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Abstract

One of the challenges in 3D shape matching arises from the fact that in many applications, models should be
considered to be the same if they differ by a rotation. Consequently, when comparing two models, a similarity
metric implicitly provides the measure of similarity at the optimal alignment. Explicitly solving for the optimal
alignment is usually impractical. So, two general methods have been proposed for addressing this issue: (1) Every
model is represented using rotation invariant descriptors. (2) Every model is described by a rotation dependent
descriptor that is aligned into a canonical coordinate system defined by the model. In this paper, we describe the
limitations of canonical alignment and discuss an alternate method, based on spherical harmonics, for obtaining
rotation invariant representations. We describe the properties of this tool and show how it can be applied to a
number of existing, orientation dependent descriptors to improve their matching performance. The advantages of
this tool are two-fold: First, it improves the matching performance of many descriptors. Second, it reduces the
dimensionality of the descriptor, providing a more compact representation, which in turn makes comparing two
models more efficient.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction

Over the last decade, tools for acquiring and visualizing 3D
models have become integral components of data process-
ing in a number of disciplines, including medicine, chem-
istry, architecture and entertainment. With the proliferation
of these tools, we have also witnessed an explosion in the
number of available 3D models. As a result, the need for the
ability to retrieve models from large databases has gained
prominence and a key concern of shape analysis has shifted
to the design of efficient and robust matching algorithms.

One of the principal challenges faced in the area of shape
matching is that in many applications, a shape and its im-
age under a similarity transformation are considered to be
the same. Thus, the challenge in comparing two shapes is
to find the best measure of similarity over the space of all
transformations. The need for efficient retrieval makes it im-
practical to test all possible transformations explicitly, and
two different solutions have been proposed:

• Normalization: Shapes are placed into a canonical coor-
dinate frame (normalizing for translation, scale and rota-
tion) and two shapes are assumed to be optimally aligned
when each is in its own frame. Thus, the best measure of
similarity can be found without explicitly trying all possi-
ble transformations.

• Invariance: Shapes are described in a transformation in-
variant manner, so that any transformation of a shape will
be described in the same way, and the best measure of
similarity is obtained at any transformation.

We have found that while traditional methods for transla-
tion and scale normalization provide good matching results,
methods for rotation normalization are less robust and ham-
per the performance of many descriptors.

In this paper we discuss the Spherical Harmonic Rep-
resentation, a method for transforming rotation dependent
shape descriptors into rotation independent ones. The gen-
eral outline of this approach has been described in earlier
works1, 2, 3, and the contribution of our work consists of eval-
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uating this method in the context of shape matching. In par-
ticular, (1) we provide an analysis of the limitations of tradi-
tional methods for rotation normalization, (2) we discuss the
mathematical implications, such as information loss, of the
Spherical Harmonic Representation when applied to exist-
ing shape descriptors, and (3) we present results evaluating
the efficacy of the representation in tasks of model retrieval,
demonstrating that this representation provides a more ro-
bust, concise and efficient method for matching 3D shapes.

The rest of this paper is structured as follows. In Sec-
tion 2, we review previous work in the area of shape re-
trieval. We describe the Spherical Harmonic Representation
in Section 3, in which we summarize the principal proper-
ties of spherical harmonics and provide a method for ob-
taining rotation invariant representations of spherical-based
shape descriptors. In Section 4, we discuss the mathemati-
cal properties of the Spherical Harmonic Representation. We
provide a generalization of our method to voxel grids in Sec-
tion 5. In Section 6, we present empirical results comparing
matching results of normalized descriptors with their rota-
tion invariant representations, and we provide an analysis of
these results in Section 7. Finally, we conclude in Section 8
by summarizing our contribution and discussing topics for
future work.

2. Related Work

The problem of shape matching has been well studied in the
graphics/vision literature and many methods for evaluating
model similarity have been proposed. Motivated by the in-
creased availability and accessibility of 3D models, this pa-
per focuses on the problem of shape retrieval from within
large databases of models. In this context, the challenge is
to provide a robust and efficient method for computing the
similarity between whole shapes.

