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Figure 1: Diverse locomotion outputs (in a happy style) synthesized by a linear mixture of combinatorial components decom-
posed from the 10 example set.

Abstract
When generating locomotion, it is particularly challenging to adjust the motion’s style. This paper introduces a
component-based system for human locomotion composition that drives off a set of example locomotion clips. The
distinctive style of each example is analyzed in the form of sub-motion components decomposed from separate
body parts via independent component analysis (ICA). During the synthesis process, we use these components as
combinatorial ingredients to generate new locomotion sequences that are stylistically different from the example
set. Our system is designed for novice users who do not have much knowledge of important locomotion properties,
such as the correlations throughout the body. Thus, the proposed system analyzes the examples in a unsupervised
manner and synthesizes an output locomotion from a small number of control parameters. Our experimental
results show that the system can generate physically plausible locomotion in a desired style at interactive speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Human locomotion is one of the most fundamental activ-
ities that a person performs on a daily basis, yet still a
challenge to animate with an articulated character due to
the correlated relationship across high degrees of freedom
(DOFs). For this reason, the direct acqusition of locomo-
tion through motion capture data becomes a natural choice,
with example-based approaches that modify existing motion

† e-mail: rokkim@ucdavis.edu
‡ e-mail: neff@cs.ucdavis.edu

data into variants of the example set. Previously, great ef-
fort has been put into developing editing techniques based on
statistical [CFP03, MH02, MH03, LPL08, SCF06, UGB∗04]
or multilinear analysis [LXPR11, Vas02, VT05], generative
models [MLC10], or direct replacement of DOFs [AGH03,
AW00,PB02,HKG06,IF04,Osh08]. However, most of these
mainly focus on extracting and transferring style elements
between two examples. Monolithic blending between pairs
of examples produces a quite limited range of stylistic vari-
ation, especially when trying to maintain the physical con-
straints and correlations embedded in the original example
data. This motivates us to explore a finer grained decompo-
sition of motion, in which components that govern particular
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Figure 2: Overview of the locomotion composition with sub-
motion components

aspects of movement for various parts of the body can be si-
multaneously combined from the example set, increasing the
stylistic diversity of the output locomotion.

In this paper, we introduce a component-based system for
human locomotion composition that takes a set of exam-
ple locomotion clips as input and allows a user to synthe-
size new locomotion sequences by recombining a set of sub-
motion components decomposed from separate body parts.
As shown in Figure 2, our system consists of two processes:
locomotion analysis and synthesis. In the locomotion anal-
ysis, each example sequence is first segmented into a loop
cycle based on the detected key frames. Given a set of loop
cycles, the system divides the body into several parts and ap-
plies independent component analysis (ICA) to each part in
order to decompose the cycles into independent components
(ICs) for each body section. Here, we call ICs sub-motion
components since each component represents a partial mo-
tion in the body part and can be recombined with the cor-
responding components of other examples to define a new
style. During the synthesis process, important physical con-
straints, such as foot contacts, are maintained by solving an
optimization on the given weights for the leg components in
order to generate a physically plausible output.

Our system makes two main contributions. First, we apply
a linear statistical method to the locomotion composition
process and represent a human locomotion as a linear mix-
ture of sub-motion components. Grouping the related DOFs
into separate body parts and decomposing them into editable
components enables synthesis with rich varieties of style
combinations from a small example set. Second, to generate
physically plausible output, we developed an optimization
method that weights individual components to satisfy the

given physical constraints. Thus, the system requires min-
imal user intervention and provides automation for quick
composition. Our experimental results show that a user can
generate various stylistic locomotion at interactive speed,
simply by specifying two control parameters, example and
offset weights, for each input example in the body parts.

The remainder of this paper is organized into the follow-
ing sections: We begin with a survey of previous approaches
for editing and synthesizing human locomotion in Section 2.
The locomotion analysis is explained in Section 3, and the
synthesis part is detailed in Section 4. After experimental re-
sults are demonstrated in Section 5, we conclude this paper
with a discussion of further investigations in Section 6.

