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Abstract

We provide a novel simulation method for incompressible free surface flows that allows for large time steps on the
order of 10-40 times bigger than the typical explicit time step restriction would allow. Although semi-Lagrangian
advection allows for this from the standpoint of stability, large time steps typically produce significant visual
errors. This was addressed in previous work for smoke simulation using a mass and momentum conserving version
of semi-Lagrangian advection, and while its extension to water for momentum conservation for small time steps
was addressed, pronounced issues remain when taking large time steps. The main difference between smoke and
water is that smoke has a globally defined velocity field whereas water needs to move in a manner uninfluenced
by the surrounding air flow, and this poses real issues in determining an appropriate extrapolated velocity field.
We alleviate problems with the extrapolated velocity field by not using it when it is incorrect, which we determine
via conservative advection of a color function which adds forwardly advected semi-Lagrangian rays to maintain
conservation when mass is lost. We note that one might also use a more traditional volume-of-fluid method which
is more explicitly focused on the geometry of the interface but can be less visually appealing – it is also unclear
how to extend volume-of-fluid methods to have larger time steps. Finally, we prefer the visual smoothness of a
particle level set method coupled to a traditional backward tracing semi-Lagrangian advection where possible,
only using our forward traced color function solution in areas of the flow where the particle level set method fails
due to the extremely large time steps.

1. Introduction

Physically based simulation of water has been one of the
most interesting and challenging problems in computer
graphics because of the amount of small scale details that
can be achieved. Earlier work includes [FM97,Sta99,FF01].
With the increased availability of low cost memory, multi-
core machines and software suitable for MPI and threading,
grid sizes can be increased achieving even greater detail by
reducing the numerical viscosity that damps out the solution
on coarser grids. Unfortunately, the computational cost does
not scale linearly in the number of grid cells as the time step
size must decrease either due to stability restrictions in ex-
plicit schemes or accuracy restrictions for implicit schemes.
The traditional semi-Lagrangian advection of [Sta99] is un-
conditionally stable, and thus, does allow for much larger
time steps. However, the visual artifacts that are produced
with this method at large time steps make this approach un-
desirable. Although this has been addressed in [LAF11] for
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smoke simulations, there remain a number of issues for wa-
ter simulation. For example, because water is treated as a
free surface, velocities must be extrapolated across the in-
terface which can create artifacts at large time steps. Fig-
ure 2 demonstrates one such case where a ball with constant
downward velocity is falling onto a pool of water. With cur-
rent methods, the bottom of the ball depicted in yellow fails
to advect correctly due to inaccurate extrapolated veloci-
ties – which could only be accurate if multi-valued. Parti-
cle based methods, see e.g. [DC96,MCG03,ZB05,LTKF08]
and the references therein, also suffer from accuracy is-
sues and visual artifacts that result from the poor sampling
of particles (too sparse or too dense) at these large time
steps. There are also additional difficulties in creating sur-
faces from particle data [YT10, BGB11], and we instead fo-
cus our efforts on grid based methods – although address-
ing very large time steps for particle based methods would
also be interesting and useful. Note that front tracking meth-
ods [BBB10,WTGT10] also rely on an interface representa-
tion via particles and thus would suffer from the same sam-
pling problems as particle based methods but would have
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Figure 1: Water pouring into a box at a resolution of 5123. This example ran with a CFL number ranging from 10-60 and
demonstrates the large amount of small scale details that can be achieved by using our method.

additional difficulties with self intersection of the surface ex-
acerbated by large time steps.

Since [LAF11] increased the visual accuracy of their sim-
ulations by conserving both the mass of the smoke and the
momentum of the fluid, our main idea will be to enforce
a conservation property for the volume of the liquid. In
fact, volume conservation is a well-established idea that re-
searchers have explored for some time. They started by ad-
vecting a Heaviside or color function, adding various tech-
niques to recompress the interface representation aiming to
keep it sharp in spite of the numerical smearing. One early
approach was to treat advection by looking at the volume
swept by faces (fluxes) and reconstructing the interface using
a simple line interface calculation (SLIC) and later a piece-
wise linear interface calculation (PLIC) resulting in modern
day volume-of-fluid (VOF) schemes (see e.g. [PP04] and the
references therein). In order to avoid overlapping of the flux
swept volumes, these methods must be applied one dimen-
sion at a time using dimensional splitting and the time step
must be restricted to be one half of that allowed by a standard
explicit scheme. Various visual artifacts result from this di-
mensional splitting, and the interface reconstruction ends up
being discontinuous across cell boundaries. [SP00, Sus03]
worked to ameliorate these issues by coupling VOF meth-
ods to level set methods where a locally constructed and
advected level set function is used to compute surface nor-
mals alleviating some of the flotsam and jetsam (see also