To address this challenge, many methods have focused
on separating the matching problem into two components:
(1) an offline step, in which abstracted distinguishing in-
formation is extracted from each model independently, and
(2) an online step, in which the information between two
models is compared. In order to allow for efficient retrieval,
the offline step is usually designed to extract information
which allows for simple and efficient comparison between
models. In particular, many existing methods describe a 3D
shape with an abstracted shape descriptor that is represented
as a function defined on a canonical domain. Shapes are
then compared by computing the difference between their
descriptors over the canonical domain, so that no explicit es-
tablishing of correspondences is necessary, and the online
process can be efficient.

However, in the context of shape retrieval, one of the prin-
cipal difficulties faced by these approaches is that a shape
and its image under a similarity transformation are consid-
ered to be the same. Thus, the challenge in comparing two

shapes is to find the best measure of similarity over the space
of all transformations. This challenge has been addressed in
two different ways:

• Normalizing the models by finding a canonical transfor-
mation for each one.

• Characterizing models with a transformation invariant de-
scriptor so that all transformations of a model result in the
same descriptor.

While explicitly solving for the optimal transformation us-
ing either exhaustive search or methods such as the ICP4, 5

algorithm, the Generalized Hough Transform6, or Geomet-
ric Hashing7, are also possible, these approaches are not ap-
plied to database retrieval tasks since the online compari-
son of models becomes inefficient. Many hybrid methods
exists, and a few representative examples are shown in Ta-
ble 1, which describes how these methods address transla-
tion, scale and rotation.

Representation Tr Sc Rot

Crease Histograms8 I N I
Shape Distributions9 I N I
Extended Gaussian Images10 I N N
Shape Histograms11 (Shells) N N I
Shape Histograms11 N N N
Spherical Extent Functions12 N N N
Wavelets13 N N N
Reflective Symmetry Descriptors14 N N N
Higher Order Moments15 N N N
Exponentiated EDT16 N N N

Table 1: A summary of a number of shape descriptors, show-
ing if they are (N)ormalized or (I)nvariant to each of trans-
lation, scale and rotation.

In general, models are normalized by using the center of
mass for translation, the root of the average square radius
for scale, and principal axes for rotation. We have found that
while the methods for translation and scale normalization are
robust for whole object matching17, rotation normalization
via PCA-alignment does not provide a robust normalization
for many matching applications. This is due to the fact that
PCA-alignment is performed by solving for the eigenvalues
of the covariance matrix which captures only second order
model information. The assumption in using PCA is that the
alignment of higher frequency information is strongly cor-
related with the alignment of the second order components.
(Appendix A provides an analysis of this from a signal pro-
cessing framework.) We have found that for many shape de-
scriptors this assumption does not hold, and the use of prin-
cipal axes for alignment hampers the performance of these
descriptors.

Many of the descriptors that have used PCA-alignment
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represent a 3D shape as either a spherical function or a voxel
grid, which rotates with the model. Examples of such de-
scriptors have included:

• The Extended Gaussian Image10, which describes the dis-
tribution of normals across the surface of the model

• Shape Histograms11, which describe the distribution of
points on the model across all rays from the origin

• Spherical Extent Functions12, which describe the maximal
extent of a shape across all rays from the origin

• Reflective Symmetry Descriptors14, which describe the
reflective self-similarity of a shape with respect to reflec-
tions about all planes through the origin

• The voxel description of Funkhouser et al.16, which de-
scribes a model by computing the negative exponential of
its Euclidean Distance Transform

For this type of descriptor, we propose a solution to the
rotation problem by describing a mathematical tool, based
on spherical harmonics, for obtaining a rotation invariant
representation of the descriptors. The approach is a gener-
alization of the Fourier Descriptor18 method to the sphere,
based on the computation of 0-th order tensors from spheri-
cal harmonic decompositions1, 2, 3. It characterizes spherical
functions by the energies contained at different frequencies,
and its application to shape matching was initially proposed
in19, 16. This paper gives a detailed review of the descrip-
tor, provides a mathematical analysis of its properties, and
presents empirical results demonstrating its efficacy in im-
proving the matching performance of a number of existing
shape descriptors.

