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Figure 1: Multiple fluids with different viscosity coefficients and surface tension densities splashing on the bottom of a cylin-
drical container. Observe that the simulation has no problem dealing with thin sheets.

Abstract
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving
meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex
(DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality
and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by
a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial
complex. This approach ensures that the underlying discretization matches the physics and avoids the additional
book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian
approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume
approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize
fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and
the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur
complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a
performance analysis of our method.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Physically-based modeling Computer Graphics [I.3.7]: Three-Dimensional Graphics and
Realism—Animation Mathematics of Computing [G.1.6]: Optimization—Nonlinear programming

1. Introduction

In this paper, we present a finite element method for ani-
mating multiphase flow of immiscible fluids. Our approach
is based on the Lagrangian deformable simplicial complex
(DSC) method, previously used for topology-adaptive de-

formable interface tracking [Mis10,MB12], which trades the
apparent simplicity of the level set method for robustness
and support of multiple phases, as well as offering an un-
structured, moving computational grid. Each element in the
mesh is assigned a single material and interfaces are com-
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posed of faces in the DSC. The DSC moves with the fluid
in a Lagrangian fashion and a variety of mesh optimization
operations improve element quality and avoid element inver-
sion. We formulate the solution of the Navier-Stokes equa-
tions in terms of a quadratic optimization problem, which
accounts for and couples all terms: incompressibility, vis-
cosity, surface energy and arbitrary solid constraints.

Our approach builds on the work of Misztal et
al. [MBE∗10] and Erleben et al. [EMB11], who developed a
finite element approach to fluid simulation and characterized
the solution to the Navier-Stokes equations as a quadratic
optimization problem. Our main contribution is the exten-
sion of these techniques to multiphase flow. Furthermore, we
have addressed numerous implementation issues, essential
for significant improvement of the accuracy of the method
and reduction of its time complexity. Our contributions in-
clude:

• deriving the formulation of and implementing the second-
order surface energy approximation (Section 3.3);

• deriving and implementing pressure stabilization through
finite volume discretization of the pseudo-compressibility
equation (in contrast to the previously used pressure sta-
bilization scheme from Misztal et al. [MBE∗10], used by
Erleben et al. [EMB11], which is not physically correct;
see Section 3.4);

• designing a preconditioner, which allows us to employ a
GPU-based, iterative solver (Section 3.5);

• simplifying the formulation of the solid boundary condi-
tions in the model (Section 3.6);

• adapting the method so that it supports multiple, immisci-
ble fluids (Section 3.7).

In contrast to regular grid and level set based approaches,
our method offers several significant advantages: the La-
grangian nature of our mesh avoids numerical diffusion that
leads to volume loss and excessive perceived viscosity; the
unstructured tetrahedral mesh allows us to trivially handle
arbitrary, non-grid-aligned solid boundaries, and the explicit
representation of interfaces as faces in the mesh allows for
accurate treatment of surface tension. In the context of mul-
tiphase flow we wish to highlight one additional advantage:
the Lagrangian nature of our discretization allows us to op-
timally track the interfaces between multiple fluids. There
is no guesswork in determining what fluids are where and
the simulation is greatly simplified because each element is
occupied by a single material. This also allows us to assign
different values of surface energy density to all pairs of mate-
rials. We present several examples of fluid simulations gen-
erated using our method, as well as the results of various
performance tests and parameter studies.

2. Related Works

The literature concerning fluid simulation in computer
graphics is rich, and a proper review of all the state-of-the-
art methods would require a study of its own. Most methods

are based on regular grids and we refer to [FM96, FM97,
Sta99, FF01, FSJ01, BMF07, Bri08, BBB10, MST10] for de-
tails. The literature on multiphase flow is sparser. Losasso et
al. [LSSF06] first demonstrated multiple interacting fluids.
They used multiple particle level sets to track the various
interfaces and introduced averaging rules for handling cells
occupied by more than one material. Kim [Kim10] expanded
on this approach by introducing regional level sets [ZYP06].