[MMS04,MUM∗06]). However, their improvements did not
completely eliminate such visual artifacts which would be
exacerbated with very large time steps, especially when di-
mensional splitting is used. Another possible approach in-
volves enforcing volume preservation globally as demon-
strated in [KLL∗07]. However, this would isotropically ex-
pand the blue region in Figure 2 as opposed to adding the
yellow region to reconstruct the circle. Therefore, we do not
take a VOF type or global volume control approach to the
problem but instead use a color function type method that
relies on semi-Lagrangian advection and sharpening (see
Figure 3). [MMTD07] also proposed an approach to color
function advection using a conservative flux based approach
which is known to suffer from overshoots and undershoots –
the thing VOF methods were created to address. [MMTD07]
cited [FM07] as a method for taking larger time steps; how-
ever, this dimension by dimension approach suffers from the
same limitations discussed in Figure 3.

Simply utilizing a color function type approach would
suffer from all the same problems that originally led to the
improved VOF methods or coupled level set VOF methods,
and we would prefer to use a more visually pleasing particle
level set method such as that proposed in [EMF02,EFFM02]
(or even a variant such as Marker Level Set [MMS09]).
Therefore, we start with the work of [EMF02, EFFM02] ad-
dressing various issues with large time steps, noting that
without conservation the issue in Figure 2 seems implausible
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(a) Extrapolated velocities using
closest point extrapolation

(b) Result after taking a large
time step

Figure 2: Figure 2a shows the analytic solution for the
canonical closest point extrapolation scheme used in free
surface flow simulation where the velocity field in the “air”
is determined by the closest point in the water surface. This
results in a velocity discontinuity along the curved equidis-
tant boundary between the green and grey shaded regions.
Everything above this curve has a downward velocity ob-
tained from gravity acceleration of the falling drop whereas
everything below this curve has a stationary velocity of 0 ob-
tained from the stationary liquid at the bottom of the figure.
For advection, the analytic solution using backwards cast
semi-Lagrangian rays gives the result shown in Figure 2b in
blue (not yellow) where everything above the curve moves
downward and everything below the curve stays stationary.
The actual analytic solution is shown by the union of the blue
and yellow regions in the figure and we address the loss of
mass depicted by the yellow region by instead forward ad-
vecting all of that material. One could forward advect the
entire drop but that leads to significantly lower accuracy in
the blue region where backwards advection works well.

to address (see Section 3.1). Thus, we hybridize this method
with a color function type approach in order to achieve an
approximation of the yellow region in Figure 2, and subse-
quently outline the details for two way coupling of the meth-
ods. Our color function approach has many benefits over
any dimension by dimension or flux based approach because
of the use of the semi-Lagrangian advection from [LGF11]
which is especially useful for large time steps (again as
shown in Figure 3). The resulting method enables the simu-
lation of free surface flow with time steps over an order of
magnitude larger than implied by the CFL condition.

2. Free Surface Flows

Our fluid solver is based on the particle level set method
[EMF02] and proceeds by solving the inviscid incompress-
ible Navier-Stokes equations, which are given by

ut +u ·∇u =− 1
ρ
∇p+ f, (1)

∇·u = 0, (2)

where u is the velocity of the fluid, ρ is the density of the
fluid, f is the sum of any external forces (such as gravity)

Figure 3: Assuming a velocity field directed diagonally
downward and to the left as depicted by the orange arrow,
the correct volume information for the green cell would be
obtained from the brown shaded cell. Any method which
looks only in orthogonal directions would be limited to as-
certain information only from the grey shaded cells depicted
in the picture. One could imagine an alternating dimension
by dimension exhaustive approach that scans all 25 cells in
the neighborhood in order to eventually find the informa-
tion in the brown cell, but the semi-Lagrangian method is
far more efficient.