2. Related Work

Locomotion synthesis from example-based approaches has
been actively studied. An unsupervised statistical analy-
sis such as principal component analysis (PCA) or ICA is
widely adopted to represent a motion sequence as a linear
mixture of decomposed components. Using PCA, Urtasun et
al. [UGB∗04] trained a locomotion model with a large num-
ber of examples by using external parameters such as speed
and height and approximate the PCA coefficients to generate
an output sequence with different speeds and heights. Mori
and Hoshino [MH02, MH03] were the first to apply ICA
to analyze motion capture data and to synthesize locomo-
tion output by interpolating the corresponding ICs between
two examples. Cao et al. [CFP03] used ICA to extract emo-
tions and content from an example set of facial animation
and combine them linearly to generate new facial animation
while Shapiro et al. [SCF06] applied a similar approach to a
spatial representation of human locomotion in order to trans-
fer gross style from one example to another. Combining ICA
with invariant feature subspaces, Liu et al. [LPL08] tried to
perform style transfer more precisely in an automated way.
In our system, we also utilize ICA to decompose the example
set into editable components for the locomotion synthesis;
however, our system focuses on combining ICs from more
than two examples in order to expand the style diversity of
outputs. Furthermore, our system can handle motion decom-
position with an angular representation of the motion and
style transfer between the examples with a large difference
in body speed.

Multilinear analysis based on tensor decomposition is an-
other technique to separate a locomotion sequence into mul-
tiple elements such as style and content. Vasilescu [Vas02]
adopted the multilinear model to stylize the walking motions
of a new character. Later, Vasilescu and Terzopoulos [VT05]
developed this into the multilinear ICA (MICA) model to
detect some of the image factors not distinguishable by con-
ventional ICA during facial recognition. Recently, Liu et
al. [LXPR11] applied MICA to human motion data and syn-
theiszed a new motion performed by unknown actors by re-
constructing motion vectors from a low-dimensional param-
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eter space. Min et al. [MLC10] used multilinear analysis to
construct a generative model which augments the example
set with speed variations and allows locomotion to be edited
with motion parameters controlled by a user. It is useful to
use multilinear models to decompose a human locomotion
into a small of number of controllable parameters which can
synthesize an output by editing the example set; however,
the multi-linearity in this kind of statistical model requires
a relatively large number of examples to be captured from
different actions and multiple actors in order to form N vec-
tor spaces to be analyzed. In addition, it is mainly designed
for style transfer from existing actors to unknown ones while
our system aims for locomotion composition from multiple
examples captured from any actor.

Some research focuses on expanding the size of a motion
database by replacing specific body parts or DOFs of one ex-
ample with another. Pullen and Bregler [PB02] followed this
strategy to add details of one example to the output by filling
the sparse DOFs of the key framed sequence in the frequency
domain. Al-Ghreimil and Hahn [AGH03] applied body part
replacement to throwing and walking examples such that a
different throwing action is extracted as a partial motion and
combined with a base walking motion to generate the vari-
ants. Ikemoto and Forsyth [IF04] used a direct transplanta-
tion of limbs between two motion examples. In their method,
they designed a rule-based classifier that evaluates the natu-
ralness of the transplanted results. Ashraf and Wong [AW00]
divided a character body into a upper and a lower half and
maintained consistently synchronized locomotion between
the two halves via the decoupled interpolation. In a sim-
ilar spirit, Heck et al. [HKG06] introduced a layered ap-
proach that focuses on preserving the cross-body correla-
tion during the upper and lower body combination. Later,
Oshita [Osh08] tried to maintain the correlation by adding
torso vibrations, extracted from an action, to the lower body
locomotion. In this type of motion composition, maintain-
ing the kinematic correlation between different body parts,
especially the upper against the lower one, becomes key to
synthesizing a physically plausible locomotion. In our sys-
tem, we preserve the correlation by detecting a series of foot
phases which snapshot key moments of coordinated move-
ments between the arms and legs into frames and then de-
compose the frames into the components per body part. This
provides a user fine control of style composition by allowing
combinations of the corresponding components from multi-
ple examples without destroying the correlation preserved in
the key frames.

