
Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Stellar Subdivision Grammars

Luiz Velho

IMPA – Instituto de Matematica Pura e Aplicada

Abstract
In this paper we develop a new description for subdivision surfaces based on a graph grammar formalism.
Subdivision schemes are specified by a context sensitive grammar in which production rules represent topological
and geometrical transformations to the surface’s control mesh. This methodology can be used for all known
subdivision surface schemes. Moreover, it gives an effective representation that allows simple implementation and
is suitable for adaptive computations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object
Modeling]: Curve, surface, solid, and object representations

1. Introduction

A fundamental problem in geometric modeling is the
specification of curves and surfaces through a compact
description that provides intuitive control to the user.
Additionally, this representation should encompass a class
of surfaces with good computational properties. such as
smoothness and adaptation.

Subdivision surfaces generalize the traditional spline
surfaces. They make possible to construct a surface from
a control mesh of arbitrary topology, avoiding the regular
connectivity limitations of spline surfaces. Moreover,
subdivision surfaces possess a natural multiresolution
structure that is computationally very powerful in practical
applications.

A subdivision surface is defined as the limit surface,
resulting from the application of a subdivision scheme to
a control polyhedron. In this process, the polygonal base
mesh is recursively subdivided and the mesh geometry is
progressively modified according to subdivision rules.

A subdivision scheme is characterized by a refinement
operator, that changes connectivity by subdividing the mesh,
and by a smoothing operator, that modifies the geometry.
These two operators are usually specified in terms of iterated
matrix multiplication. Each multiplication step transforms a
local neighborhood of a coarse mesh into a corresponding
refined neighborhood of the subdivided mesh. This matrix
representation implies an indexing scheme of the vertices in

a local neighborhood that depends on the mesh connectivity,
but is somewhat arbitrary.

Although the matrix notation is well suited for the
continuity analysis of subdivision schemes, it is not a good
description for implementation purposes. In this paper we
propose the use of parametric context-sensitive L-systems
with affine mapping interpretation as a way to describe
subdivision schemes. This representation has the advantages
of being simple, precise and directly usable for algorithmic
implementation.

2. Previous Work

An overview of the theory of subdivision surfaces and their
applications can be found in (Zorin and Schröder, 2000)35,
and (Warren and Weimer, 2002)32.

The classical subdivision schemes were introduced in the
late 1970’s. The surfaces generated by these schemes are
based on tensor product biquadratic 6, bicubic B-splines 4

and three-directional box splines 18.

The above schemes produce surfaces that approximate
the control polyhedron. Some schemes are interpolating,
two examples are the Butterfly scheme 7 and Kobbelt’s
quadrilateral scheme 13.

Subsequently, other approximating schemes have
been proposed. They include the simplest scheme 24,√

3 subdivision 15 and
√

2 subdivision 31.

c© The Eurographics Association 2003.

188

http://www.eg.org
http://diglib.eg.org

Velho / Stellar Subdivision Grammars

During the 1990’s, the focus was on the continuity
analysis of subdivision schemes 2, 26, 33.

More recently, the main trend has been the investigation
of a generic framework for subdivision. The idea is to study
basic operators that serve as building blocks for a class
subdivision schemes 11, 10, 22, 20.

Continuing in the direction of a general description for
subdivision schemes, (Prusinkiewicz et al.)25 proposed to
use L-systems as way to specify subdivision curves.

In this paper, we extend the work of Prusinkiewicz
to surfaces. The major difficulty to pass from the one-
dimensional case to two dimensions is a topological
one. Results from Stellar subdivision theory 16. allow
us to define basic topological operators for subdivision
surfaces. We show that stellar subdivision grammars
can describe any subdivision scheme. Furthermore, our
framework has several advantages in terms of flexibility and
implementation.

3. L-Systems

In this section we give a brief introduction to L-systems 17

and graph grammars 8.

L-systems were developed by Aristid Lindenmayer in
1968 to model the development of multicellular organisms.
L-systems constitute a string rewriting mechanism, which is
described by a formal grammar.

We define the L-system grammar G of a language L as:

G = {Σ,Π,α}
where Σ is the alphabet of the language, Π is a set of
rewriting rules, and α ∈ Σ∗, is the starting string (or axiom)
of L.

Each rewriting rule π : Σ → Σ∗ defines a unique mapping
of a symbol of Σ into a string s ∈ Σ∗.

In contrast with most other grammars, where rewriting
rules are applied sequentially, in an L-system all rewriting
rules are applied in parallel to the current string at each stage
of the rewriting process.

We can view the set of rewriting rules Π as an operator.
Applying the operator Π to a string means to execute all the
substitutions implied by the rewriting rules. Thus, using this
operator, we write the language L produced by a grammar G
as

L = {α ,Π(α),Π(Π(α)), . . .}
= Π∞(α)

The definition above suggests that it is possible to make a
connection between L-systems and subdivision schemes.

Since their introduction, L-systems have been extended
considerably, mainly by Przemyslaw Prusinkiewicz.

These extensions augmented the power and applicability
of L-systems, and include: context sensitivity, probabilistic
rewriting, rule ranges, parametric and parametrized
L-systems.

The work of Prusinkiewicz and coauthors 25 on L-System
descriptions of subdivision curves makes use of context
sensitive parametrized L-systems.

In a context sensitive grammar, the rewriting rules depend
on the neighbors of a symbol in the string. The general form
of a context sensitive rule is as follows:

L < P > R → S,

where P∈ Σ and L,R,S ∈ Σ∗. Here, L and R form the left and
right context of P, respectively.

