
Eurographics Symposium on Geometry Processing(2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Simple Silhouettes for Complex Surfaces

D. Kirsanov, P. V. Sander, and S. J. Gortler

Harvard University

Abstract
Complex meshes tend to have intricate, detailed silhouettes. This paper proposes two algorithms for extracting a
simpler, approximate silhouette from a high-resolution model. Our methods preserve the important features of the
silhouette by using the silhouette of a coarser, simplified mesh as a guide. Our simple silhouettes have significantly
fewer edges than the original silhouette, while still preserving its appearance.
Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms.

1. Introduction
Silhouettes play an important role in several areas of Com-
puter Graphics, such as interactive visualization, non-
photorealistic rendering and shadow computation. There are
several systems that draw silhouettes in various ways to help
depict geometric models [Gooch et al. 98, Gooch et al. 99,
Hertzmann et al. 00, Markosian et al. 97, and many others].
Unfortunately, many high-resolution geometric meshes often
have overly complicated silhouettes. For example, see Figure
5(a2,b2), which shows the silhouette of the bunny model as
viewed from both the eye position as well as an auxiliary side
view; this silhouette contains a large number of loops, many
intertwined loops, and loops that are quite wiggly. This
silhouette complexity is usually unnecessary and sometimes
costly, both in terms of speed and quality of rendering
algorithms applied on silhouette edges.

In this paper, we propose methods for computing “approxi-
mate silhouettes” that attempt to represent the most salient
features of the silhouette, while suppressing the extra detail
and complexity. Our basic approach is to first compute the
actual silhouette of a smoothed coarse geometric mesh that
approximates the original model (see Figure 5(col. 1)). This
“coarse silhouette” typically has a simpler structure. Our goal
is to create a silhouette for the fine mesh that is similar in
structure to the coarse silhouette. This results in a high
resolution, but “simple” silhouette (see Figure 5(cols. 3,4)).
We have explored a few approaches, and in this paper we
describe two different methods that present various tradeoffs.

1.1 Previous work
There have been a number of interesting approaches to
efficiently compute silhouettes on models. Sander et al.
[2000] build a spatial hierarchy that allows one to quickly
dismiss subsets of mesh edges as being non-silhouette.
Barequet et al. [1999] and Hertzmann and Zorin [2000]
describe methods that also build a hierarchy, but do their

computation in dual space. Barequet et al. also describe how
their method can be used incrementally to more quickly
recompute silhouettes under small viewpoint changes.
Markosian et al. [1997] propose a method to find silhouettes
by tracking them from frame to frame as well as randomly
testing for the creation of new silhouette loops. This method
tends to find the larger loops more reliably.

Northrup et al. [2000] address the simplification of the
silhouettes in the image space by linking the visible segments
into the chains, thus resulting in a simpler, approximate
silhouette. Hertzmann and Zorin [2000] describe an elegant
way of finding simple approximate silhouettes on meshes.
Silhouettes found by this method are quite smooth and are
always comprised as a set of non-intersecting loops. In their
method, the silhouette edges all span across mesh triangles
and are not original mesh edges.
In our methods the silhouette is composed of actual mesh
edges. Furthermore, redundant short loops are usually re-
moved from our computed simple silhouettes.

2. Approach
The input to our system is a high-resolution fine mesh. From
this mesh, we create a progressive mesh [Hoppe et al. 1996].
We then extract a simpler, coarser mesh, and apply smooth-
ing on it in order to prevent artificially generated silhouettes.
During runtime, for a given viewpoint, the objective is to
create a silhouette for the fine mesh that is similar in structure
to that of the coarse mesh. In this section we will describe two
approaches to achieve this objective. In particular we will
describe one method in which the set of the edges in the
coarse silhouette are constrained to be some subset of the
actual silhouette edges. In this method, loops from the actual
silhouette are iteratively included into the simple silhouette as
long as they sufficiently match the coarse silhouette.

© The Eurographics Association 2003.

102

http://www.eg.org
http://diglib.eg.org

Kirsanov et al. / Simple Silhouettes for Complex Surfaces

The second method constrains the simple silhouette to be
structurally similar to the coarse silhouette. For each coarse-
silhouette loop, a corresponding loop is found on the original
mesh. With this second approach, it may be necessary to
sometimes include non-silhouette edges in the simple silhou-
ette.

Next we will describe how we decompose the silhouette into
loops – a sub-step that is required for both methods, – and
then we present the two silhouette extraction methods.