3. Spherical Rotation Invariance

In this paper, we analyze a method for transforming rotation
dependent spherical shape descriptors into rotation invariant
ones. The key idea of this approach is to describe a spherical
function in terms of the amount of energy it contains at dif-
ferent frequencies. Since these values do not change when
the function is rotated, the resulting descriptor is rotation in-
variant. This approach is described in1, 2, 3 and can be viewed
as a generalization of the Fourier Descriptor method18 to the
case of spherical functions.

3.1. Spherical Harmonics

In order to be able to represent a function on a sphere in a
rotation invariant manner, we utilize the mathematical notion
of spherical harmonics to describe the way that rotations act
on a spherical function. The theory of spherical harmonics
states that any spherical function f (θ,φ) can be decomposed
as the sum of its harmonics:

f (θ,φ) =
∞

∑
l=0

m=l

∑
m=−l

almY m
l (θ,φ).

(This decomposition is visualized in step (1) of Figure 1.)
The key property of this decomposition is that if we restrict

Figure 1: We compute a rotation invariant descriptor of
a spherical function by (1) decomposing the function into
its harmonics, (2) summing the harmonics within each fre-
quency, and (3) computing the norm of each frequency com-
ponent. (Spherical functions are visualized by scaling points
on the sphere in proportion to the value of the function at that
point, where points with positive value are drawn in light
gray and points with negative value are drawn in dark gray.)

to some frequency l, and define the subspace of functions:

Vl = Span(Y−l
l ,Y−l+1

l , . . . ,Y l−1
l ,Y−l

l )

then:

• Vl is a Representation for the Rotation Group: For any
function f ∈ Vl and any rotation R, we have R( f ) ∈ Vl .
That is, rotating any function described in terms of Y m

l ,
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for fixed l, may shuffle information among different m but
will never transfer energy to different l; i.e., “frequency”
(which corresponds to l) is preserved by rotation. This can
also be expressed in the following manner: if πl is the
projection onto the subspace Vl then πl commutes with
rotations:

πl(R( f )) = R(πl( f )).

• Vl is Irreducible: Vl cannot be further decomposed as the
direct sum Vl = V ′

l ⊕V ′′
l where V ′

l and V ′′
l are also (non-

trivial) representations of the rotation group. That is, if f
is any function of frequency l, then any other function of
frequency l can be expressed as the sum of rotations of f .
Hence, it is impossible to partition the space of spherical
harmonic functions further, such that rotations act only
within these smaller subspaces.

The first property presents a way for decomposing spherical
functions into rotationally independent components, while
the second property guarantees that in a linear sense, this
decomposition is optimal.

3.2. Rotation Invariant Descriptors

Using the properties of spherical harmonics, and the obser-
vation that rotating a spherical function does not change its
L2-norm we represent the energies of a spherical function
f (θ,φ) as:

SH( f ) = {‖ f0(θ,φ)‖,‖ f1(θ,φ)‖, . . .}

where the fl are the frequency components of f :

fl(θ,φ) = πl( f ) =
m=l

∑
m=−l

almY m
l (θ,φ)

(shown in steps (2) and (3) of Figure 1.)

This representation has the property that it is independent
of the orientation of the spherical function. To see this we let
R be any rotation and we have:

SH(R( f )) = {‖π0(R( f ))‖,‖π1(R( f ))‖, . . .}

= {‖R(π0( f ))‖,‖R(π1( f ))‖, . . .}

= {‖π0( f )‖,‖π1( f )‖, . . .} = SH( f )

so that applying a rotation to a spherical function f does not
change its energy representation.

4. Properties of the Spherical Harmonic Representation

This section provides a mathematical analysis of some of the
properties and limitations of the Spherical Harmonic Repre-
sentation. In particular, we describe how the similarity of
spherical descriptors, defined as the optimum over all rota-
tions, relates to the similarity of their Spherical Harmonic
Representations. We also describe the way in which infor-
mation is lost in going from a spherical shape descriptor to
its Spherical Harmonic Representation.