Parametric L-systems operate on strings of modules. A
module is a symbol of the alphabet with optional parameters.
For example, the rewriting rule

A(x) → A(2∗ x+1),

when applied to the parametric symbol A(3) leads to A(7).

The combination of these two mechanisms is sufficient
to describe subdivision schemes for curves. As an example,
we describe below the specification of Chaikin’s subdivision
scheme for closed curves.

P(vl) < P(v) > P(vr) → P(
1
4

vl +
3
4

v)P(
3
4

v+
1
4

vr) (1)

Here, v is a vertex of a closed polygonal curve, vl and vr are
v’s left and right neighbors. The parametric symbol P(v) on
the left side of the rewriting rule is called the predecessor
of the two parametric symbols on the right side of the rule,
which are called successors of P(v).

In this way the old vertices of the control polygonal curve
are mapped to new vertices of the subdivided curve. This
scheme is illustrated in Figure 1.

P(vL)
 P(vR)
P(v)

P(1/4v + 3/4v)
 P(3/4v + 1/4v)

Predecessor

Successor

Figure 1: Chaikin’s subdivision as a production (from cf.25).

The L-system notation is very suitable for a computer
implementation. The programming language L+C 12

combines features of the C++ programming language with
the L-systems notation. This language has been used in
(Prusinkiewicz et. al, 2002)25 to implement algorithms for
subdivision curves.

c© The Eurographics Association 2003.

189

Velho / Stellar Subdivision Grammars

Program 1 shows an example of the code to generate
the curve in Figure 2. The start string is a square control
polygon, the rewriting rule is given by Equation 1, and
the L-system operator is applied 3 times. The output is a
subdivided curve generated by a geometric interpretation.

Program 1 Chaikin’s scheme for a subdivision curve using
the L+C language.

V2f v1(0,0), v2(0,1), v3(1,1), v4(1,0);
module P(V2f);

ring L−system: 1;
derivation length: 3;

axiom: P(v1) P(v2) P(v3) P(v4);
P(vl) < P(v) > P(vr) :

{ produce P(0.25*vl + 0.75*v) P(0.75*v + 0.25*vr) }

interpretation:
P(v): { produce LineTo(v) Circle(0.01) }

(a) α (b) Π(α)

(c) Π2(α) (d) Π3(α)

Figure 2: Chaikin’s subdivision curve generated by
Program 1, (from cf.25).

4. Subdivision Curves and Surfaces

In this section we discuss the basic concepts of subdivision
for curves and surfaces.

As we mentioned before, a subdivision scheme is
composed by a refinement operator, and a smoothing
operator. The refinement operator changes the connectivity
of the combinatorial mesh structure in order to increase

the mesh resolution. The smoothing operator changes the
geometry of the mesh in order to bring vertices closer to their
limiting positions.

In the curve case, the refinement operator is very simple,
because the connectivity is trivial. This is due to the fact
that the topology of a manifold curve is inherited from the
topology of the real line.

More precisely, closed curves are homeomorphic to a
circle, and open curves are homeomorphic to a line interval.
Therefore, there are only two kinds of neighborhoods to be
considered: a two-sided interval for internal points and a
one-sided interval for boundary points. Figure 3 shows these
neighborhoods.

(a) internal point (b) boundary point

Figure 3: One dimensional neighborhoods.

There are two common types of refinement operators for
curves: edge insertion and vertex insertion. Edge insertion
replaces each edge by two new edges, while vertex insertion
replaces each vertex by two new vertices. The Chaikin
subdivision scheme discussed in the previous section uses
vertex insertion.

A consequence of the above facts is that the main interest
in subdivision schemes for curves lies in the study of
smoothing operators and their geometric properties.

Note that the one-dimensional setting facilitates
considerably the implementation of curve subdivision
using L-systems, since there is a direct correspondence
between the sequential structure of strings in a grammar
and the topology of the real line, i.e., a polygonal curve is
represented by a sequence of vertices.

In the surface case, the situation is a lot more complex.
First of all, the two-dimensional topology requires a
combinatorial description of the mesh connectivity. Second,
some neighborhoods in a 2D mesh may not have a regular
structure.

The topology of a surface is represented by a
combinatorial manifold structure, a mesh M = (F,E,V),
where F , E, and V are respectively sets of faces
f = (vo,v1,v2), edges e = (v0,v1) and vertices v. The
geometry of the surface is given by an embedding function
that associates points p ∈ R

3 to the vertices v ∈V .

We can classify a mesh based on the type of faces f ∈ F .
The most common types are triangular and quadrilateral
meshes. A triangular (quadrilateral) mesh has only three
(four) sided faces. These meshes are homogeneous. We can

c© The Eurographics Association 2003.

190

Velho / Stellar Subdivision Grammars

also have heterogeneous meshes composed by arbitrary n-
sided faces.

The mesh structure may be regular or irregular. In a
regular mesh, all neighborhoods have the same connectivity
structure. The subdivision process only generates regular
neighborhoods. However, if we start with an irregular mesh
as the control polyhedron, some vertices of this base mesh
will have an non-regular neighborhood (these vertices are
called extraordinary vertices) and the refined mesh will have
a semi-regular structure.

Similarly to the one-dimensional case, there are two types
of neighborhoods for a two-dimensional manifold: a disk
for interior points and a half-disk for boundary points.
Figure 4 shows these two neighborhoods. In a mesh, these
neighborhoods have a combinatorial description.

(a)
interior

(b)
boundary

Figure 4: Two-dimensional neighborhoods.

If we consider the class of piecewise smooth surfaces,
then we have to include other kinds of neighborhoods – e.g.,
crease edges and vertices 3.