scaled by ρ, and p is the fluid pressure. We solve these equa-
tions by first calculating an intermediate velocity field u? via

u?−un

∆t
+(un ·∇)un = f. (3)

This equation is typically solved using the standard back-
ward semi-Lagrangian advection scheme [Sta99] which re-
quires an accurate approximation of the velocities in the re-
gion traversed by the fluid during a given time step. In the
region not occupied by the liquid, one needs to obtain ve-
locities for use in semi-Lagrangian advection, and this is
typically done using any closest-point velocity extrapolation
scheme within a band near the surface.

We then subsequently apply the pressure forces via

un+1−u?

∆t
=− 1

ρ
∇p, (4)

where the pressure is calculated by solving the Poisson equa-
tion

∇· 1
ρ
∇p̂ =∇·u?, (5)

where p̂ = p∆t. We also use the pressure modifications of
[GFCK02] to achieve second-order accuracy at the surface.
3. Taking Large Time Steps

Generally speaking, there are two main steps in the simula-
tion. The first step is to advect all quantities forward includ-
ing the fluid velocities, level set, and particles after which
the second step is the projection. Both of these steps require
modifications for large time steps.
3.1. Problems With Extrapolation

The standard semi-Lagrangian advection requires looking
back along characteristic rays. However, for free surface
flows, the air region is not modeled and therefore does not
have accurate velocities which need to be approximated. One
method of obtaining these velocities is to add an air flow
such as in [HK05, LSSF06]. The problem with this is that
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Figure 4: Sphere of water dropped onto a stationary flat surface of water at a resolution of 2563. This example ran with a CFL
number ranging from 10-40. The early part of the simulation when the water first starts to fall was simulated with a smaller
CFL number. The later parts of the simulation were ran with a higher CFL number.

for many graphics simulations, we expect the air to have
very little influence on large bodies of water. For example,
a falling water drop will deform in a surrounding airflow,
and although this can be ameliorated by surface tension, this
adds an additional cost and complexity to the simulation.

Instead, as mentioned above, we fill the air region with
a pseudo-velocity obtained via the canonical closest point
extrapolation scheme which allows the water to move ef-
fectively unimpaired by the surrounding air. Typically one
extrapolates about three grid cells; however, the extrapola-
tion bandwidth must increase as the size of the time step
increases. Previous approaches [CM11, LAF11] address the
large time step problem by either performing a global ex-
trapolation or by conserving momentum through advection;
however, as seen in Figure 2, even with the analytic solu-
tion to the global problem, this method will fail. Other ap-
proaches such as [Cho09] which uses a multi-valued veloc-
ity field in order to handle collisions such as those shown in
Figure 2, will fail in other cases such as when two spheres
collide with each other. In this case, the algorithm would ei-
ther cause the spheres to incorrectly pass through each other
without a collision or overlay the spheres with each other re-
sulting in a violation of volume conservation. The only way
to properly handle the collision is to construct an extrapola-
tion field that has knowledge of incompressibility.

This was addressed by [Sus03, REN∗04] who used diver-
gence free extrapolation to alleviate the issue by ensuring
that the extrapolated velocity is discretely mass conserving.
However, we observed that their proposed solution deforms
a falling spherical drop well before merging takes place. This
is because divergence free extrapolation solves a second pro-
jection in the narrow band around the outside of the drop
with a free surface boundary condition applied on the outside
of this narrow band. If this boundary condition is enforced
by setting the cells to p= 0 without considering the interface
geometry, the drop deforms. This deformation of the drop
can be resolved by using the second order cut cell method
from [GFCK02] on the outer edge of the band (which we
point out for the first time in the paper). While this works to
improve merging for the small extrapolation bands required
when taking small time steps, when it is applied globally

or over the large extrapolation bands required when taking
large time steps to remove the discontinuity shown in Fig-
ure 2, it will produce a velocity field that deforms the drop
long before it hits the water surface. Thus, this method, while
applicable for improving merging at small time steps, does
not alleviate the issues with large time steps.
3.2. Advection