1. Similarity: The L2-difference between the Spherical
Harmonic Representations of two spherical functions is
a lower bound for the minimum of the L2-difference be-
tween the two functions, taken over all possible orienta-
tions. To see this, we let f (θ,φ) and g(θ,φ) be two spher-
ical functions, and observe that:

‖SH( f )−SH(g)‖2 =
∞

∑
l=0

(‖ fl‖−‖gl‖)
2

≤
∞

∑
l=0

(‖ fl −gl‖)
2 = ‖ f (θ,φ)−g(θ,φ)‖2

.

But as we have shown, the Spherical Harmonic Repre-
sentation is invariant to rotation, so we get:

‖SH( f )−SH(g)‖ ≤ min
R∈SO(3)

‖ f −R(g)‖.

2. Information Loss: If a spherical function f (θ,φ) is band-
limited with bandwidth b, then we can express f as:

f (θ,φ) =
b

∑
l=0

l

∑
m=−l

almY m
l (θ,φ).

Thus, the space of spherical functions with bandwidth b
is of dimension O(b2). The Spherical Harmonic Repre-
sentation, however, is of dimension O(b) so that a full
dimension of information is lost in going from a spher-
ical function to its representation. This information loss
happens in two different ways:

• First, we treat the different frequency components in-
dependently. Thus if we write:

f =
b

∑
l=0

fl and g =
b

∑
l=0

Rl( fl)

where Rl are rotations, then the representations of the
functions f and g will be the same. That is, the repre-
sentation is unchanged if we apply different rotations
to the different frequency components of a spherical
function. Figure 2 shows a visualization of this for
two spherical functions. The one on the bottom is ob-
tained from the one on the top by applying a rota-
tion to the rightmost frequency component. Though
the two functions differ by more than a single rota-
tion, their spherical harmonic representations are the
same. (An analogous form of information loss occurs
with Fourier Descriptors where the phases of different
frequencies are discarded independently.)

• Second, for each frequency component fl , the Spheri-
cal Harmonic Representation only stores the energy in
that component. For l ≥ 2 it is not true that if ‖ fl‖ =
‖gl‖ then there is a rotation R such that R( fl) = gl .
Thus knowing only the norm of the l-th frequency
component does not provide enough information to
reconstruct the component up to rotation. (This form
of information loss does not occur with Fourier De-
scriptors, as two circular functions with the same am-
plitude and frequency can only differ by a rotation.)
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Figure 2: The bottom spherical function is obtained by ro-
tating the rightmost frequency component of the one on top.
Although there is no rotation transforming the function on
the top to the one on the bottom, their representations are
the same.

Figure 3 shows a visualization of this for three spher-
ical functions. The functions are all of the same fre-
quency and have the same amplitude, but there is no
rotation that can be applied to transform them into
each other. In Appendix B we show how this infor-
mation loss can be resolved for the second order fre-
quency components.

Figure 3: These three single-frequency (l = 4) spherical
functions are not related by rotation but have the same
spherical harmonic representation.

5. Extensions to Voxel Grids

In Section 3, we described a method for obtaining rotation
invariant representations of spherical functions. In this sec-
tion, we show how this method can be generalized to obtain
rotation invariant representations of regularly sampled 3D
functions (voxel grids).

5.1. Rotation Invariant Representations

In order to obtain a rotation invariant representation of a
voxel grid we use the observation that rotations fix the dis-
tance of a point from the origin. Thus, we can restrict the
voxel grid to concentric spheres of different radii, and rep-
resent the voxel grid as a collection of spherical functions.
Each function is weighted by the radius of the restricting
sphere to account for the different areas, and we obtain

Figure 4: We compute a rotation invariant descriptor of a
voxel grid by intersecting the model with concentric spheres
(with darker points corresponding to larger voxel values),
computing the frequency decomposition of each spherical
function, and computing the norms of each frequency com-
ponent at each radius. The resultant rotation invariant rep-
resentation is a 2D grid indexed by radius and frequency.

the Spherical Harmonic Representation of each spherical re-
striction independently.

This process is demonstrated in Figure 4. First, we restrict
the voxel grid to a collection of concentric spheres. Then, we
represent each spherical restriction in terms of its frequency
decomposition. Finally, we compute the norm of each fre-
quency component, at each radius. The resultant rotation in-
variant representation is a 2D grid indexed by radius and fre-
quency.
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5.2. Properties

In addition to the information loss described in Section 4, the
method described above also loses information as a result of
the fact that the representation is invariant to independent
rotations of the different spherical functions. For example,
the plane in Figure 5 (right) is obtained from the one on the
left by applying a rotation to the interior part of the model.
While the two models are not rotations of each other, the
descriptors obtained are the same.