The refinement operators can be classified in primal
and dual operators. There are operators for triangular and
quadrilateral meshes. Primal operators are based on face
split, and dual operators on vertex split. Also, they can
perform quadrisection, trisection and bisection of faces.

Figures 5 and 6 show, respectively, the primal and
dual quadrisection refinement operators for triangular and
quadrilateral meshes.

Figure 5: Primal quadrisection refinement operators.

Figure 6: Dual quadrisection refinement operator.

Figure 7 shows the trisection
√

3 refinement operator,
while Figure 8 shows the bisection

√
2 refinement operator.

Figure 7: Trisection
√

3 refinement.

Figure 8: Bisection
√

2 refinement.

It is apparent from the description of two-dimensional
refinement operators that the implementation of
subdivision schemes for surfaces using L-systems is
not a straightforward task.

What we need in order to solve this problem is to find
the right building blocks that allow us to define refinement
operators for subdivision using a graph grammar, such
as L-system. We will see in the next section that stellar
subdivision theory provides such building blocks.

5. Stellar Theory

This section reviews the theory of Stellar subdivision
and discusses its relation with refinement operators in
subdivision schemes.

Stellar theory combines the abstract and piecewise
approaches to combinatorial topology 16. Its main focus is
the study of equivalences between simplicial complexes.
Therefore, Stellar theory applies to triangular meshes. This
does not impose any loss of generality, since every manifold
surface can be triangulated.

c© The Eurographics Association 2003.

191

Velho / Stellar Subdivision Grammars

Before we introduce the Stellar theory, we need to
establish some notation related to topology of simplicial
complexes.

Two simplices σ1,σ2 are independent if σ1 ∩σ2 = /0. The
join σ1 ? σ2 of independent simplices σ1,σ2 is the set σ1 ∪
σ2. The join of complexes K and L, written K ? L, is {σ ?
τ : σ ∈ K,τ ∈ L}. The boundary of a complex K is written
as ∂K. The link of simplex σ ∈ K, denoted link(σ ,K), is
defined by link(σ ,K) = {τ ∈ K : σ ?τ ∈ K}. And finally, the
star of σ in K, star(σ ,K), is the join σ ? link(σ ,K).

Note that in the mesh representation of a manifold surface,
the star of every vertex v ∈V is a combinatorial disk, or half-
disk. These neighborhoods are the discrete equivalents of the
surface neighborhoods in Figure 4.

The star and link operators provide a combinatorial
description of the neighborhood of a simplex. They can be
used to define atomic changes in a simplicial complex that
do not alter the topology of the underlying surface.

The stellar exchange operators are such modifications.
They make local changes to the neighborhood of an r-
simplex in a n-dimensional complex K, r ≤ n, while
maintaining the combinatorial integrity of K.

Definition 1 Let K be an n-dimensional simplicial complex,
take a non-empty r-simplex A ∈ K, such that link(A,K) =
∂B ? L for some non-empty simplex B 6∈ K, and some
(possibly empty) complex L.
The operation that changes K into K ′ by removing A?∂B?L
from K and inserting ∂A ? B ? L is called a stellar exchange

and is written K
κ(A,B)7−→ K′.

The stellar exchange operation unifies the notions of
bistellar move and stellar subdivision. Informally, a bistellar
move replaces an r-simplex by a simplex of dimension
(n− r) in a n-dimensional complex , while a stellar
subdivision inserts a vertex into an r-simplex, σ ∈ K, of a
n-dimensional complex K.

When K is a two-dimensional simplicial complex we have
the following stellar operators: face split and its inverse
face weld; edge split and its inverse edge weld; and edge flip;
Note that the edge flip is its own inverse. These operations
are illustrated in Figure 9(a) (face split/weld), Figure 9(b)
(edge split/weld), and Figure 10 (edge flip).

The stellar moves are face split, face weld and edge flip.
The stellar subdivision operators are face split, face weld,
edge split and edge weld. Note that face split/weld are at the
same time stellar moves and subdivision operators.

The fundamental result of Stellar theory is given by
theorem 2:

Theorem 2 (Newman 21, Pachner 23) Two connected
combinatorial n-dimensional manifolds are piecewise
linearly homeomorphic if and only if they are related by a
sequence of elementary stellar exchanges.

↓ ↓

(a) face split and face weld

↓ ↓

(b) edge split and edge weld

Figure 9: Stellar subdivision operators and inverses.

−→

Figure 10: Bistellar move on edges: the flip operator.

The above theorem says that stellar exchanges are the
operators to transform between any two triangulations of a
combinatorial manifold. In particular, stellar exchanges can
be used as the building block for mesh refinement operators.
This is made clear by further results of Stellar subdivision
theory.

Stellar subdivision is an important part of the Stellar
theory 1. It provides the basic operators to refine and simplify
a simplicial complex.

Proposition 3 Any bistellar move is the composition of a
stellar subdivision and a weld.

It is easy to verify the above result. For example, an edge
flip can be expressed as an edge split followed by an edge
weld.

This means that stellar subdivision operators (and their
inverses) are sufficient to transform a simplicial complex.
Nonetheless, we should remark that it is convenient to use
also bistellar moves for refinement and simplification rules,
because they make possible to generate mesh sequences that
are monotonic in terms of resolution.

c© The Eurographics Association 2003.

192

Velho / Stellar Subdivision Grammars

6. Decomposition of Subdivision Schemes

In this section we show how Stellar theory can be applied
in the context of subdivision surfaces. We demonstrate
that all known refinement methods for subdivision can be
decomposed into a sequence of primitive stellar operations.
In addition, we suggest that, in general, it is possible to
factorize the smoothing methods for subdivision under the
stellar decompositions, with considerable gains in simplicity
of implementation.