As discussed in the previous section, closest-point extrapo-
lation methods are unable to approximate a velocity field far
away from the interface that is usable with large time steps.
Thus, we only extrapolate within the standard three grid cell
band. Then, we advect the velocity using the conservative
method of [LAF11] who show that this method works for
globally defined velocity fields and large time steps, as well
as small time steps with free surfaces, but do not show that
it works for large time steps with free surfaces. However,
the method can be used to advect velocities (albeit not a sur-
face) in that case as well without any modifications. Basi-
cally, when cells within the three grid cell band look back to
advect velocity forward, any velocities that are missed that
would have been updated from a larger band are updated in
the second step of forward advection which is required in
order to conserve the momentum.

Second order Runge-Kutta particle advection can fail at
large time steps without an accurate fluid or extrapolated ve-
locity. We advect the particles with forward Euler if a veloc-
ity sampled within an RK2 step is outside the extrapolated
velocity band allowing us to maintain the higher-order accu-
racy of the RK2 method in the presence of accurate veloci-
ties while improving the robustness of the method when such
velocities are absent. Level set advection also has problems
at large time steps. While the particle level set method main-
tains the shape of the air-water interface at small time steps,
it does not typically preserve the amount of volume within
the liquid region. At small time steps, these changes in vol-
ume are small and are unnoticeable in the animation. How-
ever, when the particle level set is evolved with a large time
step, this volume loss becomes more apparent and detracts
significantly from the visual plausibility of the simulation.
Furthermore, applying a conservative advection scheme to
the level set itself is insufficient to resolve this volume loss
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Figure 5: Dam break water example at a resolution of 2563. This example ran with a CFL number ranging from 10-40. The
early part of the simulation when the water first starts to fall under the influence of gravity was simulated with a smaller CFL
number. The later parts of the simulation were ran with a higher CFL number.

because the conservation of signed distance values does not
imply conservation of any physical quantity such as volume.
We resolve this by advecting a color function using the con-
servative method of [LAF11] in conjunction with the particle
level set surface as discussed in Section 4.

3.3. Projection

We solve the projection step only in liquid regions while en-
forcing a free surface boundary condition. As a result, small
regions of “air” (not in a liquid region) can create large di-
vergences. While this is acceptable with small time steps due
to the restrictions on the motion of the fluid, this results in
a large amount of volume loss when taking large time steps.
One method of solving this problem is to explicitly fill the
“air” region and enforce a target divergence [LTKF08] such
that the cell is exactly filled in a given time step. However,
this method requires the algorithm to detect whether or not
the cell will be filled or overfilled for a given velocity field
and time step. While simple algorithms, such as thresholding
based on the size of the “air” region and the CFL number can
be used as an approximate detection scheme, it is difficult to
obtain a set of parameters that are suitable for a general fluid
flow. We use a threshold that causes the algorithm to only fill
small “air” pockets. For larger regions, we instead enforce
volume conservation using our conservative color function
treatment. This can sometimes lead to cells with V > 1, and
this is treated along with other advection errors as described
in Section 4.

4. Color Function

In addition to the level set function, we also evolve a color
function V which represents the fraction of liquid contained
within a region (usually a single cell in the case of a uniform
grid). Although the color function can be advected using any
method, volume is conserved only if the method is conser-
vative. However, numerical smearing, even in a conservative
method, will cause inaccuracies in V ’s spatial distribution.
One of the main approaches for increasing accuracy are the
VOF type methods. Early on, SLIC approximated the inter-
face in each cell using a plane defined by a normal along
one of the Cartesian directions, placing it in a location that
accurately represented the fraction of volume in a cell. PLIC

later improved on this by allowing for a normal in any di-
rection. Then, advection was carried out by intersecting the
material in a cell with the volume swept out by a cell face
along its normal during a time step. As mentioned in Sec-
tion 1, in order to be conservative, these methods have a
CFL restriction of 0.5 and produce a number of visual ar-
tifacts. [SP00] attempted to improve the VOF method by
constructing a level set from the interface which is used to
compute the tangent plane normals. The surface reconstruc-
tions of this CLSVOF method are typically not as smooth
as those from the particle level set method as can seen by
the examples of [MMS04, MUM∗06], and the resulting vi-
sual artifacts will be highly exacerbated at large time steps.
While previous methods have achieved limited success for
CFL numbers slightly larger than 1 [FM07, CM11], the ar-
tifacts will be highly exacerbated for CFL numbers in the
range of 10-40 as we take in our examples.