Figure 5: The model on the right is obtained by applying a
rotation to the interior part of the model on the left. While
the models are not rotations of each other, their Spherical
Harmonic Representations are the same.

6. Experimental Results

To measure the efficacy of the Spherical Harmonic Repre-
sentation in tasks of shape analysis, we computed a number
of spherical shape descriptors, and compared matching re-
sults when the descriptors were aligned by PCA with the re-
sults obtained when the Spherical Harmonic Representation
was used. The descriptors we used in our experiments were:

• Extended Gaussian Image10: A description of a surface
obtained by binning surface normals.

• Radial Distribution: A description of a surface that asso-
ciates to every ray through the origin, the average distance
and standard deviation of points on the intersection of the
surface with the ray. (If the intersection is empty then the
associated values are zero.)

• Spherical Extent Function12: A description of a surface
associating to each ray from the origin, the value equal to
the distance to the last point of intersection of the model
with the ray. (If the intersection is empty then the associ-
ated value is zero.)

• Sectors: A description of a surface associating to each ray
from the origin, the amount of surface area that sits over
it. This is a continuous implementation of the sectors in
Shape Histograms11, with sectors chosen to correspond
to a single cell within the 64× 64 representation of the
sphere.

• Shape Histogram11: A finer resolution of the Sector de-
scriptor that breaks up the bounding sphere of the model
into a collection of shells and computes the sector descrip-
tor for the intersection of the model with each one.

• Voxel16: A description of a shape as a voxel grid, where
the value at each point is given by the negatively exponen-
tiated Euclidean Distance Transform of the surface.

We evaluated the performance of each method by measur-
ing how well they classified models within a test database.
The database consisted of 1890 “household" objects pro-
vided by Viewpoint20. The objects were clustered into 85
classes, based on functional similarity, largely following the
groupings provided by Viewpoint and classes ranged in size
from 5 models to 153 models, with 610 models that did not
fit into any meaningful classes16. Classification performance
was measured using precision/recall plots, which give the
percentage of retrieved information that is relevant as a func-
tion of the percentage of relevant information retrieved. That
is, for each target model in class C and any number K of top
matches, “recall” represents the ratio of models in class C re-
turned within the top K matches, while “precision” indicates
the ratio of the top K matches that are in class C. Thus, plots
that appear shifted up and to the right generally indicate su-
perior retrieval results.

Figure 6: Precision vs. Recall plots comparing the perfor-
mance of aligned spherical descriptors with the performance
of their Spherical Harmonic Representations. Note that for
most of the representations the Spherical Harmonic Repre-
sentation outperforms the canonically aligned one.
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We computed the spherical representations as 64 × 64
grids corresponding to regular sampling along the lines of
longitude and latitude and we used SpharmonicKit 2.521 to
obtain the Spherical Harmonic Representation as an array of
32 floating point numbers. Both the spherical descriptors and
their Spherical Harmonic Representations were compared
using the L2-difference. The results of the classification ex-
periment are show in Figure 6.

As the results indicate, the application of the Spherical
Harmonic Representation improves the performance of most
of the descriptors. The improvement of the matching results
is particularly meaningful when we consider the fact that the
Spherical Harmonic Representation reduces a 2D descriptor
into a 1D array of energy values. Thus, the representation not
only provides better performance, but it does so with fewer
bits of information.

7. Discussion

In this section, we present a discussion of the results in Sec-
tion 6. In particular, we analyze the case of the Extended
Gaussian Image, and discuss how this reflects on the gen-
eral limitations of the Spherical Harmonic Representation.
We also evaluate the implications of the Spherical Harmonic
Representation for database retrieval and discuss the depen-
dency of the representation on the center of mass.