2.1 Loop Decomposition
On a smooth surface, the silhouette is comprised of a set of
disjoint closed loops. On a triangle mesh, these loops can
intersect (for example, a silhouette vertex can be incident to
four silhouette edges) creating a slightly more complicated
structure. Our first step will be to take a complicated silhou-
ette and describe it as the union of (possibly intersecting)
loops.
Given a viewpoint, a silhouette edge is an edge that is adja-
cent to one front-facing triangle and one back-facing triangle.
Silhouette edges are directed edges, where the left adjacent
face is front-facing. A silhouette vertex is a vertex adjacent to
a silhouette edge. In particular, on a triangle mesh, the faces
around a silhouette vertex can be partitioned into an alternat-
ing set of front-facing and back-facing triangles, thus the
number of silhouette edges adjacent to a silhouette vertex
must be even.

Since silhouette vertices have even “silhouette edge valence,”
we can decompose the silhouette into loops. We seek a
decomposition that yields loops without self-intersections.

We achieve this by starting with an arbitrary vertex and
walking along the directed silhouette edges until we get back
to the original vertex, thus closing the loop. We repeat this
process until all silhouette edges have been assigned to loops.
In order to accelerate the walking algorithm, we use a hash
table of directed silhouette edges indexed by the source
vertices [Sander et al. 00].

During this walk, we may get to intersections where we have
pick between two or more edges to follow. When that hap-
pens, we just arbitrarily pick any one of the possible edges. If
at any point during a walk we encounter a sub-loop, we
“detach” it and store it as a separate loop.

This method does not produce a unique loop decomposition,
as it is sensitive to the location where the walk starts and the
decisions made at silhouette intersections. However, this
greedy approach is extremely fast, and by snapping off sub-
loops, it achieves our objective of constructing loops without
self-intersections.

2.2 Method A: Loop picking
In this approach, we first extract the silhouette of both the
coarse and fine meshes using the algorithm from Sander et al.
[2000]. We then perform loop decomposition on the fine
silhouette, yielding a set of silhouette loops.

Our goal is to pick a subset of the fine silhouette loops that
minimizes an error metric based on distance to the coarse
mesh silhouette. More specifically, the metric is the sum of
the squared distances between each coarse silhouette vertex,
and its closest point on the fine silhouette. The loops are
picked one by one in greedy fashion, minimizing this metric.
We terminate when the error gets below a specified threshold
that is proportional to the amount of detail that is desired.

To update the error, after a loop is added, every coarse
silhouette vertex must be checked to see if it is closer to one
of the newly added fine silhouette vertices. In order to do this
efficiently, we first pre-compute the distances from every
coarse silhouette vertex to its closest vertex on each of the
fine silhouette loops, and store these distances in a 2D array.
When evaluating a candidate loop, we just do look-ups to this
array to compute the error.

Applying the above algorithm results in a set of long silhou-
ette loops that resemble the silhouette of the coarse mesh.
Short loops and loops that are not geometrically close to a
coarse mesh silhouette edge are not picked because they do
not significantly decrease the error. Very short loops are
pruned and discarded a priori in order to make the search
more efficient.

Figures 1 and 5(col. 3) show examples of simple silhouettes
extracted using the above algorithm. For performance results,
refer to the Section 3.

2.3 Method B: Loop mapping
In the previous method, we started with the fine silhouette,
and selected loops based on their proximity to the coarse
silhouette. In this method, we instead start with the coarse
silhouette, and try to create loops over the fine mesh that
resemble the coarse loops. For every loop of the coarse
silhouette we find a corresponding loop on the fine mesh. The
goal of this method is to retain all major features of the
silhouette and ensure continuity when the model is rotated.
By meeting this goal we do not guarantee that all edges of the
fine loop belong to the fine silhouette.

The first step of this algorithm is to decompose the coarse
silhouette onto non-self-intersecting loops using the method
described in Section 2.1. We also need a mapping between
coarse and fine models, i.e. for each fine triangle we need to
know the corresponding coarse triangle (Figure 2). To create
such a mapping, we simplify the mesh using half-edge
collapses. Each coarse mesh edge corresponds to the shortest

Figure 1: Fine silhouette (left) and simple silhouette
(right) computed using the loop picking algorithm. The
simple silhouette consists of only four loops.

© The Eurographics Association 2003.

