Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schroder, H. Hoppe (Editors)

Geometry Compression of Normal Meshes
Using Rate-Distortion Algorithms

Sridhar Lavu, Hyeokho Choi and Richard Baraniuk

Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA

Abstract

We propose a new rate-distortion based algorithm for compressing 3D surface geometry represented using trian-
gular normal meshes. We apply the Estimation-Quantization (EQ) algorithm to compress normal mesh wavelet
coefficients. The EQ algorithm models the wavelet coefficients as a Gaussian random field with slowly varying
standard deviation that depends on the local neighborhood and uses rate-distortion optimal scalar quantizers. We
achieve gains of 0.5 to 1 dB with the EQ algorithm compared to the recently proposed zerotree compression for

normal meshes.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data Com-
paction and Compression G.1.2 [Numerical Analysis]: Approximation - approximation of surfaces and contours,
wavelets and fractals 1.3.4 [Computer Graphics]: Computational Geometry and Object Modeling - hierarchy and

geometric transformations

1. Introduction

Three-dimensional (3-D) surface applications require mod-
eling complex 3-D surface geometry!'8. The models are typ-
ically represented using a mesh of polygons such as trian-
gles or quadrilaterals. Typically complex 3-D surfaces re-
quire a large number of polygons which can result in an
enormous amount of data; for example, the 3-D surface rep-
resenting Michelangelo’s statue of David contains about a
billion triangles'8. Efficient mesh storage and mesh trans-
mission require the need for efficient mesh compression al-
gorithms.

The 3-D polygon mesh data consists of two parts: the ver-
tex data and the mesh connectivity. The vertex data specifies
the location of the vertices of the polygons in the mesh and
the mesh connectivity represents how the vertices are con-
nected to form polygons. In the naive representation of the
mesh, we need three numbers to represent each vertex in 3-D
coordinate space and three numbers to represent the vertices
of a triangle. In this paper, we focus on triangular meshes
with geometry information.

A multiresolution mesh representation is obtained us-
ing Subdivision'. Depending on the structure of the mesh,
meshes can be classified as regular, semi-regular, or irreg-
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ular. Regular and semi-regular meshes are commonly used
in 3-D modeling as they enable compaction of the connec-
tivity information using simple schemes. In particular, semi-
regular meshes offer the flexibility of starting with a simple
irregular mesh at the coarsest scale, and successively regu-
larly subdividing each triangle to obtain meshes at multiple
resolutions. For irregularly spaced data points such as trian-
gular mesh data, /ifting combined with subdivision naturally
defines a wavelet transform on the mesh*. Furthermore, by
restricting new vertices to lie only in the normal direction
specified by the local coordinate system, we can represent
each vertex with just one parameter to obtain a normal mesh®
representation.

Normal meshes are particularly attractive for mesh com-
pression, because they have the ability to represent each
vertex using a single parameter rather than the naive rep-
resentation of using three coordinates to represent a vertex.
A number of efficient multiresolution mesh compression al-
gorithms have been proposed, of which the progressive ze-
rotree normal mesh compression gives the best results!3.
The zerotree algorithm arranges the wavelet coefficients in
a quadtree and applies the zerotree compression algorithm
originally developed for still images!3. Another recent mesh
compression scheme that has been proposed for irregular
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meshes uses vertex-quantization to compress the vertices of
the mesh'¢. This algorithm assumes that the connectivity of
the irregular mesh algorithm is compressed separately.

In this paper, we develop a new compression algorithm us-
ing rate-distortion optimized techniques that have been orig-
inally developed for still image compression. The normal
mesh wavelet coefficients exhibit high spatial and inter-scale
correlations. In smooth regions, the wavelet coefficients tend
to be small, while in rough regions they are large. Our algo-
rithm exploits these correlations to encode the normal mesh
wavelet coefficients.

We model the normal mesh wavelet coefficients as an
outcome of a random field with a slowly varying standard
deviation. To compress the normal mesh wavelet coeffi-
cients using the local intra-scale correlations, we adopt the
Estimation-Quantization (EQ) framework that has been suc-
cessfully applied in still image compression’. The statistics
of each wavelet coefficient are modeled using a local stan-
dard deviation. A rate-distortion (R-D) optimal quantizer is
chosen followed by an entropy coder for coding the quanti-
zation symbols of each wavelet coefficient.