Our method using the color function V is conceptually
similar to the VOF method. If V = 1 or V = 0, the region con-
tains either all liquid or all “air” respectively. If 0 < V < 1,
the region contains both liquid and air. First, to compute the
initial data, we compute the color function from a piece-
wise linear rasterization of the level set. Note that when φ

is changed for fluid sources, the color function also needs
to be modified to maintain consistency. Then we advect the
color function forward in time as per

Vt +u ·∇V = 0 (6)

using the conservative method of [LGF11]. Note that we do
not use any of the diffusion methods used when advecting
smoke density [LAF11]. Our experiments show that diffu-
sion is detrimental in the case of color function advection,
since diffusion is based on the heat equation which tends to
move the interface faster in regions of higher curvature than
lower curvature. This problem is alleviated for momentum
advection because diffusion is not applied across the inter-
face, which is well determined before the momentum advec-
tion step. The conservative advection method can also result
in excess volume accumulating where fluid collides with a
rigid body due to the clamping of semi-Lagrangian rays to
the surface of the object. This can result in an undesirable
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(a) (b) (c) (d) (e)
Figure 6: Correcting Numerical Dissipation in the Color Function: Figure 6a shows the color function after advection. Due
to numerical dissipation, there are regions inside the level set (φ ≤ 0) with a color function value V = 1 (blue), V < 1 (cyan),
and V > 1 (magenta) along with regions outside the level set (φ > 0) with a color function value V = 0 (black) and V > 0
(green). Figures 6b, 6c, and 6d demonstrate the results after applying our first, second, and third compression step respectively.
We then apply a volume-conserving diffusion algorithm which corrects for errors in compression (usually located in regions of
high curvature) to obtain a more accurate color function surface representation shown in Figure 6e.

viscous fluid appearance which we avoid by reflecting the
semi-Lagrangian rays off the surface, and scaling them by a
damping coefficient.

After the color function has been conservatively advected
forward in time, it will still smear out due to numerical dis-
sipation. We apply a compression procedure diagrammed in
Figure 6 to the color function after it has been advected for-
ward in time. First, we compute the .5 isocontour of the color
function. Then, we aim to set all cells within the .5 isocon-
tour to have V = 1 and all cells outside the .5 isocontour to
have V = 0. There are two primary discrepancies that need to
be addressed. The first problem is that V values outside the
isocontour can be more than 0 due to numerical smearing.
The second problem is that V values inside the isocontour
are not necessarily 1 (can be either more than or less than 1).
Although interior cells with V > 1 can result from errors in
advection, this can also occur from the collapse of air pock-
ets as discussed in Section 3.3. To correct for these errors,
we compute differences between the target (0 or 1) and cur-
rent color function value and then move this difference in the
direction of the gradient of V to the interface. For V > 0 out-
side the interface, we move in the direction of the gradient
of V until we are at a location 2∆x interior to the V = .5 iso-
contour. Then, we distribute the difference in color function
value to the neighboring cells around this location (exclud-
ing cells lying within rigid bodies) in weighted proportions
until V = 1 in each cell. If all of the difference cannot be dis-
tributed at these neighboring cells without overflowing the
cells, the remainder of the difference is placed in a location
obtained by marching outwards along the gradient of V . For
the cells on the interior of the V = .5 isocontour with V > 1
the difference in color function value V − 1 is distributed to
the surface in the same way starting from a distance of 2∆x
inside the surface. In the third case, where V < 1 for interior
cells, we fill V for each cell to 1 using color function val-
ues from the surface by distributing a negative value V − 1
starting 2∆x outside the interface and marching inwards in
a similar manner in the opposite direction as the first two
cases. Both our advection scheme and compression scheme
guarantee that values of V < 0 cannot occur; however, the
compression method can be modified to account for these if

a different advection scheme that can result in negative val-
ues is used. The compression is done in a Gauss-Seidel fash-
ion using a single iteration (multiple iterations could be used
but are not needed since its done at every time step), and thus
the order in which the cells are visited matters. One might
want to use a method such as Gauss-Jacobi to reduce bias
but this will require more iterations, and we have found that
Gauss-Seidel is satisfactory for our purposes. This is par-
tially because we couple it with particle level set method for
accuracy whenever possible (see Section 5).
5. Coupling