Another big group of methods is based on smoothed-
particle hydrodynamics [Mon92] and the work by Solen-
thaler et al. [SSP07] is of particular interest here since
it is able to handle multiple materials robustly. In con-
trast, our method uses an unstructured grid. The work in
computer graphics on fluid solvers based on unstructured
meshes is sparse. Early work used static unstructured meshes
[FOK05, ETK∗07]. Dynamic meshes with limited deforma-
tion (to preserve mesh quality) were demonstrated by Feld-
man et al [FOKG05]. When mesh quality can no longer be
preserved, an entirely new mesh can be generated [KFCO06,
BWHT07, CFL∗07, WT08] though this involves a great
deal of computation and can lead to undesirable artifacts,
such as the smoothing of simulation variables. Alternatively,
local mesh improvement operations [MBE∗10, WRK∗10]
are computationally more efficient and minimize artifacts.
Solid boundaries and two-way coupling have been touched
upon [FOK05, KFCO06]. The preferred method for deal-
ing with advection has been the semi-Lagrangian advec-
tion method [FOK05] and its generalization to deforming
meshes [FOKG05] which has been applied in many works
[KFCO06, CGFO06, CFL∗07, WBOL07].

The finite volume method is a popular choice for
fluid simulation on unstructured meshes [FOK05, FOKG05,
KFCO06, ETK∗07, WBOL07]. In particular, Elcott et
al. [ETK∗07] demonstrate a number of desirable, even sur-
prising, properties for incompressible flow simulation with
their use of discrete exterior calculus. In contrast, the finite
element method [BWHT07, WT08, WRK∗10] is often pre-
ferred for plastic and elastic objects. However, its application
for fluids is sparse [MBE∗10, EMB11]. Mimicking regular
grids, many tetrahedral schemes are based on staggered lo-
cations of simulation variables [FOK05,FOKG05,ETK∗07,
WBOL07]. Here the face centers often store the normal ve-
locities and volume centers store pressure values. While this
approach has a number of nice properties [ETK∗07], they
have the significant drawback that reconstruction of the full-
dimensional velocity field is quite expensive. In contrast,
while we do store pressures at the centers of our elements,
the velocity field is stored as full-dimensional velocity vec-
tors at the nodes of our mesh.

3. Fluid Simulation Method

In this section we present the complete, finite element dis-
cretization of the incompressible fluid motion equations and
its formulation in terms of a quadratic optimization problem,
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Figure 2: A 2D example of an interface representation in
the DSC method. The embedding mesh can be re-tessellated
in order to accommodate vertex displacement and produce
changes in the topology of the interface.

which allows us to accurately incorporate non-linear terms
(such as surface tension forces) into the model. We also
discuss the significant implementation details required for
a robust performance: pressure stabilization (in the form of
pseudo-compressibility) and preconditioning, which allows
us to improve the performance by employing a fast, GPU-
based, iterative solver. Finally, we describe how to handle
the fluid’s interactions with arbitrary solid walls, and how to
adapt the method to handle several interacting, immiscible
fluids.

3.1. The Deformable Simplicial Complex Method

Our FEM computations are performed on an unstructured,
tetrahedral grid, which is also used by the deformable sim-
plicial complex (DSC) method [Mis10, MB12] for tracking
the fluid’s free surface. The DSC method is a recent, La-
grangian method for topology-adaptive deformable interface
tracking. It represents the interface explicitly as a piece-
wise surface (triangle mesh), while the whole embedding
space is discretized as well – as a tetrahedral mesh. All
tetrahedra are labeled inside or outside according to their
location relative to the interface (the 2D case is shown in
Figure 2). Furthermore, they conform to the interface, in
the sense that each interface triangle is a common face
shared by one inside tetrahedron and one outside tetrahe-
dron. The interface deformations are produced by iterating
interface vertex displacement according to a given veloc-
ity field, followed by a mesh improvement step. The main
purpose of the mesh improvement step is the removal of
low quality tetrahedra produced during vertex advection and
reducing the risk of creating inverted tetrahedra in sub-
sequent deformation steps. It is inspired by earlier works
on tetrahedral mesh improvement [FOG97, KS07] and con-
sists of Laplacian and optimization-based smoothing of non-
interface vertices, mesh reconnection operations, vertex in-
sertion through edge splitting, edge collapse and removal
of degenerate elements. Furthermore, the DSC method al-
lows for surface mesh improvements through edge flips and
null-space smoothing [Jia07]. For the purpose of further im-
proving the computational mesh quality, we have augmented