3. Locomotion Analysis

Human locomotion is a complicated, but constrained activ-
ity. Assuming a locomotion cycle in the example set starts
and ends with two consecutive foot steps of the same foot,
we can assign key frames based on the important moments of
foot contact on the ground called foot phases and use these as

Foot Phases
Acceleration Position
Ankle Toe Ankle Toe

Heel-Strike (HS) ≈ 0 > 0 lowest -

Foot-Flat (FF) ≈ 0 ≈ 0 - -

Push-Off (PO) > 0 ≈ 0 lowest -

Toe-Off (TO) > 0 > 0 - lowest

Table 1: Detection of foot phases: First, the positional ac-
celeration of two foot joints crossing zeroes or being near
zero is used to detect a frame as one of the foot phases. Next,
if multiple frames are detected for the same foot phase, the
geometric position of either an ankle or a toe joint is com-
pared across all candidates to select a key frame. For the FF
phase, we simply set the first detected one as the key frame.

input data to the component decomposition. We detect 4 dif-
ferent key frames for each foot for the following foot phases:
heel-strike (HS), foot-flat (FF), push-off (PO), and toe-off
(TO). There are several benefits to using these for the loco-
motion analysis. First, the series of key frames encapsulates
the gross style of the example, while its small number ac-
celerates the decomposition process in ICA. Missing details
between the key frames in the example sequence are stored
as posture offsets and will be added later as part of the loco-
motion reconstruction. Next, the coordinated movements of
arm and leg swings between different examples are aligned
in the time domain with the corresponding key frames. Fur-
thermore, the foot-plants are easily specified from the given
key frames.

3.1. Key Frame Detection

The precise starting moment for each foot phase is ambigu-
ous to detect from the unlabeled examples due to the noise
in the data and retargeting errors [KGP02]. We expedite the
process by detecting zero-crossings of acceleration of two
foot joints, the ankle and toe, as shown in Table 1. A spatial
filter, Laplacian of Gaussian, is applied prior to the detec-
tion to reduce the noise in the acceleration data. Depending
on the style of foot contact, it is possible to detect multiple
frames belonging to the same phase, where their accelera-
tion crosses zero or approaches near zero. In these cases, the
system selects one based on the geometric positions of two
joints as shown in right columns of Table 1 or lets a user
select a key frame from the multiple candidates.

3.2. Loop Cycle Generation

Looping a locomotion cycle is useful so that it can be
concatenated repeatedly and will yield smooth locomotion
without further blending [RGBC96]. Formally, this requires
continuity between the starting frame, HSi, and the ending
frame, HSi+1, of the loop cycle as shown in Figure 3. This is
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Figure 3: Specification of a loop cycle: The shaded areas
(red) are interpolated together and replaced the first stance
phase to create the smooth loop continuity.

ensured by pre-blending the start stance phase of one foot to
the next stance phase of the same foot with the size of blend-
ing window, Nb = min(TOi−HSi,TOi+1−HSi+1). For the
ith blending frame, 0 ≤ i < Nb, we linearly interpolate the
root positions and perform SLERP [Sho85] on the joint ro-
tations. We complete the loop by replacing the frames in the
start stance phase, between HSi and TOi, with the blended
frames. When the periods of two stance phases are signif-
icantly different, we first apply the dynamic time-warping
technique [RCB98] to map the second stance to the first one
based on the key-times of TO, FF, PO, and TO. This way, we
preserve the foot constraints in the example stances during
the interpolation.

3.3. Component Decomposition

The motion of an articulated character with a structure of hi-
erarchical joints can be represented by interpolating a series
of key frames and adding posture offsets as follows,

M(t) = [p(t)+ p̄(t),q1(t)+ q̄1(t), . . . ,qn(t)+ q̄n(t)], (1)

where p is the world position of the root and qi is the rota-
tion of the ith joint with respect to its parent, represented by
a unit quaternion. Here, p̄ and q̄i define transitional and ro-
tational offsets which are the difference between the linearly
interpolated frames between key frames and the correspond-
ing frames in the original loop cycle. These posture offsets
capture details of the example style and can be used as a
separate editing parameter during the synthesis process.

Before a set of loop cycles is decomposed into sub-motion
components via ICA, we first divide the character’s body
into several parts as shown in Figure 4. Grouping DOFs of
a specific body part for the partial replacement of motion
from one to another is an efficient technique [IF04, HKG06,
Osh08] to expand the size of motion database. Inspired by
this, our system extracts separate components from each
body part, providing a user with detailed controls of mix-
ing components from different examples and different parts
of the body, yielding a rich range of style for each body part.
Note that the root joint is excluded from the head and torso
group since it is closely coupled with leg swings and needed
to generate a base locomotion. During the synthesis process,

Right Arm (RA) Left Arm (LA)

Left Leg (LL)Right Leg (RL)

Head-Torso (HT)

Root (R)

Figure 4: Hierarchical ICA on separate body parts.

the leg parts will be optimized to maintain the proper foot
contacts. This will be further detailed in Section 4.