First, we advect both φ and V forward in time using
semi-Lagrangian advection for φ and conservative semi-
Lagrangian advection for V . We then correct the values of
φ using the particles as in the particle level set method, and
subsequently reinitialize φ. However, we stress that the sec-
ond particle correction of the reinitialized level set is not yet
applied, and the color function is not yet compressed. At this
point, we construct a distance function from the color func-
tion in almost the same way that [SP00] construct it at the
beginning of the time step. That is, we first use a VOF con-
struction of the color function, computing a normal from the
gradient of V and the placement of the tangent plane in the
cell from the value of V itself, and then initialize values of
the signed distance function φ

V based on the tangent plane in
that cell. Nearby cells are initialized with values from the fast
marching method. Unlike [SP00], we compute the normals
directly from the gradient of V as opposed to an advected
φ. This is because an advected φ function would be highly
inaccurate due to the issue of velocity extrapolation.

While the color function does not represent the interface
as accurately as the particle level set method, it is often
the only reasonably accurate interface representation avail-
able when taking large time steps demonstrated by the yel-
low region of Figure 2. Thus, our aim is to use the par-
ticle level set method wherever possible in order to gain
visually pleasing surfaces and only to use the color func-
tion to represent the surface where the level set representa-
tion has lost large amounts of mass such as shown in Fig-
ure 8. Generally speaking if the interfaces agree we use
the particle level set representation of the interface. We say
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Figure 7: Water pouring into a box over a rigid sphere at a resolution of 2563. This example ran with a CFL number ranging
from 10-40. The earlier section of the simulation from when the source is first activated until the water first hits bottom of
the container and the later section after the source was turned off and the water starts to calm were simulated with a smaller
CFL number. The more active parts of the simulation which occur between the water from the source hitting the bottom of the
container and the source turning off were ran with a higher CFL number.

that the two interfaces agree if they do not differ by more
than .5∆x in distance. At every cell (i, j,k) in the compu-
tational domain, we compute a blending parameter αi, j,k =

|φi, j,k−φ
V
i, j,k|/∆x− .5 and clamp it in the range [0,1]. Sub-

sequently, we compute the blended level set function φ
B via

φ
B
i, j,k = (1−αi, j,k)φi, j,k +αi, j,kφ

V
i, j,k. Note that the minimum

pre-clamped value of αi, j,k is −.5 and thus when the inter-
face values agree to within half a grid cell, we use the level
set version. For αi, j,k ≥ 1, we use the color function rep-
resentation, and otherwise we interpolate between them. In
order to avoid visual kinks in φ

B, α is smoothed locally on
the grid using a Gaussian filter before linearly interpolating
φ and φ

V to obtain φ
B.

Next, φ
B is initialized to a signed distance function. In or-

der to prevent spurious particle corrections to the blended
level set representation, a particle is deleted if α > 0 at the
closest surface cell. This signifies that the closest interface
in the cell has changed from the using the φ obtained from
PLS and is instead using the color function to help define the
interface, thus rendering the particle correction incorrect in
that cell. Particles are then only reseeded in the areas with
α > 0 in order to preserve sharp features that cannot be cap-

(a) PLS method (b) Our method

Figure 8: Figure 8a shows the result we get after taking
a large time step using the PLS method. Because closest-
point extrapolation discussed in 3.1 is unable to provide a
good approximation of the velocities in the air region, back-
ward semi-Lagrangian advection fails to accurately advect
the level set causing the ball to become clipped at the bottom.
Figure 8b shows the same frame using our method where we
are able to reconstruct and subsequently maintain the shape
of the ball even when taking a very large time step.

tured by the level set alone. Finally, the reinitialized φ
B is

corrected via particles in the usual fashion of the particle
level set method.