Compared to the state-of-the-art zerotree mesh compres-
sion algorithm'3, our EQ mesh coder provides 0.5-1 dB im-
provement in coding performance.

In Section 2, we briefly review the theory of normal trian-
gular meshes and the zerotree mesh compression algorithm.
We investigate the statistics of the normal mesh wavelet co-
efficients, review the EQ coder for images and describe the
details of the EQ mesh coder in Section 3. In Section 4, we
briefly discuss the compression of the base mesh geometry
and the connectivity information. In Section 5, we demon-
strate the performance of our proposed compression algo-
rithm for typical 3-D meshes and compare it with the state-
of-the-art zerotree mesh compression algorithm. Section 6
concludes the paper with suggestions for future research.

2. Previous work
2.1. Normal triangular meshes

In this paper, we will focus our attention on triangular semi-
regular normal meshes®. In a normal mesh, the vertices are
arranged in a multiscale representation where new vertices
are added at each scale; each new vertex lies in the direction
normal to a surface fit through the local neighborhood of
vertices as shown in Figure 1. A subdivision scheme, such
as the modified butterfly subdivision scheme?, can be used
to predict the normal direction and the base point for each
new vertex using the coarse scale vertices in the local neigh-
borhood of the new vertex. The intersection of the normal
line with the original surface gives the new vertex. In this
fashion, each coarse scale triangle is regularly subdivided to
obtain the mesh at the next finer resolution. Figure 2 shows
the Venus head normal mesh at the base level and Figure 3
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shows the mesh after one level of subdivision along with the
vertices at the previous scale.
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Figure 1: The new vertex p associated with edge (s1,s2) is
given by the intersection of the normal line 7i passing through
base point b with the original surface.

Figure 2: The base mesh of the Venus head normal mesh.

Lifting* combined with subdivision can be used to define
a wavelet transform such as the butterfly wavelet transform3
which is based on the modified butterfly subdivision scheme.
The wavelet transform of a normal mesh results in a vector
wavelet coefficient for each new vertex. The vector wavelet
coefficients are typically expressed using the local coordi-
nates with one normal and two tangential components for
each vertex. However, since each new vertex of a normal
mesh lies in a direction normal to the local surface defined
using the coarse scale vertices, the wavelet coefficients of
a majority of the vertices can be expressed using just the
normal component of the wavelet coefficient for each new
vertex.

The geometry of a smooth surface can be described us-
ing a single normal component of the wavelet coefficient
for each vertex, as the tangential components of the normal
mesh wavelet coefficients are either small or zero in smooth
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Figure 3: The Venus head normal mesh after one level of
subdivision. The thick dots are the vertices of the mesh at
the previous coarser scale.

regions. Thus, normal meshes offer a significant redundancy
reduction over other mesh representations.

2.2. Zerotree mesh compression

The mesh wavelet coefficients can be arranged in a multires-
olution quadtree structure as shown in Figure 4. The zerotree
mesh coder exploits this quadtree structure and encodes each
component of the mesh wavelet coefficients separately in the
same way that the zerotree image coder does!>: 13.

3. EQ mesh coding
3.1. Wavelet coefficient statistics

The wavelet coefficient vector for each vertex consists of one
normal and two tangential components. The distribution of
the normal wavelet coefficients at an intermediate scale of
the Venus head normal mesh is shown in Figure 5.

The distribution of the normal wavelet coefficients scaled
by the standard deviation of the local neighborhood of same-
scale vertices is shown in Figure 6. This distribution can be
approximated with a Gaussian density function as shown in
the figure. Encoding the normalized normal wavelet coeffi-
cients gives a better performance compared to encoding the
original normal wavelet coefficients as shown by the R-D
curves in Figure 7. The rate and distortion measures used
here are discussed in Section 5. Thus, we are motivated to
model the normal wavelet coefficients using a Gaussian ran-
dom field with slowly spatially varying standard deviation.