Given a loop cycle for each example, ICA requires the key
frames of all examples to be combined together as input in
order to extract sub-motion components where each com-
ponent represents a shared stylistic feature from each body
part. For example, if we have Nk key frames in a loop cycle,
we place them in the temporal order in the cycle and then
concatenate all the loop cycles into an input matrix. In fact,
we use the rotational components, qi, of the key frames to
form the initial version of this.

It is important to determine an appropriate joint angle repre-
sentation to use with ICA because ICA is a statistical tech-
nique to solve for a linear combination of the source (hid-
den) variables [HO00]. Thus, using qi ∈ S3 as input to the
linear space of ICA in R3 can introduce undesirable arti-
facts in the joint rotations during the synthesis. Other joint
rotation representations, such as Euler angles and exponen-
tial maps, are not suitable for a continuous motion [Gra98],
while a direct input of joint positions in Euclidean coordi-
nates does not maintain original bone lengths so it requires
an additional post-processing step to preserve the physical
constraints [SCF06]. For these reasons, we convert each qi
of key frames to its linearized approximation, vi ∈ R3, by
using the logarithm map and later convert back to qi from vi
via the exponential map during the synthesis process [LS02].

Let Nl be the total number of loop cycles used as input to
ICA. The number of total frames, Nf , from the concatenated
loop cycles is Nk×Nl . Given Nd DOFs in a body part, we
can construct the following input matrix, V, for ICA,

V =


v0,0 v0,1 · · · v0,Nf

v1,0 v1,1 · · · v1,Nf

...
...

. . .
...

vNd ,0 vNd ,1 · · · vNd ,Nf ,

 (2)
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Body Part (DOFs)
Sub-motion Components

ICs SA CO TR

Torso-Head (12) 6 1, 3, 5, 6 2 4

Left Arm (9) 12 1, 2, 4, 6-8, 12 3, 5, 10, 11 9

Right Arm (9) 12 3-6, 9-11 1, 2, 7, 12 8

Left Leg (7) 8 1, 3, 5-7 2, 4, 8 -

Right Leg (7) 8 1-3, 5, 7 4, 6, 8 -

Table 2: Sub-motion components decomposed from 10 ex-
amples: The number under sagittal (SA), coronal (CO), and
transverse (TR) column is the component number catego-
rized by its main direction of movements in that plane.

where vi j is the ith DOF in a key frame belonging to the
{HS, FF, PO, TO} for both left and right foot. Due to its
stability and fast performance, we adopted the FastICA al-
gorithm [HO97] for the decomposition, which is based on
the maximization of non-Gaussianity of input data.

A separating matrix, W, is calculated by the FastICA algo-
rithm, that allows V to be decomposed into the sub-motion
components, C, as follows:

C = WP(V− V̂), (3)

where V̂ is a mean of the key frames for each DOF and P is a
PCA whitening matrix which eliminates insignificant DOFs
in the cycles and facilitates the decomposition calculation in
the FastIC algorithm by providing a reduced dimensionality.
The number of decomposed components and their character-
istics are summarized in Table 2.

4. Locomotion Synthesis

Reconstructing a locomotion sequence from a set of sub-
motion components is a straightforward process. Given the
separating matrix, W, we first recover the key frames be-
longing to each loop cycle as follows:

V = V̂+W−1C, (4)

where C contains Nc components and the length of each
component is Nk frames long, representing the key frames
of one loop cycle. Note that vi j ∈ V is converted back to the
unit quaternion values, qi j , via the exponential map during
this reconstruction. A loop cycle can be reconstructed by in-
terpolating the Nk temporally separated key frames from V
and adding posture offsets to their in-between frames as in
Equation 1.