Theorem 2 guarantees that stellar exchanges can
transform between any two triangulations of a manifold.
This alone would be a sufficient indication that refinement
methods can be decomposed in terms of stellar operations.
However, we would like to impose one extra condition: the
sequence of meshes generated by the decomposed process
should be monotonic in resolution. That is, |Mi| ≥ |M j| for
i > j, in a sequence of refined meshes, (M0,M1, . . .Mn),
where |M| denotes the size of the mesh M.

We will see, through examples, that the above requirement
can be satisfied for all known subdivision schemes. This is a
consequence of the fact that, in a sense, stellar operations are
topological modifications to a mesh with a “fine” granularity.

Another important property of stellar operations, is that
they are atomic operations which maintain the integrity
of the combinatorial manifold structure. Thus, meshes are
always valid under stellar operations.

Before we start discussing the stellar decomposition of
refinement methods, we need to introduce the concept of
refinement levels. We associate a level l ∈ N to every
topological element of a mesh. Intuitively, the level indicates
at which stage of subdivision, that element was created.
All vertices of the base mesh have level 0. During
refinement, new vertices are assigned levels based on their
parent simplex. A new vertex v is assigned level l(v) =
max(l(w)) + 1, w ∈ σ , were σ is the subdivided simplex
that originated v. The level of a face is computed from
the level of its vertices, i.e., for a face f = (v0,v1,v2),
l(f) = {max(l(vi))+1 | i = {1,2,3}}. The level of an edge
depends of the stellar operation that created the edge. For an
edge flip operation the level of the flipped edge is the level of
the parent edge plus one. For a face split operation the three
new edges are assigned the level of their common vertex.
For an edge split operation there are two cases: the bisection
edges resulting from splitting the edge, and the transversal
edges connecting the split vertex to each opposite vertex.
The bisection edges are assigned the level of the parent edge
plus two. The transversal edges are assigned the level of the
opposite vertex plus one.

The level values of vertices, edges and faces will help
guiding the decomposition process of subdivision rules.

We now demonstrate how to decompose the refinement
methods described in Section 4, in terms of stellar operators.

We start with refinement of triangle meshes. The triangle
quadrisection refinement can be decomposed into two steps.
In the first step, we apply an edge split operation to all
edges of the current mesh. In the second step, we apply an
edge flip operation only to edges whose level is equal to
the current level minus one. Level ranking guarantees that
appropriate edges are flipped. Figure 11(a) illustrates this
decomposition.

Note that the
√

3 refinement is already defined using
stellar operators. It consists of applying first a face split
operation to all triangles of the current mesh, then an edge
flip is applied only to edges whose level is less than the
current level. This decomposition is shown in Figure 11(b).

(a) Quadrisection refinement: edge split + edge flip

(b)
√

3 refinement: face split + edge flip

Figure 11: Stellar decomposition of triangle mesh
refinement.

In order to present the decomposition of quadrilateral
refinement methods, we have to discuss mesh structures.
Stellar operators are only defined for simplicial complexes
(i.e., triangle meshes). For that reason, at first sight it
would seem that we could not use stellar operators to
decompose quadrilateral refinement methods. However, this
is not the case, because a quadrilateral mesh can always be
trivially triangulated by dividing each quadrilateral into two
triangles. Therefore, we can work with a triangle mesh with a
quadrilateral structure, which we call a tri-quad mesh. Such
a mesh is composed of basic blocks, each consisting of a pair
of triangles. By keeping track of basic blocks we can always
recover the quadrilateral mesh back from a tri-quad mesh.
Note that this is a simple matter, since we can associate a
basic block with the internal edge shared by the two triangles
of the block.

We remark that it is also possible to transform a triangle
mesh into a quadrilateral mesh. There are various algorithms
for this purpose, for example see (Velho, 2000)29. Another
option is to apply one step of Catmull-Clark refinement 4,
which transforms an arbitrary mesh into a quadrilateral
mesh.

c© The Eurographics Association 2003.

193

Velho / Stellar Subdivision Grammars

The primal quadrisection refinement of quadrilateral
structures is decomposed into two steps using stellar
operators. We start with a basic block of two triangles.
At refinement level k, the internal edge of basic blocks
has level k − 1, while the four external edges have level
k. The primal refinement alternates into splitting internal
and external edges of basic blocks. This is illustrated in
Figure 12(a).

(a) Primal quadrisection: edge split 2

(b) Dual quadrisection: edge split 2 + edge flip

Figure 12: Stellar decomposition of quadrilateral mesh
refinement.

For the dual quadrisection refinement of quadrilateral
structures, we define a dual basic block, that consists of a
group of four triangles with one common vertex. Here, at
refinement level k, the four external edges of a dual block
have level k− 1, while the four internal edges have level k
(note that this is consistent with the primal scheme). The
dual refinement is decomposed into three steps. First, we
split the external edges, then the internal edges and finally
we flip the edges connecting the center of two new dual
blocks. This is illustrated in Figure 12(b).

Note that, similarly to
√

3 refinement, the
√

2 bisection
refinement is also defined in terms of stellar operators.
It simply consists of the application of an edge split
operator. Thus, it does not need a decomposition. Although
this scheme operates on triangle meshes, it requires a
quadrilateral structure – more precisely, it is based on a four-
directional mesh 5. Essentially, it always splits the internal
edge of basic blocks, which are interleaved in subsequent
refinement levels. Figure 8 shows the

√
2 refinement.