Figure 3: Schematic view of a single iteration of our fluid
simulation method (elements on the outside of the fluid are
not shown for the sake of clarity). We begin with an initial ve-
locity field ut respecting the continuity constraint (left). Then
we move the grid according to this velocity field, advect the
velocity values and possibly re-tessellate the mesh (dotted
line) in order to accommodate the displacements or improve
its quality (center). The new velocity field u∗ might violate
the continuity constraint. In order to fix that, we solve the
discretized version of the Poisson equation and obtain the
final velocity field ut+∆t (right).

the DSC method with an optimization-based vertex insertion
algorithm, based on the work by Klingner and Shewchuk
[KS07].

The main advantages of the DSC method in the context of
fluid simulation include: robust topological adaptivity, low
numerical diffusion, available surface mesh representation,
which does not change gratuitously between time steps, and
the possibility of representing more than two phases (one
can use an arbitrary number of tetrahedron labels rather than
just two).

3.2. Fluid Simulation as a Quadratic Optimization
Problem

We treat the tetrahedra contained in each fluid volume
as conforming, linear elements. We sample the velocity
field u(x,y,z) at each vertex of the mesh xi, i = 1, . . . ,NV ,
where NV is the total number of vertices in the mesh.
We denote the vector of all velocity samples as u =[

uT
1 uT

2 . . . uT
NV

]T
, where ui = u(xi). We are us-

ing a staggered grid, meaning that the pressure field is dis-
cretized at tetrahedra: p =

[
p1 p2 . . . pNT

]T , where
NT is the number of elements (tetrahedra) occupied by the
fluid. The optimization-based fluid simulation method is a
fractional step method. In the first step we perform (forward
Euler) vertex advection according to the current sampled ve-
locity field ut

xt+∆t
i = xt

i +ut
i∆t (1)

and we advect the velocity values along with vertices obtain-
ing an intermediate velocity field u∗ which might violate the
new, discretized continuity constraint. We fix that in the sec-
ond step by solving the finite-element discretization of the
fluid motion equations in the form of an optimization prob-
lem, which determines the final velocity field ut+∆t of the
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fluid (the details of the discretization are presented in Sec-
tion 3.3)

ut+∆t = argmin
u

1
2

uT Au+uT b (2)

subject to

PT u = 0 (3)

where A accounts for inertia, viscosity and surface tension, b
contains the effect of the advection and external force densi-
ties like gravity, and P is the gradient operator. The Karush–
Kuhn–Tucker (KKT) conditions for this problem read[

A P
PT 0

]
︸ ︷︷ ︸

K

[
u
λ

]
=

[
−b
0

]
(4)

where λ are the Lagrange multipliers and correspond to
−∆tp — the pressure field multiplied by the time step size.
Observe that solving this problem fully couples the velocity
and pressure fields, unlike the projection method. The K ma-
trix is named the KKT matrix and is known to be symmetric
indefinite [NW99].