4.1. Control Parameters

The larger design question is how to mix or recombine the
components available from the various input motions in or-
der to generate new motion. Two corresponding components

can be manipulated in a number of different ways. Mori
and Hoshino [MH02, MH03] interpolated the components
to vary motion style while Shapiro et al. [SCF06] merged or
swapped the components to transfer the style of one locomo-
tion to another. Both cases show that the components can be
directly manipulated for modifying the input style. Inspired
by this, we turn a large number of DOFs that must be set
multiple times during a cycle, into a set of components that
each span the entire cycle, making the editing process easier.
However, due to the hierarchical decomposition, as shown
in Table 2, our system generates a relatively large number of
components to be controlled by a user. In this case, the visual
evaluation of individual components [SCF06] for the sake
of composition can be time-consuming. For this reason, we
initiates the output synthesis based on user-specified weight
values, wR

j , for each input example j to be included, where R
indicates the root body part. The user can also specify poten-
tially different weights, oR

j , which are used to linearly inter-
polate input examples in order to calculate the posture off-
sets discussed in Section 3.3. Next, weight values, wp

j , for
each body part p of the input examples are specified, along
with a scaling value, sp, for the offsets added to the output
sequence, where p ∈ {TH, LA, RA, LL, RL} (Figure 4).
These interfaces are shown in Figure 5.

The output sequence is generated by first reconstructing a
base sequence from using wR

j for all components, which de-
termines the overall speed and style of the output motion.
This base sequence is further edited by adding desired torso-
head, arm, and leg movements with wp

j and then completed
by adding the offsets scaled by sp. These scaled offsets are
dynamically time-warped to the output sequence if oR

j 6= wR
j .

The offsets are an optional control that adds detail to the
motion. Initially, the system distributes wp

j across the sub-
motion components in each body part. However, for the legs,
wLL

j and wRL
j , should be distributed carefully to avoid a phys-

ically implausible output from the reconstruction. This be-
comes difficult, especially with the multiple components ex-
tracted from examples with different speeds. For example,
if the components of leg parts from the walking motion are
simply weighted with the corresponding components from
the running motion, the output sequence will contain floating
leg swings which are temporally unaligned with the ground
contacts. Thus, we provide an optimization method for solv-
ing component weights for the foot parts which maintains
reasonable ground contacts.

4.2. Component Ranks

Unlike PCA, the individual components from the input data
set have no order of significance in their ranks. This means
that we can reconstruct a locomotion sequence with any or-
der of components in C from Equation 4. On the other hand,
if we can prioritize the components based on their contribu-
tion to the desired output style in advance, we can facilitate
the synthesis process by trying to distribute a weight value to
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Figure 5: User interfaces for the root part (left) and other
body parts (right) to specify example and offset weights

the highest ranked component first. For example, if we want
more gorilla leg motion and we know that component 4 of
the gorilla leg motion is particularly significant to this style,
we can prioritize adding this component. However, it is dif-
ficult to evaluate such component contributions until the lo-
comotion sequence is actually reconstructed with a selected
component and visually inspected. It is from this perspec-
tive that we reconstruct test sequences with the purpose of
automatically ranking each component’s style contribution.
When each test sequence, reconstructed by excluding one
component at a time, is compared against the original loop
cycle sequence, we can estimate how much each of the ex-
cluded components has influenced the range of movements
in the original sequence.

Let Ci j denote the ith component of a particular body part
from the jth loop cycle. Using Equation 4, we derive the
positional differences of joints, ∆pi, as follows,

∆pi = p(V j)−p(V̂ j +
Nc

∑
i=1

W−1
i Ci j), (5)

where Ci j = 0 for the ith test sequence and p(·) estimates the
joint positions from the rotational data in key frames. Thus, a
larger ∆pi indicates that the excluded Ci j has more influence
on the range of the movements in V j. These ∆pi values are
used to rank the components.

4.3. Component Weight Optimization

An optimization process is used to adjust the wp
j for two leg

parts to achieve physically plausible motion. Let wk j be the
optimal weight for the kth leg component of the jth loop
cycle, Ck j, in each of the leg parts. Our objective is to find
the wk j such that the positional difference of foot constraints
between the reconstructed sequence from wk j and the base
sequence from wR

j is minimized. Specifically, if d(wk j) is
the distance of the foot constraints of the output sequence
from the base one, we estimate wk j for each component by
solving the nonlinear optimization as follows,

min
wk j

Nl

∑
j=1

d(wk j), (6)

where k = [1 . . .Nc] and Nc is the number of components
in the left and right leg part respectively. To solve this,
we utilize an iterative numerical approach, the conjugate
gradient method [PTVF02]. Note that the rank of Ck j is
predetermined from the previous section. We conduct the
optimization from the highest to the lowest rank. Finally,
the output sequence is reconstructed from Equation 4 with
Ck = ∑

Nl
j=1 wk jCk j for the kth component in each of the leg

parts.