The other issue in the implementation of subdivision
schemes is related to smoothing methods. In principle, we
could decompose only the refinement operators and compute
the smoothing rules in the same way that it is done for the
non-decomposed schemes. Nonetheless, the decomposition
of the refinement operators allows us to factorize also the
smoothing operators. This is a known fact in the CAGD
literature 32. In our case, it is quite natural and more
convenient for implementation.

Smoothing operators are defined in such a way to compute
the position of mesh vertices as a linear combination of their
neighbors‘ positions. Usually, we distinguish between new
and old vertices. New vertices are created at the current
subdivision step, and old vertices are inherited from previous
subdivision steps.

Note that when we decompose a refinement method,
intermediate subdivision levels are introduced. In order to
factorize smoothing rules of subdivision operators, we define
rules that are associated with new vertices created by the
stellar operators and rules associated with old vertices at
intermediate refinement levels. The combined effect of these
new factored rules should be equivalent to the original non-
factored smoothing rules.

The factorization of smoothing rules received a great deal
of attention in recent years 22, 34, 28.

In (Velho, 2001) 30, it has been shown how to factorize the
Doo-Sabin and Catmull-Clark subdivision schemes in the
context of bisection refinement. In Appendix A, we derive
a factorization of Loop subdivision scheme based on stellar
refinement. We believe, that it should be possible to factorize
most existing subdivision schemes for surfaces.

7. Subdivision Grammars

In this section we introduce a description of subdivision
surfaces using L-systems. We exploit the results of
previous sections to define a topological graph grammar
for subdivision schemes. This representation will be based
on stellar refinement operators and factorization smoothing
rules.

As we mentioned before, a mesh is a combinatorial
manifold structure, M = (F,E,V), consisting of sets of faces,
edges and vertices.

To represent a mesh we adopt a half-edge based
topological data structure 19. This structure is augmented
with a field, indicating the subdivision level of edges and
vertices.

The subdivision process creates a sequence of meshes
(M0,M1, . . . ,Mk), by successively applying a subdivision
scheme S to the current mesh M j, i.e., M j+1 = S (M j).
The process starts with the base mesh M0.

In the context of a grammar description of subdivision,
the simplicial structure elements constitute the alphabet Σ,
the base mesh is equivalent to the starting string (or axiom),
α ∈ Σ∗, and the subdivision scheme is defined through the
rewriting rules of a stellar grammar Π, i.e., M0 ≡ α and
S ≡ Π.

We now present the general mechanisms for describing
subdivision surfaces using L-systems.

c© The Eurographics Association 2003.

194

Velho / Stellar Subdivision Grammars

The input is a base mesh M0, which has to be initialized
with the appropriate level values. For arbitrary triangle
meshes, both vertices and edges are assigned level zero.
Quadrilateral meshes are first converted to tri-quad meshes.
In this conversion, all vertices are assigned level zero, the
internal edge of all basic blocks is assigned level zero and
external edges of basic blocks are assigned level one †.

The rewriting rules of the subdivision grammar will be
defined using the following notation:

P(p ; cond) | Q → V (v = assgn) ‖ S

where P and V are modules, (i.e., parametric symbols). P
is the predecessor being replaced by successor V , Q is the
context of P (i.e., its combinatorial neighborhood) and S is
the context of V (i.e., the neighborhood that replaces Q).

The parameters p and v are topological elements of the
mesh. The clause cond is a conditional logical expression
specifying a subset of module representatives p ∈ P, such
that cond(p) = true. The clause assgn, is a geometric
assignment function that computes the value of v.

Note that the changes to the connectivity structure of
the mesh resulting from applying a rewriting rule will be
handled automatically by the topological operator. Also, the
level of the elements involved are automatically updated.
Note also, that either one of the two clauses, cond and assgn
can be omitted.

The rewriting rules comprise stellar operators and vertex
update rules. Below we give the specific form of these rules.

• Face split:

F →V ‖ E3F3

• Edge split (interior edge):

E|F2 →V ‖ E4F4

• Edge split (boundary edge):

E|F →V ‖ E3F2

• Edge flip:

E|F2 → E ‖ F2

• Vertex:

V →V

We note that it is not valid to flip boundary edges. We
also remark that all the rules, except edge flip produce a new
vertex. This is because edge flip is a stellar move, while the
other operators are stellar subdivisions. The edge flip just
rearranges the connectivity of the edge neighborhood.

† Meshes with n-sided faces can be either triangulated or converted
to a quadrilateral mesh in a pre-process.

The vertex rule does not cause any changes to the
connectivity, it only affects the geometry of the mesh.

The conditional clause usually depends on the level of the
element relative to the current level, for example:

(l(v) < c)

where l(v) is the level of v and c is the current level.

The assignment clause computes the geometry of a mesh
vertex as a linear combination of its neighbors. For most
schemes, the subdivision smoothing rule is based on the
one-ring neighborhood N1(v) of the vertex v. Thus, the rule
assumes the form:

v = g(v) = ∑
vi∈N1(v)

βivi

where βi are the coefficients of the subdivision mask.

The topological subdivision grammar Π is specified
through a sequence of rewriting rules with the form
described above. In these rules, the symbols denote
topological type, i.e., F , E, V , for faces, edges and vertices,
respectively. The rewriting rules are executed sequentially
in the order they are specified in the grammar. Each rule is
applied in parallel to all elements matching the topological
type, context and condition.

We remark that in this rewriting process, the mesh
structure is not copied, as it is usually done in L-systems.
Instead, the topological operators insert new elements and
modify the connectivity structure of the mesh. The integrity
of the combinatorial structure is guaranteed to always remain
valid by the action of stellar operators. The geometry values
of the vertices is handled in the following way. Each
vertex has a double-buffer that contains the current and next
geometric value. This buffer is automatically swapped after
each subdivision step.