7.1. Limitations

The analysis described in Appendix A provides a mathe-
matical interpretation of the failing of PCA-alignment. This
analysis makes the assumption that we are looking at the
general class of spherical functions, so that frequency com-
ponents align independently. However, in certain shape ap-
plications this may not be the case and the descriptors ob-
tained may fall into a restrictive subset of spherical func-
tions. In these cases, it is possible that the alignment of dif-
ferent frequency components are correlated and PCA align-
ment performs well.

Such a case may occur when the spherical functions are
primarily axis aligned, so that up to rotation they can be de-
scribed as:

∑akxk +bkyk + ckzk

and the alignments of the different frequency components
are strongly correlated. This is the case for the Extended
Gaussian Image10 which describes a polygonal model by the
distribution of normal vectors over the unit sphere. When
the database of models is restricted to household objects,
the obtained descriptors are primarily axis aligned (see Fig-
ure 7) and principal axis alignment may provide optimal
alignment, (as indicated by the improved performance in
Figure 6).

Figure 7: Images of models of a vase, a chair, and scissors,
with their associated Extended Gaussian Images. Note that
the EGIs are mainly axial functions and consequently are
well aligned by PCA.

7.2. Implications for Model Databases

Much of the research presented in this paper is guided by
the increased proliferation and accessibility of 3D models.
These models have been gathered into databases, and one of
the challenges has been to design matching implementations
that are well suited for database retrieval. The Spherical Har-
monic Representation described in this paper addresses this
challenge in two ways:

1. While a spherical function of bandwidth b requires O(b2)
space, its Spherical Harmonic Representation is of size
O(b). Consequently, the Spherical Harmonic Represen-
tations provide a more compact representation of the de-
scriptors, and can be compared more efficiently. (For
each method compared in Section 6, Table 2 shows the
space requirements of the descriptor and its Spherical
Harmonic Representation.)

2. Furthermore, the Spherical Harmonic Representations
are based on a frequency decomposition of a spherical
function. Consequently, the representation is inherently
multiresolutional and this property can be used to guide
indexing schemes for efficient retrieval.

Representation PCA-Aligned Harmonic

EGI 64×64 32
Spherical Extent Function 64×64 32
Radial Distribution 2×64×64 2×32
Sectors 64×64 32
Shape Histogram 4×64×64 4×32
Voxel 32×64×64 32×32

Table 2: The number of floating point numbers used to de-
scribe each representation. This table demonstrates that the
Spherical Harmonic Representation provides a representa-
tion that reduces the dimensionality of the space required
for storing the descriptor.

We have taken advantage of these properties of the Spher-
ical Harmonic Representation in the design of a web-based
3D model retrieval system22. The system indexes 36,000 3D
models using the Voxel descriptor, and performs a query, re-
turning the top 100 results, in under one second. The system
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has been publicly available for two years and has seen an av-
erage of 550 searches per day. For a full description of the
system we refer the reader to23.

7.3. Translation Invariance

In this paper we have addressed the challenge of matching
3D shapes across different similarity transformations by pro-
viding a method for obtaining a rotation invariant represen-
tation of many existing shape descriptors. The challenge of
matching across different translations is addressed by trans-
lating the shape so that its center of mass is at the origin be-
fore computing the descriptors. This approach is motivated
by the results of Horn et al.17, which show that for matching
pairs of ordered point sets, translation to the center of mass
always provides the optimal matching (independent of the
order of the point sets).

However, it should be stressed that such an approach
only generalizes in the context of whole-object to whole-
object matching, where an underlying correspondence be-
tween points on the two models can be assumed. In the
context of partial-object to whole-object or partial-object to
partial-object matching the assumption of complete corre-
spondence fails to hold, and center of mass translation can-
not be expected to provide optimal alignment.

An alternative approach to normalizing for translation is
providing a representation that is translation invariant. For
voxel grids, the phase elimination approach used for obtain-
ing a rotation invariant representation can also be used to
obtain a translation invariant representation. In particular, if
we consider a voxel grid as the sampling of a real valued
function f , then we can express f in terms of its Fourier de-
composition:

f (v) =
∫

R3
f̂ (w)ei〈v,w〉dw

where f̂ (w) are the Fourier coefficients of f . The function
| f̂ | is a translation invariant representation of f that has the
following two properties:

1. For two functions f and g, we have
∥

∥

∥
f −g

∥

∥

∥

2
≥

∥

∥

∥
| f̂ |− |ĝ|

∥

∥

∥

2

so that the L2-difference of the translation invariant rep-
resentations of two functions is a lower bound for the L2-
difference of the functions.