4.4. Foot Constraint Enforcement

The visual artifact of foot-skating is often observed in the
output locomotion due to errors in ankle positions in the ex-
ample set or the misplacement of foot constraints during the
composition. We utilize the lower-body IK routine suggested
in [NK09, KN11] to enforce the foot constraints derived be-
tween the foot phases detected in Section 3.1.

Based on the period of stance phases, from HS to FF, we
set the root foot position as the half way point between the
start and end of the stance phases with the lowest height
achieved during the stance phase. Holding the foot fixed
for this duration can result in a discontinuity at the edge of
each step. In most cases, this discontinuity takes place over a
very short period of time; thus, linear interpolation between
a constrained and an unconstrained frame is sufficient for
generating a smooth transition between steps. Similarly, we
apply the same strategy to the swivel rotations of the root leg
to prevent spinning when the foot is on the ground.

5. Experimental Results

Experiments were performed on an Intel Core 2 QuadTM

2.4GHz PC with 8GB memory. We used the same skele-
ton structure for all results consisting of 50 DOFs: 6 for the
pelvis position and orientation, 12 for the torso and head ori-
entation, 9 for each arm orientation, and 7 for each leg orien-
tation. As the sample set, we captured 10 different locomo-
tion clips which vary in style and speed as listed in Figure 5.
All these input clips are sampled at the rate of 120 fps.

Component Decomposition

The decomposition of the given examples is summarized in
Table 2. The number of components decomposed from each
body part is actually larger than the number of DOFs ex-
cept the torso-head part. This is mainly because the style
difference between the given examples comes from the arm
and leg parts while the torso and head movements are rela-
tively subtle. It is worth noting that each component spans
the entire motion, whereas the individual DOFs would need
to be set many times during a cycle to create locomotion.
Observations of the components reveal that corresponding
components taken across different samples exhibit common
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stylistic feature, while individual components within a sam-
ple differ from each other. For example, the component 3’s
of the left arm part from the basic, energetic, and tired exam-
ples exhibit the similar arm swing in the coronal plane while
the component 5’s from the same examples exhibit the dif-
ferent arm swing in the sagittal plane. Similarly, the compo-
nent 1’s of the right leg part from the examples show a foot
lift while the component 7’s of the same group show a for-
ward foot swing in the sagittal plane. A comparison between
the components are shown in the accompanying video.

Overall, the number of components containing the move-
ments in the sagittal plane is larger than two other planes.
We only observed a few sub-motions in the transverse plane
due to the characteristic feature of the forward movements
throughout the example set. It took about 150s to decom-
pose the 10 examples into a total of 480 components, 48 per
example; however, it takes less than 20ms to reconstruct any
motion from the decomposed components. Thus, the system
is suitable for an interactive locomotion generation.

Locomotion Composition

We first tested the locomotion composition with different
component weights on a single example. Using the basic
example, we generated three different outputs with weights
of 0.5, 1.0, and 1.5 at the same speed as in the example.
The weight of 1.0 generates the same motion as the example
motion while 0.5 and 1.5 generates smaller steps and larger
steps respectively. Due to maintaining same body speed, we
can observe reduced arm and leg swings with increased step
frequency from the output with 0.5 and an increased swing
size with a reduced frequency of steps from the output with
1.5. Both outputs maintain physically plausible foot contacts
on the ground. These results are compared in Figure 6 and
demonstrated in the accompanying video.

Next, we compared the outputs synthesized from the given
weights against ones from the optimized weights in the leg
parts. In this comparison, we used the gorilla and tired exam-
ples, exhibiting a large difference in the body speed. We syn-
thesized two outputs with different speed: Using the speed
from the tired example, we combined the torso-head and arm
parts from the tired example with the leg parts from the go-
rilla example. Using the speed from the gorilla example, we
combined them in an opposite way, the upper body of the
gorilla with the under body of the tired one. We also did the
opposite combinations. As shown in Figure 7, the outputs
synthesized from the linear weights result in the floating or
penetrating foot contacts while ones synthesized from the
optimal weights show physically better results.