We remind that the subdivision level of topological
elements is automatically handled by the stellar operators,
as discussed in the previous section. Also, when a rule is
applied to the mesh, it increments the current subdivision
level, except for the vertex rule that does not change the level
of a vertex, nor the current subdivision level.

8. Examples

In this section we give examples of the specification of some
popular surface subdivision schemes using our topological
graph grammar.

We describe the subdivision rules for,
√

3, Loop, Catmull-
Clark, Doo-Sabin, Peters, and 4-8 subdivision.

c© The Eurographics Association 2003.

195

Velho / Stellar Subdivision Grammars

sqrt3 Subdivision

The specification of the
√

3 subdivision scheme is
straightforward because it comes directly from the original
definition 15. We apply a face split and then an edge swap.

F(f) →V (v = avrg(f)) ‖ E3F3

V (v; l(v) < c) →V (v = kob(v))

E(e; l(e) < c)|F2 → E ‖ F2

The smoothing rule for new vertices is applied together
with the face split operation. It is an average of the vertices
of the triangle.

avrg(V) :=
1
|V | ∑

vi∈V
vi

The smoothing rule for old vertices is defined as follows:

kob(v) := (1−αn)v+αn
1
n ∑

vi∈N1(v)∧(l(vi)<c)
vi

where c is the current level, n is the one-half of the valence

of v, and αn =
4−2cos(2π

n)
9 .

Loop

The specification of Loop scheme is a bit more involved,
because the original definition needs to be factorized.

The subdivision process consists of two steps of
subdivision where triangles are appropriately bisected to
achieve a triangle quadrisection. Then, the geometry of new
and old vertices are updated.

E(e; l(e) = c)|F2 →V (v = avrg(e)) ‖ E4F4

E(e; l(e) < c)|F2 → E ‖ F2

V (v; l(v) = c) →V (v = loop1(v))

V (v; l(v) < c) →V (v = loop2(v))

The smoothing rules loop1 and loop2 are as follows:

loop1(v) :=
1
2

v+
1
8 ∑

vi∈N1(v)∧(l(vi)=c)
vi

and

loop2(v) := (1−2kβ)v+β ∑
vi∈N1(v)

vi

where β = 1
k (5/8− (3/8+1/4cos(2π

k))2), and k = deg(v).

In the Appendix A we derive the factorization of these
smoothing rules for Loop subdivision.

Catmull-Clark

The Catmull-Clark scheme employs a tri-quad mesh. This
scheme is very suitable for decomposition. It consists simply
as the alternating splitting of internal and external edges of
basic blocks.

The factorization of smoothing rules has been know for
quite some time 9. A more recent demonstration of this
factorization can be found in 30.

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

V (v; l(v) < c) →V (v = catm(v))

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

The smoothing rule catm is as follows:

catm(v) :=
1
2

v+
1

16 ∑
vi∈N1(v)

vi

Doo-Sabin

The Doo-Sabin scheme is a dual scheme for quadrilateral
meshes. As such, it needs the conversion to a tri-quad mesh,
and an initialization step, where all primal basic blocks are
subdivided to obtain dual quad blocks. This is accomplished
with the following grammar rule, which is applied only at
initialization.

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

After initialization, the three steps of stellar dual
quadrilateral refinement are applied.

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

E(e; l(e) = c)|F2 → E ‖ F2

Note that the smoothing rules are computed together with
the first two refinement steps.

We should remark that these rules apply only for meshes
with regular quadrilateral structure. For irregular meshes
the rules are more complicated, but can be derived from
(Velho, 2001)30.

Peters

The simplest subdivision scheme of Peters 24, has a very
similar decomposition to the Doo-Sabin scheme. The only
difference is in the factorization of smoothing rules. Instead
of averaging all vertices in the star of a new vertex, only the
edge endpoints are averaged (i.e., we replace N1(v) by e in
the above rules).

c© The Eurographics Association 2003.

196

Velho / Stellar Subdivision Grammars

4-8 Subdivision

The 4-8 subdivision scheme was recently proposed by
Velho and Zorin 31. It is based on four-directional meshes.
Thus, it has a natural decomposition in terms of edge split
operations.

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

V (v; l(v) < c) →V (v = velh(v))

E(e; l(e) = c)|F2 →V (v = avrg(N1(v))) ‖ E4F4

V (v; l(v) < c) →V (v = velh(v))

The smoothing rule velh is as follows:

velh(v) :=
1
2

v+
1
2k ∑

vi∈N1(v)∧l(vi)=c
vi

where k is the number of vertices vi ∈ N1(v), such that
l(vi) = c.

9. Discussion

In the previous sections we have discussed only subdivision
rules for the interior vertices of a mesh. To be complete,
we should discuss also rules for boundary vertices and also
rules for piecewise smooth surfaces – these include rules for
crease edges and pinch vertices.

The rules for boundary vertices and creases are very
similar to the rules for subdivision curves. For this reason,
they are not difficult to implement using rewriting rules.
In those cases, the neighborhood matching mechanism
incorporated in the subdivision grammar takes care of rule
selection automatically.

We also have discussed only the case of uniform mesh
subdivision. That is, the whole mesh is subdivided at each
step of the topological rewriting process. However, in many
situations it is desirable to subdivide the mesh locally. This
capability is important in many applications, such as view
dependent rendering.