103

Kirsanov et al. / Simple Silhouettes for Complex Surfaces

Figure 2: Coarse and fine bands are shown with colored
triangles on the bunny modes. In order to show the
mapping between models, each triangle on the coarse
mesh (left) has the same color as corresponding fine
triangles on the fine mesh (right).

Figure 3: One loop of the coarse silhouette of the gar-
goyle (left) and its mapping on the fine mesh (right).

Figure 4: Primal (left) and dual (right) graphs. Internal
boundary (red) on the primal graph corresponds to the
source edges on the dual graph. External boundary
(blue) on the primal graph corresponds to the sink edges
on the dual graph.

path of fine mesh edges between the two analogous vertices
on the fine mesh. Therefore, each face can then be trivially
mapped to a set of faces on the fine mesh.

We define the coarse band of a coarse loop as all triangles
that have at least one common vertex with this loop. The
coarse loop splits the coarse band into two parts, internal and
external. The outer boundary of the internal part of the band
is called internal boundary, the outer boundary of the external
part of the band is called external boundary. The internal and

external boundaries of the coarse band could consist of more
than one loop, but this does not affect our algorithm.

We can map the coarse band from the coarse mesh onto the
fine band on the fine mesh (Figure 2). Note that internal and
external boundaries of the coarse band are mapped to the
internal and external boundaries of the fine band.

Our goal is to approximate the coarse loop with the best
possible loop in the fine band. To do this, we find a minimal-
cost loop of edges over the fine mesh that separates the
internal and external boundaries. In order to measure the cost
of an edge, the simplest approach would be to set its weight to
be equal to its length. In this case, we will be looking for the
shortest loop possible. To ensure that the fine loop is close to
the fine silhouette, we multiply the weights of the fine edges
that are on the fine silhouette by the small parameter α.
Increasing the value of this parameter makes the loop
smoother and decreasing forces it to include more edges from
the actual silhouette. In our experiments we set α = 0.1.
Figure 3 shows a loop from the coarse silhouette and its
corresponding loop on the fine mesh.

Now we have to find a minimal path on the weighted graph
that partitions it into two parts. This is a standard problem that
can be easily solved with the minimal cut approach. First, we
construct the dual graph (Figure 4). That is, we associate with
each face of the band fi a dual vertex Fi. We also create a
single source vertex R and a sink vertex K. With each non-
boundary edge ei bounding two faces fj and fk, we associate a
dual edge Ei that connects Fj and Fk. For each edge ei
belonging to the external boundary we associate a dual edge
Ei which connects the sink K with the single face that ei
bounds. For each edge ei belonging to the internal boundary
we associate a dual edge Ei which connects the source R with
the single face that ei bounds. We set the capacity of each
dual edge the weight of the associated primal edge c(Ei)= wi.

We define a cut of the dual graph as a partition of the vertices
Fi into two sets F and Q with R∈F and K∈Q. The cost of a
cut is the sum of the capacities of the edges between these
sets. It can be shown that the edges across the minimal cut in
the dual graph correspond to dual to the edges of the minimal
separating path in the primal graph [Buehler et al. 2002].
Informally the reason why this theorem is true is because a
cut of the dual graph is a partition of the dual vertices into to
two sets. This cut then corresponds to a partition of the primal
faces into two spatial regions. The dual edges across the cut
correspond to the primal edges forming the boundary be-
tween these two spatial regions. Thus there is a natural duality
between cuts and paths.
In summary, the entire algorithm can be described as follows:

Preprocess:
• Simplify original mesh and establish mapping between the

simplified coarse and the original fine mesh.
Runtime:
• Decompose coarse silhouette into loops.
• For every coarse loop:
• Calculate the coarse band.
• Find the internal and external boundaries of the band.
• Find the corresponding fine band and its boundaries.

© The Eurographics Association 2003.

104

Kirsanov et al. / Simple Silhouettes for Complex Surfaces

• Compute the weights of the edges and create a dual graph.
• Compute the min-cut of the dual graph.
• Find the corresponding fine loop.

3. Results
We implemented both algorithms, and applied them to
several models. Table 1 shows the mesh resolutions and
timings of our algorithm on the bunny and gargoyle models.
Figure 5 shows silhouette renderings for both methods. We
also show side views of the silhouette, in order to demonstrate
how intricate the original fine mesh silhouette is.