In addition, we generate different styles from the examples
by scaling the weights for the given examples. To synthesize
the basic walk in a relaxed style, we reduced the body speed
and incorporated the examples with large rotations in the
torso-head and arm parts in order to strengthen the weight

Figure 6: Basic walks synthesized with component weights
of 0.5 (top), 1.0 (middle), and 1.5 (bottom)

Figure 7: Gorilla walks synthesized with given weights (top)
and optimized weights (bottom): The optimal weights pro-
duce physically plausible results.
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Figure 8: Examples (left) are modified into a different style
(right): Basic walk in a relaxed style (top), gorilla walk in a
tired style (middle), and Charlie-chaplin walk in a rigid style
(bottom)

shift between the steps in the output. On the other hand,
the gorilla walk in a tired style used the examples with de-
creased rotations in the torso-head and arm parts. Finally, we
scaled down the offsets from the Charlie-chaplin example
and replaced its body movements from more restricted ex-
amples such as the confident and basic examples to synthe-
size the Charlie-chaplin walk in a rigid style. Figure 8 com-
pares these outputs and Table 3 shows more details on the
examples and the weights used to achieve the style change.

User Case Study

Our system has been tested by a number of novice users who
are not experienced in computer animation field. We asked a
number of different undergraduate and graduate students to
generate an output, given the instruction of producing a walk

Body Part
Examples (Weights)

Relaxed Tired Rigid

Root

Energetic (0.5) Gorilla (0.8) Charlie (0.8)
Tired (0.8) Tired (0.5) Confident (0.4)

Offset
Energetic (0.5) Gorilla (1.0) Charlie (0.5)
Tired (0.5) Tired (0.5) Confident (0.8)

Torso-Head

Basic (1.0)
Energetic (0.5)

Gorilla (0.5)
Basic (0.2)
Confident (0.2)Tired (0.3)

Basic (0.5)
Offset Scale

0.1 1.0 0.3

Arms

Energetic (0.5) Gorilla (0.8) Bouncy (0.2)
Tired (0.5) Tired (0.5) Basic (0.4)
Delightful (1.0) Shoulder (0.2) Gorilla (0.4)

Offset Scale
1.0 1.0 0.3

Legs

Basic (0.2)
Gorilla (0.8)
Tired (0.5)

Basic (0.4)
Confident (0.2)Tired (0.8)

Energetic (0.4)
Offset Scale

1.0 0.5 0.5

Table 3: Examples with their weight values used to modify
the input example into a different style

in a happy style by using the 10 examples. About two thirds
of the participants successfully generate a reasonable result
in about 20 to 30 minutes. The participants tended to use
the examples from basic, energetic, delightful, bouncy, and
shoulder roll during the synthesis. Some results are included
in Figure 1 and also in the accompanying video.

6. Conclusion

In this paper, we introduced a component-based system for
locomotion composition that is capable of synthesizing out-
put sequences that are stylistically different from the exam-
ple set. To provide rich varieties of output style from the
small example set, the proposed system expanded the num-
ber of combinatorial components by decomposing the exam-
ples into separate body parts and maintained the key correla-
tion throughout the body by using the detected foot phases.
This way, a user can efficiently generate a desired output
with a small number of control parameters while the system
solves for the physically plausible locomotion by finding the
optimal weights for the leg components. Our experimental
results show that our system is suitable for novice users who
do not have much experience in motion generation and want
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to compose new locomotion clips from multiple examples in
a quick and intuitive way.

Currently, our system works best for the cyclic locomotion
sequences, where the correlation is most strong between the
arm and leg swings. For acyclic examples, the system should
detect multiple foot cycles depending on the key style to de-
tect and looks for additional information from other end ef-
fectors such as a head and hands, which establish more com-
prehensive correlations throughout the body. For such exam-
ples, the decomposition via ICA can result in a larger num-
ber of sub-motion components so it might require steps to
reduce the dimensionality of components by grouping sim-
ilar components via a nearest neighbor search algorithm or
applying localized PCA which captures the spatially distinct
changes of style better.

In addition, our system only enforces the physical con-
straints during the foot contacts. Imposing user-specified
constraints on other body parts during the qualitative edits
will require a postprocessing motion filter such as the per-
frame constraint solver of [TK05], which enhances the phys-
ical validity of the synthesized locomotion.
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