In summary, we advect the level set function φ, correct it
with particles and reinitialize it, advect the color function V ,
contour it with a VOF method and produce a signed distance
function representation φ

V , blend φ and φ
V to obtain φ

B,
reinitialize the result, delete particles where the color func-
tion representation is being used, reseed particles around the
new interface generated by the color function, and correct
the combined level set using the particles. We denote the fi-
nal result once again as φ.

At this point, we have the desired level set reconstruction
but a smeared out color function. We use the compression
method listed in Section 4 to compress the color function us-
ing the more accurate normals of φ instead of the less accu-
rate gradients of the color function. Moreover, we can accel-
erate the process of finding the zero isocontour and nearby
locations using the fact that φ is a signed distance function.
We stress that this compression does not use isocontours or
geometric information from V in any way but instead strives
to compress V into the newly generated φ.

While this compression method works well, we have no-
ticed that in regions of high and low curvatures compression
tends to produce errors near the interface such as V > 0 color
function values accumulating on the peaks of the waves. (see
Figure 6). Therefore, we propose a diffusion based algo-
rithm, similar to the ones found in [FL04, LAF11] to im-
prove the color function’s surface representation. We take
the union of the surfaces given by φ

V and φ and use com-
pression outside this region and diffusion inside. We diffuse
the error e=V−V φ, where V φ is the color function obtained
from a piecewise linear rasterization of φ, in the color func-
tion relative to the level set close to the surface. We have also
experimented with solving the Poisson equation with the ap-
propriate target divergences to generate a velocity field in-
side the union which works as well but is much more expen-
sive than using this sweeping method. After the compression
and diffusion steps, the color function yields an improved
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Figure 9: Water pouring into a box from two opposite-facing sources at a resolution of 5123. This example ran with a CFL
number ranging from 10-60. The earlier section of the simulation when the sources are first activated until the water from the
sources collides was simulated with a smaller CFL number. The remainder of the simulation was ran with a higher CFL number.
Note that we increase the amount of absorption during rendering in order to make the fine scale details more apparent.

surface representation (as shown in Figure 6) and in order to
improve the visual appearance of the final surface, we repeat
the blending process using the current V and φ.

6. Results

We demonstrated our method on a number of 3D examples
as seen in Figures 1, 4, 5, 7, 9, and 11. We first ran a baseline
simulation for each example using the standard PLS method
at a CFL number of 1 at resolutions of 643 and 1283. How-
ever, these simulations were too slow to run in a practical
amount of time at the higher resolutions such as 2563. A

Figure 10: Comparisons between our method and the par-
ticle level set method using similar amounts of computation.
The left figure shows the correct answer obtained by run-
ning the particle level set algorithm at a resolution of 2563

at CFL 1. The middle figure shows the results of running our
algorithm at a resolution of 2563 at CFL 16. This requires a
similar amount of computation to running the particle level
set method at a resolution of 1283 at CFL 1 which gives the
results shown in the right figure. Our algorithm has the same
degree of numerical viscosity as the 2563 particle level set
simulation but requires the same amount of computation as
the 1283 since the resolution is doubled in each dimension
and the CFL condition becomes twice as strict.

CFL number of 1 means that advection does not move in-
formation farther than 1 grid cell in any time step. Then, we
then ran both the standard PLS method and our method at a
high CFL number of 40 at resolutions of 643, 1283 and 2563.
For resolutions of 643 and 1283, this equates to running at
the frame rate (meaning one time step per frame) since the
maximum CFL number was approximately 5 for 643 reso-
lution simulations and approximately 20 for 1283 resolution
simulations. We also ran our method at a resolution of 5123