The quantized coefficients in the causal neighborhood are
used to obtain the standard deviation estimate for each nor-
mal wavelet coefficient. This allows the decoder to use the
same algorithm to obtain the same standard deviation esti-
mate. However, since the the resulting probability density
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Figure 4: Quadtree of vertices for edge b1,b;. The vertices
of the quadtree at scales 1,2 and 3 are shown in the figure
using thick dots. The neighboring vertices of vertex b at scale
1 are shown using triangles.
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Figure 5: Distribution of the normal wavelet coefficients of
the Venus head normal mesh.
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Figure 6: Normal wavelet coefficients scaled by the stan-
dard deviation of the local neighborhood for the Venus head
normal mesh.
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Figure 7: R-D curve comparing the encoding of the original
and scaled normal wavelet coefficients for the Venus head
normal mesh.

obtained using the quantized neighborhood is more peaky
compared to a Gaussian distribution®, we approximate the
distribution with a GGD given by
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is the mean, and © is the standard deviation. The shape v
controls the peakiness of the distribution at each scale.

where 1(v,0) , 0 <v <2, vis the shape, u

A majority of the tangential wavelet coefficients are ei-
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ther zero or small as shown in the distribution of the tangen-
tial wavelet coefficients from an intermediate scale of the
Venus head normal mesh in Figure 8. Therefore, we model
the tangential wavelet coefficients as iid zero-mean gener-
alized Gaussian distribution (GGD) given by Equation (1)
with fixed unknown standard deviation and shape parame-
ters.

bin counts log scale

-8 -6 -4 -2 0 2 4 6 8

coefficient values x10°

Figure 8: Distribution of the tangential wavelet coefficients
of the Venus head normal mesh, with small range on the hor-
izontal axis.

The EQ algorithm” has two main steps, the estimate step
and the quantization step. The estimate step is used to es-
timate the shape and standard deviation parameters for the
normal and tangential wavelet coefficients, and the quanti-
zation step is used to encode the coefficients using a R-D
optimization. In the next section, we briefly discuss the EQ
coder for still images and then introduce our EQ coder for
meshes in the subsequent section.

3.2. EQ image coding

The EQ coder was originally proposed for still image
compression’. The coefficients from each wavelet subband
of the image are encoded using an independent GGD model
with a slowly spatially varying unknown standard deviation
and a fixed unknown shape parameter.

In the estimate step, a simple raster scan order is used to
traverse through the list of the coefficients in each wavelet
subband. In the simplest form of the EQ algorithm, the statis-
tics of the GGD model for each pixel are obtained from the
quantized causal subset of the local 3 x 3 pixel neighbor-
hood. Figure 9 shows the causal neighborhood of a pixel and
the raster scanning order of the pixels in a still image. The
maximum likelihood estimate of the standard deviation for
each pixel is obtained from this neighborhood’. In the quan-
tize step, the estimate for the standard deviation is used to
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choose an R-D optimal scalar dead-zone quantizer for each
wavelet coefficient.

image grid

[N R N [ S N . - _)

current pixel

M

causal neighborgs

----»raster scan order

Figure 9: Causal neighborhood and raster scanning order of
pixels in a still image.

The R-D optimization?’ is based on the Lagrangian cost
function'®. The cost function for each wavelet coefficient of
pixel i is given by

J; = R; +\D; 2)

where A is the Lagrangian parameter or the R-D slope, R; is
the rate expressed in terms of the entropy associated with the
corresponding bin probabilities of the quantizer, and D; is
the distortion expressed in terms of the squared quantization
error associated with each quantizer. Figure 10 shows the R-
D curve and the R-D operating point given by the slope A.
The R-D trade off is captured in the Lagrange cost function
given in Equation (2). The corresponding bin probabilities
are used to encode the quantization symbol with an entropy
coder such as an arithmetic coder'4. The bin probabilities for
each quantizer from the R-D table are computed off-line to
speed up the algorithm.

Figure 10: Rate-distortion curve.

This simple EQ algorithm results in a stability problem
when all the causal neighbors of a coefficient are quantized
to zero. In this scenario, the standard deviation estimate ob-
tained from the causal neighbors is zero and the coefficient is
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automatically quantized to zero. This phenomenon can prop-
agate through the rest of the coefficients at the same level.
A simple solution to this problem is to classify the coeffi-
cients with all causal neighbors quantized to zero into a sep-
arate set called the unpredictable set, and place the remain-
ing coefficients in the predictable set. The coefficients in the
unpredictable set are modeled as iid zero-mean GGD with
fixed shape and standard deviation. These parameters are es-
timated from the wavelet coefficients in the unpredictable set
and sent to the decoder.