3.3. Navier-Stokes Equation Discretization

The motion of a Newtonian fluid is governed by the Navier-
Stokes equation,

ρu̇ =−(u ·∇)u+∇·T+ f, x ∈ Vfluid (5)

where Vfluid ⊂ R3 is the volume of the fluid, ρ is the mass
density, u is the unknown velocity field, and T is the Newto-
nian stress tensor:

T =−pI3×3 +µ
(
∇u+∇uT

)
, (6)

where p is the pressure field, µ is the dynamic viscosity coef-
ficient, and f is an external force term (for example gravity).
We assume constant mass density which yields a continuity
constraint in the form of incompressibility,

∇·u = 0, x ∈ Vfluid. (7)

Erleben et al. [EMB11] show that the weak formulation of
this system for a tetrahedral mesh with a staggered grid lay-
out is as follows:

M ∂u
∂t
−Bf−Pp+Du = 0, (8)

PT u = 0, (9)

where f =
[

fT
1 fT

2 . . . fT
NV

]
and

Mi j = I3×3

∫
Vfluid

ρφiφ jdV, (10)

Bi j = I3×3

∫
Vfluid

φiφ jdV, (11)

Di j =
∫
Vfluid

µ
(
∇φ

T
i ∇φ jI3×3 +∇φi∇φ

T
j

)
dV, (12)

P jk =
∫
Vk

∇φ jdV, (13)

where i, j = 1,2, . . . ,NV , k = 1,2, . . . ,NT and Vk is the vol-
ume of the kth tetrahedron. The shape functions φi : R3 7→R
fulfill the condition

φi(x j) =

{
1 if i = j
0 if i 6= j

(14)

and are piecewise linear over each element, which allows
us to evaluate the matrices above analytically. We apply the
finite difference method to discretize Equation 8, by substi-
tuting ∂u

∂t ≈
1
∆t

(
ut+∆t −u∗

)
and, by choosing an implicit

scheme for stability we obtain the following system of lin-
ear equations

Aut+∆t +b+Pλ = 0, (15)

PT ut+∆t = 0, (16)

where λ = −∆tp, A = M + ∆tD, and b = −Mu∗ + ∆tBf.
Solving this equation is equivalent to solving the quadratic
optimization problem (Equation 2), since its first order op-
timality conditions are equivalent to Equations 15 and 16.
We are interested in this perspective because it allows us to
incorporate nonlinear terms into the model, in particular sur-
face tension forces. Adding this term in the form of body
forces yields lower accuracy and leads to a stringent stabil-
ity time step restriction for surface-tension dominated flows.
Instead, we add the surface energy term U(x) to our objec-
tive function

1
2

uT Au+uT b+U(x+∆tu). (17)

We use a second-order Taylor series approximation for
U(x+∆tu)

U(x+∆tu)≈U(x)+∆t∇Uu+
1
2

∆t2uT∇∇Uu, (18)

which leads us to another quadratic optimization problem in
the standard form with

A′ = A+∆t2∇∇U, (19)

b′ = b+∆t∇U. (20)

Surface energy is proportional to the free surface area A of
the fluid U(x) = σA(x). The constant of proportionality σ

is called the surface energy density and it is a material con-
stant with different values on contact surfaces between each
pair of phases (liquid, gaseous and solid) in the system. In
order to evaluate the gradient and the Hessian of the energy
density (∇U and ∇∇U), we need to find the gradient and
the Hessian of the area for each interface triangle. We can
find symmetric formulas for those by applying a Taylor ap-
proximation to Heron’s formula for the area At of a triangle
t with vertices xi,x j,xk. Let us denote eα = xγ− xβ, where
(α,β,γ) is an even permutation of (i, j,k) and eα = ‖eα‖.
Lengthy calculations lead to the following results

∇αAt =
(e2

α
−e2

β
+e2

γ
)eβ−(e2

α
+e2

β
−e2

γ
)eγ

8At
, (21)

∇ααAt =
2e2

α
I−2eαeT

α
−(∇αAt )(∇αAt )

T

8At
, (22)
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∇αβAt =
(e2

γ
−e2

α
−e2

β
)I−eγeT

γ
+eαeT

α
+eβeT

β
−(∇αAt )(∇βAt)

T

8At
,
(23)

where ∇α is the gradient operator with respect to the posi-
tion of the vertex pα and∇αβ ≡∇α∇β. Note that Equation
21 is equivalent to the cotangent formula [PP93], commonly
used in discrete exterior calculus. A comparison of the fluid
simulation results using first-order and second-order surface
energy approximations is presented in Section 4.1.