An in-depth treatment of adaptive subdivision cannot be
included in this paper due to space limitations. Nonetheless,
we should remark that subdivision grammars based on stellar
operators are extremely suitable for adaptive subdivision.
The reason is that, stellar exchanges are local operations with
a fine granularity. Therefore, they allow adaptive refinement
while maintaining the consistency of a conforming mesh.
Furthermore, the level tags on topological elements make
possible to propagate recursively the refinement process in
order to satisfy the constraints imposed by smoothing rules.

The above considerations lead us to take the risk of
saying that stellar decomposition is the best way to do
adaptive subdivision. Just as an extra remark, to substantiate
our conjecture, we show that the only way to do adaptive

subdivision using triangle quadrisection implies the use of
stellar operations. This is hinted in Figure 13.

Figure 13: Adaptive triangle quadrisection.

Another aspect that we have not considered in this paper
is the decomposition of interpolatory subdivision schemes,
such as the Butterfly scheme 7 and Kobbelt’s quadrilateral
interpolation scheme 14. We acknowledge that interpolatory
schemes usually employ subdivision rules that depend
on larger neighborhoods – typically 2-ring neighbors.
All subdivision schemes discussed in Section 8 use
1-ring neighborhoods, and therefore are easier to factorize.
However, recently Schaefer and Warren 27 introduced a new
interpolatory subdivision scheme for quadrilateral meshes
based on linear subdivision and differencing. This scheme
can be easily described using a stellar subdivision grammar.
We will leave as a topic for future research the investigation
of grammar descriptions for other interpolatory subdivision
schemes.

10. Conclusions

We presented a new description for subdivision surfaces
based on a graph grammar formalism. Subdivision schemes
are specified by a context sensitive grammar in which
the productions rules represent topological and geometrical
transformations to the surface’s control mesh. Topological
modifications are defined by stellar subdivision operators
while geometrical modifications are specified by linear
maps. Stellar subdivision grammars extend L-System
descriptions of subdivision curves to surfaces.

This methodology can be used to describe all known
subdivision surface schemes. The advantages of stellar
subdivision grammars include: i) it provides a way to
unambiguously specify a subdivision scheme; ii) it gives an
effective representation that allows simple implementation;
and iii) this representation is suitable for adaptive
computations. Furthermore, in a system based on stellar
subdivision grammars it is possible to switch subdivision
schemes without re-coding. This facilitates experimentation
with new subdivision schemes.

As a continuation of our work, we are planning to
implement a software environment for subdivision surfaces
using stellar grammars. This will give us the tools to pursue
further research in the area. Another line of investigation
that could lead to new insights is the connection of stellar
grammars with general classes of graph grammars.

c© The Eurographics Association 2003.

197

Velho / Stellar Subdivision Grammars

Acknowledgments

This paper was written while the author was a visiting
researcher at Microsoft Research Asia. A sincere recognition
goes to Baining Guo and Harry Shum for providing an
stimulating research environment. Many thanks also to
Przemek Prusinkiewicz for having inspired this work and to
the anonymous reviewers for their insightful comments.

Appendix A: Factorization of Loop Subdivision

The Loop subdivision scheme generalizes the three-
directional box spline. It produces surfaces that are C2-
continuous everywhere, except at extraordinary vertices
where they are C1-continuous.

This scheme uses primal quadrisection refinement and is
composed of two masks – new vertex rule and old vertex
rule. The masks for Loop subdivision rules are shown in
Figure 14.

β

β

β

β β

1−κβ...

(a) old vertex

1/8

1/8

3/83/8

(b) new vertex

Figure 14: Loop subdivision masks.

Under stellar decomposition, the refinement operator is
decomposed in two steps: edge split and edge flip.

The factorization of the Loop smoothing rules comes only
after one complete two-step refinement. At this point, we
have the following scenario, depicted in Figures 15.

Without loss of generality, consider the diagram in
Figure 15(a). Note that new vertices have been computed as
averages of edges endpoints. Therefore, the new vertices, wi,
in the 1-ring of the old vertex v are: 1/2(v + a), 1/2(v + b)
and 1/2(v+ c). So, if we compute the new value of v as:

v = (1−2kβ)v+β ∑wi

= (1−2kβ)v+ kβv+β (a+b+ c)

= (1− kβ)v+β (a+b+ c)

we get the original Loop rule for an old vertex.

Also in the diagram for new vertex v in Figure 15(b),
v = 1

2 (a+b), and the other new vertices wi, in the 1-ring
of v are respectively, 1/2(a+ c), 1/2(c+b), 1/2(c+d) and
1/2(d +a).

a b

c

v

(a) old vertex

a

b

c

d

v

(b) new vertex

Figure 15: Loop factorization.

So, if we compute the new value of v as

v =
1
2

v+
1
8

wi

=
1
2
(

1
2
(a+b))+

1
8
(

1
2
(2(a+b+ c+d)))

=
2
8
(a+b)+

1
8
(a+b+ c+d))

=
3
8
(a+b)+

1
8
(c+d))

we get the original Loop mask for a new vertex.

References

1. J. Alexander. The combinatorial theory of complexes.
Ann. Math., 31:294–322, 1930.

2. A. A. Ball and D. J. T. Storry. Conditions for tangent
plane continuity over recursively generated B-spline
surfaces. ACM Transactions on Graphics, 7(2):83–102,
1988.

3. H. Biermann, A. Levin, and D. Zorin. Piecewise
smooth subdivision surfaces with normal control. In
Proceedings of ACM SIGGRAPH 2000, Computer
Graphics Proceedings, Annual Conference Series,
pages 113–120, July 2000.

4. E. Catmull and J. Clark. Recursively generated
B-spline surfaces on arbitrary topological meshes.
Comput. Aided Design, 10:350–365, 1978.