The initial partitioning of the coefficients into the pre-
dictable and the unpredictable sets at each scale determines
the initial estimates for the shape parameters of the pre-
dictable and the unpredictable sets and the initial estimate
for the standard deviation parameter of the unpredictable set.
This initial partitioning of the wavelet coefficients into the
predictable and the unpredictable sets is obtained by a sim-
ple thresholding technique’.

3.3. EQ normal mesh coding

Our EQ mesh coder uses the local statistics of the normal
wavelet coefficients to estimate the shape v and the standard
deviation o for the each vertex as mentioned in Section 3.1.

In the estimate step, the local neighborhood of a vertex
is used to estimate the standard deviation for the normal
wavelet coefficient of the given vertex. Figure 11 shows a
vertex v and its local neighbors at different scales. From
the figure, we can see that there is no obvious choice for
the vertex neighborhood; in particular, the simple neighbor-
hood consisting of the four adjacent same-scale neighbors
as shown in Figure 11 is too small to obtain a reasonable es-
timate of the standard deviation. Therefore, we expand the
neighborhood to include the first three layers or rings of
same-scale neighbors as shown in Figure 12.

% base vertex *

/N

V¥V scale 1
O scale 2
O scale 3

Figure 11: A base triangle showing vertices at different
scales. The four same-scale neighbors of vertex v are con-
nected to v with solid edges.
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* base vertex
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Figure 12: Two base triangles showing the neighborhood of
a vertex v. We use three layers of vertices at the same scale as
v for the neighborhood. Note that for the vertex v, we include
vertices from both the base triangles.

Unlike the image case, there is no obvious choice for an
ordering of the vertices. We propose a structured ordering for
the vertices that improves the number of causal neighbors in
the local vertex neighborhood and preserves the semi-regular
connectivity of the normal mesh. In this ordering for the ver-
tices, we start with the vertices at the coarse level and then
proceed to finer levels. At each level, each base triangle is
scanned separately. Thus, the global ordering of the vertices
is now reduced to an ordering of the base triangles followed
by an ordering of the vertices inside each base triangle.

Figure 13 shows the ordering of vertices inside each base
triangle, where the ordering starts from the bottom-left and
then moves right and up. The orientation of the base triangle
is selected such that the number of causal same-scale neigh-
bors is maximized for all the vertices inside the base trian-
gle. Note that while constructing the causal vertex neighbor-
hoods for the vertices of the current base triangle as shown
in Figure 12, the vertices from the neighboring base triangles
are also included in the neighborhood.

%* base vertex % A
V scale 1 o -+
I\ p\
O scale 2 /”Q/”t‘
O scale 3 [/ /v /»
/C)ii/ \77\\77/b\
vosow
/N \\ N AN AN
PRI
, N \ 7 N N NI
_o5--O--0 -O- -0 -
5// \\6// \7// \\8// \\9/':\}0/ \%]rp\\lZ
S S Sl A Sl S SN
% 0 O o w o O o #
1 2 3 4

Figure 13: Scale 3 vertex ordering inside a base triangle.
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Note that it is possible to use a more global ordering
where we go through all the vertices with a single sweep
of the entire mesh. However with such an ordering, it is dif-
ficult to preserve the semi-regular mesh connectivity. With
our proposed ordering of the vertices, the semi-regular mesh
connectivity is perfectly preserved and the decoder can eas-
ily reconstruct the mesh connectivity at the finer scales using
the base mesh connectivity.

Using this local neighborhood and scanning order defi-
nitions, the standard deviation and the shape estimates are
obtained for each vertex from its causal quantized neighbor-
hood. A scalar dead-zone quantizer is selected using a R-D
optimization, given by Equation (2), where the rate R; is ex-
pressed in terms of the entropy of the bin probabilities, and
the distortion D; is measured using the mean-squared quan-
tization error. The quantized symbols are then encoded us-
ing the corresponding bin probabilities and an entropy coder
such as an arithmetic coder.