We have presented a finite element discretization of
the Navier-Stokes equation, formulated in the form of a
quadratic optimization problem, which fully couples the
pressure and velocity fields and allows us to accurately in-
clude surface tension forces in our model.

3.4. Pressure Stabilization

In some cases, the matrix P might not have full column rank,
making the KKT matrix singular. In the finite element litera-
ture this is referred to as locking. To circumvent this problem
we add a stabilization term to the KKT system (closely re-
lated to the concept of regularization in the field of machine
learning and inverse problems).

We apply the idea of pseudo-compressibility [She97] to
stabilize the Navier–Stokes equations. There are different
versions of this class of pseudo-compressibility methods.
However, the version we use replaces the continuity con-
straint∇·u = 0 with

∇·u− ε

ρ
∇2 p = 0 (24)

where ε is termed the stabilization parameter and is related
to the time step one is using. Shen [She97] suggests using
ε≈ ∆t.

We can discretize this modified continuity equation using
a finite volume method

0 =
∫
Vfluid

(
∇·u− ∆t

ρ
∇2 p

)
dV ≈ PT u−∆tSp. (25)

The formulation of the matrix P has already been shown in
Section 3.3. In order to evaluate the second term, we split the
volume integral into the sum of integrals over each tetrahe-
dron and apply Gauss’ theorem, which yields

∆t
ρ

∫
Vfluid

(
∇2 p

)
dV =

∆t
ρ

∑
k

∑
l

∫
Akl

(∇p ·nkl)dA, (26)

where Akl is a face of the kth tetrahedron, shared with the lth

tetrahedron, and nkl is the normal vector to Akl . Now, assum-
ing that the pressure field is discretized at the barycenters
of the elements in our mesh we can approximate the term
∇p ·nkl on Akl . We do it by evaluating the term p(x+ dn)
using Taylor approximation

p(x+dn)≈ p(x)+(∇p(x) ·n)d. (27)

Figure 4: The distance dk from the barycenter of a tetrahe-
dron k to its face Akl is four times smaller than its height
hk relative to that face. The volume of this tetrahedron Vk =
1
3 hkAkl , hence dk =

3Vk
4Akl

. Analogously, dl =
3Vl
4Akl

. From this,
we have that the distance between the barycenter, in the di-
rection orthogonal to Akl equals dkl = dk +dl =

3
4

Vk+Vl
Akl

.

From this

∇p ·nkl ≈
pl− pk

dkl
, (28)

where dkl is the distance between the barycenters of the kth

and the lth tetrahedra projected onto nkl . This is a good ap-
proximation as long as the barycenters of tetrahedra k and
l project onto the same point on Ak j. Fortunately, the DSC
method optimizes the mesh to favor this property. This ap-
proximation has been used previously by Chentenez et al.
[CFL∗07], and similar approximations are also used in com-
putational fluid dynamics [VM95].

We can express the formula shown in Equation 28 using
the area of Akl and the volumes of its adjacent tetrahedra

dkl =
3
4

Vk +Vl
Akl

(29)

(see Figure 4 for the explanation). Hence

∆t
ρ

∫
Vfluid

(
∇2 p

)
dV ≈ ∆t

ρ
∑
k

∑
l

Akl
dkl

(pl− pk) . (30)

For the sake of brevity, let us denote

δkl =
Akl
dkl

=
4
3

A2
kl

Vk +Vl
. (31)

This way we can write the matrix S as

Skl =
1
ρ

{
δkl if k 6= l
−∑m6=k δkm if k = l , (32)

where δkl is given by Equation 31 if tetrahedra k and l share
a face, or otherwise equals 0. Such a pressure stabilization
term relaxes the incompressibility constraint by allowing
limited volume exchange between adjacent tetrahedra, while
keeping the total volume of the fluid constant.

We can easily include this term in our KKT system (Equa-
tion 4) by replacing the continuity constraint PT u = 0 with
Equation 25, obtaining[

A P
PT S

][
u
λ

]
=

[
−b
0

]
. (33)
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The comparison of the fluid simulation results using this
pressure stabilization scheme and the one by Misztal et al.
[MBE∗10] is presented in Section 4.1.

