the static connectivity, shape blending between more than
two meshes would be easier than with the dynamic connec-
tivity. However, the simplicity of in-between meshes from
the proposed approach will still be useful when high quality
rendering is applied to a metamorphosis in an animation. To
better optimize the proposed approach, effective handing of
dynamic mesh connectivity on a GPU will be an interesting
research direction.

The proposed approach uses only edge swaps for connec-
tivity transformation. If vertex splits and edge collapses are
included as well, the number of vertices in an in-between
mesh can be further reduced. Recently Lin and Lee [LL04]
proposed a morphing technique in which vertices are grad-
ually removed or created in a metamorphosis. However, the

c© The Eurographics Association 2004.



M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

technique does not consider the geometric errors from the in-
put meshes and may generate a large number of edge trans-
formations. An interesting future work is to develop a mor-
phing technique that provides a nice control of geometric
errors and minimizes the number of transformations for in-
between meshes with dynamically varying vertex and edge
sets. We are also interested in investigating a connectivity
transformation technique that can handle genus changes in a
metamorphosis.

Acknowledgments

The authors would like to thank Radek Grzeszczuk for
the horse, star, and turtle models and the anonymous re-
viewers for their helpful comments. The skull, mannequin
head, and Venus and rabbit models are courtesy of Headus
(www.headus.com.au), the University of Washington, and
Cyberware, respectively. This work was supported in part
by the Korea Ministry of Education through the Brain Korea
21 program and the Game Animation Research Center.

References

[AL02] AHN M., LEE S.: Mesh metamorphosis with
topological transformations. In Proc. Pacific
Graphics 2002 (2002), IEEE Computer Society
Press, pp. 481–482. 2

[Ale00] ALEXA M.: Merging polyhedral shapes with
scattered features. The Visual Computer 16, 1
(2000), 26–37. 1, 3

[BP98] BAO H., PENG Q.: Interactive 3D morph-
ing. Computer Graphics Forum (Proc. of Eu-
rographics ’98) 17, 3 (1998), 23–30. 1

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.:
Metro: measuring error on simplified surfaces.
Computer Graphics Forum 17, 2 (1998), 167–
174. 6, 8

[GSL∗98] GREGORY A., STATE A., LIN M., MANOCHA

D., LIVINGSTON M.: Feature-based surface
decomposition for correspondence and morph-
ing between polyhedra. Proc. Computer Anima-
tion ’98 (1998). IEEE Computer Society Press.
1

[HDD∗93] HOPPE H., DEROSE T., DUNCHAMP T., MC-
DONALD J., STUETZLE W.: Mesh Optimiza-
tion. Tech. Rep. TR 93-01-01, University of
Washington, 1993. 2

[Hop96] HOPPE H.: Progressive meshes. Computer
Graphics (Proc. SIGGRAPH ’96) (1996), 99–
108. 2, 5

[HOS96] HANKE S., OTTMANN T., SCHUIERER S.: The

edge-flipping distance of triangulations. Jour-
nal of Universal Computer Science 2, 8 (1996),
570–579. 2, 4, 6

[JYL∗03] JEONG E., YOON M., LEE Y., AHN M., LEE

S., GUO B.: Feature-based surface light field
morphing. Proc. of Pacific Graphics ’03 (2003),
215–223. 3

[KPC92] KENT J. R., PARENT R. E., CARLSON W. E.:
Establishing correspondences by topological
merging: a new approach to 3-d shape transfor-
mation. ACM Computer Graphics (Proc. SIG-
GRAPH ’92) 26, 2 (1992), 47–54. 1

[KSK97] KANAI T., SUZUKI H., KIMURA F.: 3D geo-
metric metamorphosis based on harmonic map.
In Proc. of Pacific Graphics ’97 (1997), pp. 97–
104. 1

[LDSS99] LEE A. W., DOBKIN D., SWELDENS W.,
SCHRÖDER P.: Multiresolution mesh morph-
ing. ACM Computer Graphics (Proc. SIG-
GRAPH ’99) (1999). 1, 3, 5, 6

[LL04] LIN C.-H., LEE T.-Y.: Metamorphosis of 3D
polyhedral models using progressive connectiv-
ity transformations. IEEE Trans. Visualization
and Computer Graphics (2004), to appear.
http://couger.csie.ncku.edu.tw/∼tonylee/papers
/IEEE_TVCG_PM_2004.pdf. 2, 6

[LV98] LAZARUS F., VERROUST A.: Three dimen-
sional metamorphosis: A survey. The Visual
Computer 14, 8/9 (1998), 373–389. 1

[MKFC01] MICHIKAWA T., KANAI T., FUJITA M.,
CHIYOKURA H.: Multiresolution interpolation
meshes. In Proc. Pacific Graphics 2001 (2001),
IEEE Computer Society Press, pp. 60–69. 1

[PSS01] PRAUN E., SWELDENS W., SCHRÖDER P.:
Consistent mesh parameterizations. In SIG-
GRAPH 2001, Computer Graphics Proceedings
(2001), pp. 179–184. 1

[Spa66] SPANIER E. H.: Algebraic Topology. McGraw-
Hill, 1966. 2

c© The Eurographics Association 2004.



M. Ahn, S. Lee & H.-P. Seidel / Connectivity Transformation for Mesh Metamorphosis

Figure 6: Morphing gallery: From top to bottom, morphing from Skull to Venus, from a rabbit to a cow, from a horse to a cow,
and from a star to a turtle (see also Color Plate)

feature merged # vertices / # edges # of dependency graph
models points vertices MS MT MI eswap height

skull-venus 14 26,219 55,718 / 167,148 39,802 / 119,400 69,301 / 207,897 67,911 35
rabbit-cow 16 1,201 2,004 / 6,006 2,577 / 7,725 3,380 / 10,134 3,913 42
horse-cow 34 1,683 3,503 / 10,503 2,577 / 7,725 4,397 / 13,185 5,512 45
star-turtle 7 1,203 2,491 / 7,467 1,850 / 5,544 3,138 / 9,408 3,796 50

Table 1: Statistics of metamorphosis examples: The number of edge swaps required for connectivity transformation is quite
smaller than the edge count of an in-between mesh. The small heights of the dependency graph implies that many edge swaps
can be performed simultaneously in connectivity interpolation.

input connectivity time MI generation metamesh % L2 error
models conversion transform intervals average 100 frames # vertices / # edges average max

skull-venus 23.47s 12.08s 9.59s 1.91s 76.41s 169,878 / 509,628 0.0014 0.0008
rabbit-cow 0.61s 0.47s 0.50s 0.10s 3.25s 8,008 / 24,018 0.069 0.110
horse-cow 0.73s 0.64s 0.61s 0.12s 4.05s 11,486 / 34,452 0.053 0.085
star-turtle 0.48s 0.42s 0.41s 0.08 2.95s 7,947 / 23,835 0.036 0.055

Table 2: Timing data and comparison with a metamesh: Computation time was measured in seconds on a Pentium IV 2.5Hz
PC. The L2 error was measured by the Metro tool [CRS98] in the percentage of the diagonal length of the bounding box.

c© The Eurographics Association 2004.