The EQ mesh coder has the same stability problem as the
EQ image coder when all the quantized normal wavelet co-
efficients in the causal neighborhood of a vertex are zero.
Therefore, we classify these coefficients as unpredictable in
the same manner as discussed in Section 3.2.

The tangential wavelet coefficients are modeled as iid
zero-mean GGD with fixed shape and standard deviation pa-
rameters for each scale. A single scalar dead-zone quantizer
is chosen for all the vertices at each scale based on a R-D
optimization. For a smooth surface, a small displacement in
a direction normal to the surface changes the original sur-
face much more than the same displacement in a direction
tangential to the surface. Therefore, the tangential wavelet
coefficients are encoded using a higher R-D slope A com-
pared to the normal components.

The algorithm is summarized in the following steps.

1. Arrange each base triangle and all the vertices inside that
base triangle in a triangular array form as shown in Fig-
ure 11.

. Find scanning order of base triangles.

. Setscale j=1.

. If scale j > depth, then skip to Step 19..

. Set iteration index i = 0.

. Partition the normal components of the wavelet coeffi-
cients into predictable and unpredictable sets using a sim-
ple thresholding technique.

7. If i > 0 and if the predictable and unpredictable sets have

converged, then jump to Step 17..

8. For all the vertices at the current scale j, find the esti-
mates of the standard deviation and the shape parameters
for the tangential components and the unpredictable set
of normal components of the wavelet coefficients.

9. Scan through the remaining vertices at the current scale
that are in the predictable set of normal components of
wavelet coefficients using the scanning order shown in
Figure 13.

(o)W, ISRV I )
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10. For each vertex at scale j, find the causal neighborhood
as shown in Figure 12.

11. Using the quantized values of the normal wavelet coeffi-
cients in the causal neighborhood, find the estimate of the
standard deviation for the current vertex.

If the estimate is zero, then classify the current vertex as
unpredictable normal wavelet coefficient.

Using the R-D optimization, find the best scalar quantizer
for the current vertex.

Encode the quantized value using an entropy coder.

The predictable and unpredictable sets of the normal
components of the wavelet coefficients from this iteration
are used for the next iteration.

. If all the vertices at the current scale are encoded, then in-
crease iteration index from i to i 4 1 and return to Step 7.,
else return to Step 10..

Increase scale from j to j+ 1.

Return to Step 4.

Encode scaling coefficients and base mesh connectivity.
Send GGD parameters and A as side information to the
decoder.

12.
13.

14.
15.

17.
18.
19.
20.

Further details of the EQ mesh coder can be obtained from
the EQ algorithm used for still image compression’.

4. Scaling coefficients and mesh connectivity

The vertices of the base mesh correspond to the scaling co-
efficients in a wavelet transform. The scaling coefficients are
uniformly quantized using variable bit rate. Note that the
scaling coefficients are expressed in terms of the absolute co-
ordinate system while the wavelet coefficients are expressed
as local offsets in a local coordinate system. Therefore, the
scaling coefficients have a significantly higher global error
contribution compared to the wavelet coefficients for the
same squared error.

The proposed vertex ordering preserves the semi-regular
connectivity of the normal mesh. Therefore, we only need to
encode the connectivity of the base mesh. We encode the
base mesh connectivity using the TG coder!!. At the de-
coder, the base mesh is regularly subdivided to obtain the
connectivity at the finer resolutions.

5. Results

The performance of our EQ mesh coder is analyzed using
the Venus head, the horse, and the rabbit normal meshes!3.

The Metro tool!? is used to measure the final error. The
Metro tool measures the squared symmetric distance be-
tween two surfaces averaged over the first surface. We re-
fer to this error as the RMS Metro error. PSNR T values are
expressed as a ratio of the bounding box diagonal over the

T PSNR in dB = 20 log (boundmg box diagonal )

Metro error
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RMS Metro error, where the bounding box diagonal is the
longest diagonal of the box that bounds the original surface.
The rate is expressed in terms of the bits-per-vertex values,
given by the ratio of total number of bits over the number of
vertices in the original irregular mesh.