2. If R is any rotation and g(v) = f (R(v)) then we have:

|ĝ(w)| = | f̂ (R(w))|

so that applying a rotation to a function f amounts to
applying the same rotation to its translation invariant rep-
resentation.

Consequently, if we apply the methods of Section 5 to the
function | f̂ |, we obtain a translation and rotation invariant
representation of the function f that satisfies the L2 lower
bound property described in Section 4.

8. Conclusion and Future Work

In this paper we have described the Spherical Harmonic
Representation, a rotation invariant representation of spheri-
cal functions in terms of the energies at different frequencies.
We have presented a mathematical analysis of its properties
and demonstrated its efficacy in shape matching by empir-
ically showing that it provides a more concise and robust
representation for many existing shape descriptors.

In the future, we would like to explore extensions of the
Spherical Harmonic Representation that completely define a
spherical function up to rotation. That is, we would like to
consider methods for eliminating the rotation independence
of the different frequency components, and we would like to
capture enough information in the higher frequency compo-
nents to reconstruct them up to rotation. We would also like
to consider the implications and limitations of extending this
method to obtain translation and scale invariant representa-
tions. These extensions would not depend on translation and
scale normalization, and would be better suited for partial-
object matching tasks.
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Appendix A: A Signal Processing Framework for PCA

This appendix presents a signal processing framework for
analyzing the implications and limitations of model align-
ment via PCA. In particular, we show that PCA-alignment
only considers second order shape information and conse-
quently does not guarantee optimal alignment at other fre-
quencies.

To do this, we define a spherical function characterizing
the radial variance of a shape along different rays from the
origin. In particular, for a model S and a direction v we set:

RV(S,v) = lim
α→0

∫

C(v,α)∩S

‖x‖2

2π(1− cos(α))
dA

where C(v,α) is the cone with apex at the origin, angle α and
direction v, and 2π(1−cos(α)) is the area of the intersection
of the cone with the unit sphere (Figure 8 (left)). That is,
RV(S,v) gives the sum of the square of the distances of the
points lying on the intersection with S and the ray, from the
origin, with direction v. A visualization of this function for a
cube is shown in Figure 8 on the right. Note that the function

Figure 8: The value of the Radial Variance in the direction
v is defined by intersecting the model with a cone, in the
direction v, with small angle α, and integrating the square
of the distance over the intersection of the model with the
cone (left). The resultant spherical function is shown on the
right by scaling points on the sphere in proportion to their
value.

scales the points at the corners of the cube more drastically
because: (1) we integrate the square of the distance to the
origin over each patch, and (2) the angle between the point
on the sphere and the surface normal is large, so that more
surface area projects onto a spherical patch.

What is valuable about this function is that for any surface
S, the function has the property that:

MS
i, j =

∫

S
xix j dA = 〈RV(S,v),xix j〉S2

where MS is the covariance matrix of the shape S. That is, the
second (and 0-th) order components of the radial variance
function completely define the principal axes of the model.
This function gives a representation of the initial model in
a signal processing framework that allows us to make two
observations:

1. Because of the orthogonality of the frequency compo-
nents, principal axis alignment does not take into account
information at non second-order frequencies and hence
makes no guarantees as to how they align.

2. Aligning two models using their principal axes provides
the optimal alignment for their second order components,
as will be shown in the following theorem:

Theorem: If f and g are two spherical functions consist-
ing of only constant and second order harmonics, then the
L2-difference between the two is minimized when each is
aligned to its own principal axes.

Proof: Because f and g consist of only constant and second
order terms, we can represent the functions by symmetric
matrices A and B where

f (v) = vtAv and g(v) = vtBv.