5. C. de Boor, D. Hollig, and S. Riemenschneider. Box
Splines. Springer-Verlag, New York, NY, 1994.

6. D. Doo and M. Sabin. Behaviour of recursive division
surfaces near extraordinary points. Comput. Aided
Design, 10:356–360, 1978.

7. N. Dyn, J. Gregory, and D. Levin. A Butterfly
subdivision scheme for surface interpolation with
tension control. ACM Transactions on Graphics,
9(2):160–190, 1990.

c© The Eurographics Association 2003.

198

Velho / Stellar Subdivision Grammars

8. Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors. Graph-Grammars and Their
Application to Computer Science, 4th International
Workshop, Bremen, Germany, March 5-9, 1990,
Proceedings, volume 532 of Lecture Notes in Computer
Science. Springer, 1991.

9. M. Halstead, M. Kass, and T. DeRose. Efficient,
fair interpolation using Catmull-Clark surfaces. In
Proceedings of SIGGRAPH 93, Computer Graphics
Proceedings, Annual Conference Series, pages 35–
44, Anaheim, California, August 1993. ISBN 0-201-
58889-7.

10. I. Ivrissimtzis, N. Dodgson, and M. Sabin. A generative
classification of mesh refinement rules with lattice
transformations. Research Report UCAM-CL-TR-542,
Cambridge University, Cambridge, UK, September
2002.

11. I. Ivrissimtzis and H.P. Seidel. Polyhedra operators
for mesh refinement. In Proceedings of Geometric
Modeling and Processing 2002, pages 132–137, Wako,
Saitama, Japan, July 2002. IEEE.

12. R. Karwowski. The L+C modeling language, 2002.
Ph.D. Thesis, Univerity of Calgary.

13. L. Kobbelt. Interpolatory subdivision on open
quadrilateral nets with arbitrary topology. Computer
Graphics Forum, 15(3):409–420, August 1996.

14. L. Kobbelt. A variational approach to subdivision.
Computer Aided Geometric Design, 13(8):743–761,
1996.

15. L. Kobbelt.
√

3 subdivision. In Proceedings of
SIGGRAPH, Computer Graphics Proceedings – Annual
Conference Series, pages 103–112, 2000.

16. W. B. R. Lickorish. Simplicial moves on complexes and
manifolds. In Proceedings of the Kirbyfest, volume 2,
pages 299–320, 1999.

17. A. Lindenmayer. Developmental algorithms for
multicellular organisms: A survey of L-systems.
Journal of Theoretical Biology, 54:3–22, 1975.

18. C. Loop. Smooth subdivision for surfaces based on
triangles. Master’s thesis, University of Utah, 1987.

19. M. Mäntylä. An Introduction to Solid Modeling.
Computer Science Press, ISBN 07167-8015-1,
Rockville, Maryland, 1988.

20. H. Muller and M. Rips. Another metascheme of
subdivision surfaces. Visualization and Mathematics
III, pages 203–221, 2002.

21. M. H. A. Newman. On the foundations of
combinatorial analysis situs. Proc. Royal Acad.,
29:610–641, 1926.

22. P. Oswald and P. Schröder. Composite primal/dual
√

(3)-subdivision schemes. Computer Aided
Geometric Design, (accepted for publication), 2002.
http://cm.bell-labs.com/who/poswald/sqrt3.pdf.

23. U. Pachner. PL homeomorphic manifolds are
equivalent by elementary shellings. Europ. J.
Combinatorics, 12:129–145, 1991.

24. J. Peters and U. Reif. The simplest subdivision
scheme for smoothing polyhedra. ACM Transactions
on Graphics, 16(4):420–431, 1997.

25. P. Prusinkiewicz, F. F. Samavati, C. Smith,
and R. Karwowski. L-system description
of subdivision curves. Submitted, 2002.
http://pages.cpsc.ucalgary.ca/ samavati/lsdsc.htm.

26. U. Reif. A unified approach to subdivision algorithms
near extraordinary vertices. Computer Aided Geometric
Design, 12(2):153–174, 1995.

27. S. Schaefer and J. Warren. A factored interpolatory
subdivision scheme for quadrilateral surfaces. In
Proceedings of the fifth Curves and Surfaces, 2003.

28. J. Stam. On subdivision schemes generalizing uniform
b-spline surfaces of arbitrary degree. Computer Aided
Geometric Design. Special Edition on Subdivision
Surfaces, 18:383–396, 2001.

29. L. Velho. Quadrilateral meshing using 4-8 clustering.
In Proceedings of CILANCE 2000 - Symposium on
Mesh Generation and Self-adaptivity, pages 61–64,
December 2000.

30. L. Velho. Using semi-regular 4–8 meshes for
subdivision surfaces. Journal of Graphics Tools,
5(3):35–47, 2001.

31. L. Velho and D. Zorin. 4-8 subdivision. Computer-
Aided Geometric Design, 18(5):397–427, 2001.
Special Issue on Subdivision Techniques.

32. J. Warren and H. Weimer. Subdivision Methods For
Geometric Design: A Constructive Approach. Morgan-
Kaufmann, 2002.

33. D. Zorin. Stationary Subdivision and Multiresolution
Surface Representations. PhD thesis, Caltech, 1997.

34. D. Zorin and P. Schröder. A unified framework
for primal/dual quadrilateral subdivision schemes.
Computer Aided Geometric Design. Special issue on
Subdivision Surfaces, 18(5):429–454, 2001.

35. D. Zorin and P. Schröder. Subdivision for modeling and
animation, 2000. Course Notes - ACM-SIGGRAPH
Course 23.

c© The Eurographics Association 2003.

199