We apply the unlifted and the lifted versions of the but-
terfly wavelet transforms? to the normal mesh, since the but-
terfly subdivision scheme was used to construct the normal
mesh from the original irregular mesh. The wavelet coeffi-
cients are encoded using our EQ algorithm. The scaling co-
efficients are uniformly quantized and then encoded using
an entropy coder. The base mesh connectivity is encoded us-
ing a TG coder!!. The Metro error is measured between the
original irregular and the reconstructed normal meshes.

We fix the value of A for all normal mesh coefficients in
the mesh. We use a higher A for the tangential wavelet coef-
ficients, as their error contribution is much smaller than the
normal wavelet coefficients as discussed in Section 3.3. In
our simulations, we used 100A for the tangential wavelet co-
efficients. The normal wavelet coefficients are encoded using
our EQ mesh coder.

The performance of the EQ mesh coder for the Venus head
normal mesh is compared with that of the state-of-the-art
zerotree mesh coder'3. Figure 14 shows the R-D curves for
the EQ mesh coder and the zerotree mesh coder and com-
pares the distortion with the normal remeshing error, which
is the error between the original irregular mesh and the orig-
inal normal mesh. PSNR values as a function of the bits-per-
vertex are given in Table 1.

Table 1: Venus head mesh PSNR in dB ' comparing the EQ
mesh coder and the zerotree (ZT) mesh coder using the lifted
and unlifted versions of the butterfly wavelet (BW) trans-
form.

bits- EQ 7T EQ 7T
per- lifted  lifted unlifted unlifted
vertex BW BW BW BW
025 63.69 6295 6348 62.40
0.5 68.63  68.21 68.59 67.78
1.0 74.16  73.66  74.08 73.00
2.0 79.16 78.85  78.85 78.40
3.0 81.70 81.66  81.37 81.20
4.0 83.16 8192 8296 81.50

The experiments are repeated for the rabbit normal mesh.
Figure 15 shows the R-D curves for the EQ mesh coder and
the zerotree mesh coder and compares the distortion with
the normal remeshing error. PSNR values as a function of
the bits-per-vertex are given in Table 2. We obtained similar
results for the horse normal mesh dataset.
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Figure 14: R-D curves comparing the EQ mesh coder, the
zerotree (ZT) mesh coder, and the normal remeshing er-
ror for the Venus head normal mesh using the unlifted and
lifted versions of the butterfly wavelet transform (BW). Note
that the normal remeshing error gives an approximate lower
bound for the final error.
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Figure 15: R-D curves comparing the EQ mesh coder, the
zerotree (ZT) mesh coder, and the normal remeshing error
for the rabbit normal mesh using the unlifted and lifted ver-
sions of the butterfly wavelet transform (BW). Note that the

normal remeshing error gives an approximate lower bound
for the final error.
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Table 2: Rabbit mesh PSNR in dB ' comparing the EQ mesh
coder and the zerotree (ZT) mesh coder using the lifted and
unlifted versions of the butterfly wavelet (BW) transform.

bits- EQ ZT EQ 7T
per- lifted  lifted unlifted unlifted
vertex BW BW BW BW
0.16 6624 6529  65.84 64.29
0.37  74.10 72.82  73.38 72.20
1.02 8131 81.07 80.75 80.61
14 83.21 83.07  82.65 82.27
3.0 85.64 84.06  85.59 83.61

6. Conclusions

In this work, we have presented a context-based EQ coder
for normal meshes and compared it with the state-of-the-art
zerotree coder for normal meshes. The EQ coder gives per-
formance gains of approximately 0.5-1 dB. Although the EQ
mesh coder is not strictly progressive like the zerotree mesh
coder, it is scale-wise progressive. Since the mesh data is
smoother compared to the image pixels, the coding of the
wavelet coefficients was found to be easier in the mesh data
case.

In the future, we hope to improve the results for the EQ
algorithm by replacing the mean squared error (MSE) met-
ric with a vertex-based error metric while performing the
R-D optimizations, as a vertex based error metric would
better correspond with the final global error measurement
compared to the MSE. We hope to study the R-D trade-offs
between the scaling coefficients, the normal wavelet coeffi-
cients, and the tangential wavelet coefficients.