For silhouette extraction, we used an optimized version of the
algorithm from Sander et al. [2000]. It extracts the silhouette
of a 20,000-face bunny mesh in half a millisecond. The loop
decomposition step from Section 2.1 also takes approximately
half a millisecond for that model.

The total silhouette extraction time for the loop picking
algorithm is 5 and 10 milliseconds for the bunny and gargoyle
models, respectively. So, we can compute the simple silhou-
ette of a 20,000-face bunny model at a rate of 200 frames/sec.
Note that this does not include model and silhouette rendering
time.

The loop mapping algorithm is significantly slower, running
at a rate of 2 to 5 frames/sec. However, it results in a render-
ing with far fewer silhouette edges, while still resembling the
fine mesh silhouette, as shown in Figure 5.

 bunny gargoyle
coarse mesh faces 1,000 1,000
fine mesh faces 20,000 30,000
coarse mesh sil. extraction time (ms) 0.038 0.042
 + loop decomposition 0.098 0.102
fine mesh sil. extraction time (ms) 0.553 0.917
 + loop decomposition 1.051 1.602
Loop picking total time (ms) 5.172 9.582
Loop mapping total time (ms) 190.000 521.000

Table 1: Quantitative results (Pentium 4, 2.0Mhz).
4. Summary
In this paper, we described two algorithms to extract a simple
silhouette from a high-resolution mesh by using the silhouette
of a coarse, simplified mesh as a guide. The silhouette
produced by both of these methods are composed by actual
edges of the original model. The loop picking algorithm is
very efficient and extracts a subset of the actual silhouette
edges. The loop mapping algorithm is slow, but it is able to
capture all the important features of the silhouette with far
fewer loops, thus further eliminating the redundancy present
on the silhouette of high resolution meshes. Another advan-
tage of this method is that only small amount of the edges of
the fine mesh has to be processed. The major limitation of
both proposed approaches is that we cannot guarantee the
temporal coherence of the silhouette approximation for the
moving models.

References

BAREQUET, G., DUNCAN, C., GOODRICH, T., KUMAR, S., AND
POP, M. Efficient Perspective-Accurate Silhouette Computa-
tion. Symposium on Computational Geometry 1999, 60 – 68.

BUEHLER, C., GORTLER, S. J., COHEN, AND M., MCMMIL-
LAN, L. Minimal Surfaces for Stereo Vision. ECCV 2002, 885
– 899.
GOOCH, A., GOOCH B., SHIRLEY P., AND COHEN, E. A non-
photorealistic lighting model for automatic technical illustra-
tion. SIGGRAPH 1998.

GOOCH, B., SLOAN, P., GOOCH, A., SHIRLEY, P., AND
RIESENFELD, R. Interactive technical illustration. ACM
Symposium on Interactive 3D graphics 1999, 31 – 38.

HERTZMANN, A., AND ZORIN, D. Illustrating smooth surfaces.
SIGGRAPH 2000, 517 – 526.

HOPPE, H. Progressive meshes. SIGGRAPH 1996, 99 – 108.

NORTHRUP, J.D., MARKOSIAN, L., Artistic Silhouettes: A
Hybrid Approach. NPAR 2000, 31 – 38.

MARKOSIAN, L., KOWALSKI, M., TRYCHIN, S., AND HUGUES,
J. R Real time non photorealistic rendering. SIGGRAPH
1997, 415 – 420.

SANDER, P. V., GU, X., GORTLER, S. J., HOPPE, H., AND
SNYDER, J. Silhouette clipping. SIGGRAPH 2000, 327 – 334.

© The Eurographics Association 2003.

105

Kirsanov et al. / Simple Silhouettes for Complex Surfaces

(1) coarse mesh silhouette (2) fine mesh silhouette (3) simple silhouette
using loop picking

(4) simple silhouette
using loop mapping

(154 edges)

(1668 edges)

(1014 edges)

(720 edges)

(a) bunny mesh silhouettes -- coarse: 1,000 faces; fine mesh: 20,000 faces

(b) side views of the bunny mesh silhouettes from (a)

(155 edges)

(1845 edges)

(1081 edges)

(898 edges)

(c) gargoyle mesh silhouettes -- coarse mesh: 1,000 faces; fine mesh: 30,000 faces

(d) side views of the gargoyle mesh silhouettes from (c)

Figure 5: Silhouette rendering comparisons of the bunny and gargoyle meshes.

© The Eurographics Association 2003.

106