in order to demonstrate the large resolution simulations that
can be obtained by our method at high CFL numbers. For
this simulation, we primarily ran with a CFL number of 60.
Figure 10 shows a comparison between our method and the
particle level set method using similar amounts of computa-
tion. Figure 12 shows a comparison of the volume between
the traditional PLS algorithm and our method at a resolu-
tion of 1283. Note the large amount of volume lost without
using our method. Compared to the standard particle level
set method, the additional steps in our method cause it to
execute about twice as slowly for a given time step. How-
ever, since our time step is allowed to be 40 times larger, our
method approximately achieves a 20 times increase in per-
formance on frames where the CFL number is close to 40
or greater. For frames in specific simulations where the CFL
numbers are smaller than 40 (e.g. stationary sphere before
it begins falling into water under the influence of gravity),
we achieve smaller increases in performance. We empha-
size that this is due to the maximum time step size being
restricted by the user-specified frame rate for the simulation.
Similarly, for the 2563 resolutions, we ran both the standard
PLS method and our method. Our larger examples were ran
with a fully parallelized MPI implementation which scales
well at relatively low CFL numbers but when running this
large of a simulation, our CFL number becomes limited be-
cause our current MPI implementation divides the compu-
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Figure 11: Water pouring into a box from two opposite-facing sources at a resolution of 2563. This example ran with a CFL
number ranging from 10-40. The earlier section of the simulation when the sources are first activated until the water first hits
the bottom of the container was simulated with a smaller CFL number. The more active parts of the simulation which occur
after the water from the sources hits the bottom of the container were ran with a higher CFL number.

tational domain into a number of smaller domains and we
have not generated the code to cross more than one proces-
sor boundary (although this can be done). The limitations on
the CFL number of simulations due to the size of the MPI
domains bring up the important issue that with a CFL num-
ber equal to the size of one of these subdomains, a ghost cell
implementation requires 27 times more data for ghost cells
than the actual simulation (i.e. each grid being replicated in
all Cartesian directions and partially replicated in the diago-
nal directions) which can quickly deplete memory resources.
In the standard ghost cell implementation, it might be advan-
tageous for MPI code (although unnecessary for threaded
code) to change the boundary process to have each grid re-
quest data from the neighboring grids that contain the needed
grid cells, sending that request out to other processors which
send the information back. Even so, if every grid cell in
the domain is requesting data from another processor, this
is equivalent to copying entire grids from one processor to
another at every time step, and thus while doubling the CFL
number does halve the required number of pressure solves
and other steps such as those involved in the particle level
set method, it increases the communication cost. Thus, one
cannot indefinitely increase the CFL number although we
noticed issues in visual accuracy at lower CFL numbers than
would lead to concerns with communication bottlenecks. For
example, during the first step of a simulation with a horizon-
tally facing source, the velocities are purely horizontal and
thus when a large CFL number is taken, the liquid will move
a large distance parallel to the ground despite the fact that the
fluid should be falling. One alternatively could apply gravity
first but that would mean advecting in a divergent flow field
which can cause objects to incorrectly advect through solid
walls. Instead, these problems are partially resolved by run-
ning with a smaller CFL number when such visual artifacts
manifest which typically occurs in slow moving fluid flows.

It is important to note that although we can maintain a
similar time step size at larger resolutions, the algorithm
does scale with the number of grid cells. Therefore, the sim-
ulation is a factor of 8 slower when the grid size doubles for
a fixed time step (which requires doubling the CFL number

of the simulation). However, a number of methods includ-
ing [LZF10, MST10] improve the scalability when the res-
olution changes. These methods can be used in conjunction
with our method to create even faster simulations.

7. Conclusion

We have presented a novel method method for accurately
simulating free surface flow even when taking time steps that
are more than an order of magnitude larger than implied by
the CFL condition. We accomplish this by conservatively ad-
vecting a color function representing the fraction of volume
contained in each cell along with the particle level set and
using the color function to compute an accurate representa-
tion of the surface where the particle level set representation
fails to suffice. This allows our method to maintain volume
and subsequently achieve visually accurate results. More-
over, we have presented a general framework for combining
an interface tracking method with a volume tracking method.
Investigating the use of other interface tracking methods and
volume tracking methods for use within this framework is a
potential subject of future work.

Figure 12: Volume vs. time for four different simulations.
The red and blue lines represent the liquid volume present
in the dam break simulation at frame rate. Notice how our
method (red) fully conserves volume while the PLS algo-
rithm (blue) loses a tremendous amount of volume. The
green and purple lines represent the volume present in a
simulation with water from a source flowing over a ball.
Notice how the volume increases linearly until the source
is turned off when using our method (green) but decreases
slowly when using the PLS algorithm (purple).
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