If we assume that A and B are already aligned to their prin-
cipal axes we get:

A =





a1 0 0
0 a2 0
0 0 a3



 and B =





b1 0 0
0 b2 0
0 0 b3




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Thus, if R is any rotation we get:

〈Rt( f ),g〉 = (α−β)Trace(ARBRt)+β
3

∑
i, j=1

aib j

where α =
∫

S2 x4dx and β =
∫

S2 x2y2dx define the lengths
and angles between the functions x2

i on the unit sphere. We
would like to show that the dot product is maximized when
R is a permutation matrix so that RARt is diagonal.

Using the fact that the differentials of a rotation R are de-
fined by RS where S is a skew-symmetric matrix, it suffices
to solve for:

0 =
d
dt

∣

∣

∣

t=0
Trace(A(R+ tRS)B(Rt − tSRt))

= Trace(RtAR(SB−BS))

But S is a skew-symmetric matrix so that, SB−BS is a sym-
metric matrix with 0’s along the diagonal:

SB−BS =





0 (b2 −b1)S12 (b3 −b1)S13
(b2 −b1)S12 0 (b3 −b2)S23
(b3 −b1)S13 (b3 −b2)S23 0





Thus, if RtAR is a diagonal matrix then the derivative is zero,
independent of the choice of S. Conversely, if the bi are dis-
tinct and RtAR is not diagonal, we can always choose values
for S12, S13, and S23 such that the derivative is non-zero, im-
plying that if RtAR is not diagonal it cannot maximize the
dot product. (Note that if b1 = b2 = b3 then B is a constant
multiple of the identity so that the dot product is independent
of the choice of rotation. Similarly, if bi = b j then rotations
in the plane spanned by xi and x j also do not change the dot
product.)

This shows that the L2-difference between f and g is at
an extremum if and only if A and B are diagonal matrices.
The minimum L2-difference is then attained when ∑aibi is
maximal. So, if a1 ≥ a2 ≥ a3 then we must also have b1 ≥
b2 ≥ b3, and the L2-difference between f and g is minimized
precisely when f and g are aligned to their principal axes.

Appendix B: Further Quadratic Invariants

One of the limitations of only storing the energies at the dif-
ferent frequencies of a spherical function is that it does not
allow us to reconstruct the frequency components uniquely,
up to rotation. In the past, this problem has been addressed
by using algebraic methods to obtain additional rotation in-
variants for the different frequency components1, 2, 3. The
difficulty with these approaches is that the derived 0-th or-
der tensor invariants are often redundant and consequently,
cannot be directly compared to obtain a lower bound for the
minimum L2-difference between two spherical functions.

In this appendix, we present a new geometric approach
for computing orthogonal invariants and describe an imple-
mentation for the quadratic components of a spherical func-
tion. This approach is based on the idea that for a spherical

Figure 9: The minimum distance between two functions f
and g, taken over the space of all rotations, is equal to the
distance between the two manifolds M f and Mg, where M f
and Mg are obtained by applying all rotations to the func-
tions f and g.

function f , we can generate the manifold M f , defined as the
image of f under all rotations. For two spherical functions f
and g, the minimum difference between f and g, taken over
the space of all rotations, is precisely the distance between
the two manifolds M f and Mg, (Figure 9). The goal then, is
to be able to index these manifolds in such a way that the L2-
difference between two sets of indices is exactly the distance
between the two manifolds.

Using the results from Appendix A we know that the L2-
difference between the quadratic components of two spher-
ical functions is minimized when the two functions are
aligned with their principal axes. Thus, we can represent
the constant and quadratic components by the three scalars
a1 ≤ a2 ≤ a3, where after alignment to principal axes:

f0 + f2 = a1x2 +a2y2 +a3z2
.

The indices (a1,a2,a3) uniquely define the constant and
quadratic function up to rotation, but because the functions
{x2

,y2
,z2} are not orthogonal, they do not have the prop-

erty that the L2-difference between two sets of indices is the
minimum of the L2-distance between the two functions. To
address this, we fix an orthonormal basis {v1,v2,v3} for the
span of {x2

,y2
,z2} and represent the function f = f0 + f2

by the three scalars R−1(a1,a2,a3), where R is the matrix
whose columns are the orthonormal vectors vi. This pro-
vides the desired orthogonal indexing for the constant and
quadratic components of a spherical function, which define
the components uniquely, up to rotation.
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