The zerotree based Space-Frequency-Quantization (SFQ)
algorithm is another R-D optimization based algorithm that
was originally proposed for still images®. We are in the pro-
cess of implementing the SFQ algorithm for normal meshes
and hope to achieve better results compared to the EQ and
zerotree mesh coders.

Acknowledgments

We thank Peter Schroder, Andrei Khodakovsky, and Igor
Guskov from the Multi-Res Modeling group at Caltech for
many interesting discussions and for providing the normal
mesh data and wavelet transforms.

References

1. J. Warren and H. Weimer. Subdivision Methods for
Geometric Design: A Constructive Approach. Morgan
Kaufmann Publishers, October 2001

(© The Eurographics Association 2003.

60

2.

10.

11.

12.

13.

14.

C. Loop. Smooth subdivision surfaces based on tri-
angles. Master’s Thesis, University of Utah (August
1987).

D. Zorin, P. Schroder, and Wim Sweldens. Interpolat-
ing Subdivision for Meshes with Arbitrary Topology.
Computer Graphics Proceedings, 30:189-192, August
1996.

W. Sweldens The Lifting Scheme: A Construction
of Second Generation Wavelets. SIAM Journal Math.
Analysis, 29(2):511-546, 1998.

A. Khodakovsky, P. Schroder, and Wim Sweldens.
Progressive Geometry Compression. ACM Computer
Graphics (Proceedings of SIGGRAPH ’00), 271-278,
2000.

I. Guskov, K. Vidimce, W. Sweldens, and P. Schroder.
Normal Meshes. ACM Computer Graphics (Proceed-
ings of SIGGRAPH ’00), 95-102, 2000.

S. M. Lopresto, K. Ramchandran, and M. T. Or-
chard. Image Coding based on Mixture Model-
ing of Wavelet Coefficients and a Fast Estimation-
Quantization Framework. Proceedings DCC’97 (IEEE
Data Compression Conference), 221-230, 1997.

S. M. Lopresto, K. Ramchandran, and M. T. Orchard.
Wavelet image coding via rate-distortion optimized
adaptive classification. Proceedings of NJIT Sympo-
sium on Wavelet, Subband and Block Transforms in
Communications, New Jersey Institute of Technology,
1997.

Z. Xiong, K. Ramchandran, and M. T. Orchard. Space-
Frequency Quantization for Wavelet Image Coding.
IEEE Transactions Image Processing, 6(5):677-693,
May 1997.

A. Lewis and G. Knowles. Image compression using
the 2-D wavelet transform. IEEE Transactions Image
Processing, 1:244-250, April 1992.

C. Touma and C. Gotsman. Triangle Mesh Compres-
sion. Graphics Interface, 26-34, June 1998.

P. Cignoni, C. Rocchini, and R. Scopigno. Metro: mea-
suring error on simplified surfaces. Computer Graphics
Forum, 17(2): 167-174, June 1998.

A. Khodakovsky and 1. Guskov. Normal
mesh compression. submitted for publication,
http://www.multires.caltech.edu/
pubs/compression.pdf.

Ian H. Witten, Radford M. Neal, and John G. Cleary.
Arithmetic coding for data compression. Communica-
tions of the ACM, 30(6):520-540, 1987.

. J. Shapiro. Embedded image coding using zerotrees

of wavelet coefficients. IEEE Transactions Signal Pro-
cessing, 41:3445-3462, December 1993.



16.

17.

18.

19.

20.

Lavu et al / Geometry Compression

P. Chou and T. Meng. Vertex Data Compression
through Vector Quantization. /EEE Transactions Visu-
alization and Computer Graphics, 8(4):373-383, 2002.

T. DeRose, M. Kass, and T. Truong. Subdivision sur-
faces in character animation. Proceedings of the 25th
annual conference on Computer graphics and interac-
tive techniques, 85-94, 1998.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital
Michelangelo Project: 3D Scanning of Large Statues.
ACM Computer Graphics (Proceedings of SIGGRAPH
’00),131-144, 2000.

D. A. Wismer and R. Chattergy. Introduction to Nonlin-
ear Optimization. Elsevier North Holland Publishers,
1978.

R. M. Gray. Source Coding Theory. Kluwer Academic
Press, 1990.

61

(© The Eurographics Association 2003.