3.5. Using a Preconditioned Iterative Solver

The KKT system solving step was the main bottleneck in the
previous work [EMB11]. The fluid simulation method would
spend up to 70% of the computation time solving the linear
system using the Cholesky decomposition method. This is
why we decided to use an iterative solver in our work. The
indefiniteness of the modified KKT-matrix may cause nu-
merical problems when we want to solve our system of lin-
ear equations. Ideally we would like to apply a scheme like
the Conjugate Gradient (CG) method. However, CG typi-
cally does not converge well for indefinite systems.

Typically MINRES, SYMMLQ [PS75] or GMRES
[SS86] are used instead of CG when dealing with an in-
definite matrix. We use the Generalized Minimum Resid-
ual (GMRES) method. It is similar to CG except it keeps a
memory limited local storage of vectors spanning the Krylov
space that is being explored [Saa03]. One can find off-the-
shelf GPU implementations of GMRES which can boost the
performance with almost no programming effort. We use
CUSP [BG10] as our GPU solver.

The matrix K is not diagonally dominant, so we can not
use the well-known Jacobi preconditioner. Instead, in order
to improve the GMRES method’s convergence rate, we ap-
ply a diagonal approximation of Murphy’s block precondi-
tioner [PTCL03]. It is based on the idea of using a diagonal
version of the Schur complement as a preconditioner

Pschur =

[
A 0
0

(
S−PA−1PT

)] (34)

The diagonal approximation of this preconditioner would be

Pdiag =

[
diag(A) 0

0 diag
(

S−P(diag(A))−1 PT
)] (35)

This preconditioner is inexpensive to compute. Furthermore,
Pdiag is trivial to invert. Hence we solve the preconditioned
system

P−1
diagK

[
u
λ

]
= P−1

diag

[
−b
0

]
. (36)

In our experiments this seems to work well in combination
with GMRES (see Figure 5 for convergence plots).

3.6. Solid Boundaries

In the computer graphics community there are two popular
choices of boundary condition equations at the contact sur-
face between the fluid and the solid boundaries. The free-slip
condition states that at the solid boundaries the normal ve-
locity of the fluid must be 0 (in case the solid wall is static) or

Figure 5: Typical convergence behavior for a GMRES
solver using our preconditioner (red line) and without a pre-
conditioner (blue line) in a flow dominated by surface ten-
sion: the horizontal axis shows the number of GMRES itera-
tions and the vertical axis – the relative residual. In this ex-
ample, preconditioning helps GMRES converge to a desired
final residual of 10−4 in as few as 20 iterations.

must match the normal velocity of the solid. This boundary
condition is a popular choice for fluids with low viscosity
values. The no-slip condition states that at the solid bound-
aries, the fluid does not move relative to the boundary (its
velocity matches that of the solid). This boundary condition
is favored when modeling fluids with high-viscosity values.
In our experiments, we have been using the former approach,
although implementation of a no-slip condition is also pos-
sible in our framework.

Let us focus on a static solid wall W ⊂ R3 (including
moving solids is straight-forward and only changes the left-
hand side part of our KKT system). Let us denote the set of
all fluid vertices in contact with the solid boundary as

C = {k : pk ∈ ∂W} , (37)

where pk is the position of the kth vertex. We may now write
the free-slip solid boundary condition for a vertex k ∈ C as

nT
k uk = 0 ∀k ∈ C, (38)

where uk is the fluid’s velocity at the kth vertex and nk is
the normal to the boundary at pk. Given the velocity field
u∈R3NV we may now define the boundary condition at solid
walls as

Cu = 0 (39)

where C ∈ R‖C‖×3NV . Now we may add the solid boundary
conditions to our optimization problem as a hard constraint

ut+∆t = argmin
u

1
2

uT Au+uT b (40)

subject to

PT u = 0 (41)

Cu = 0 (42)
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This results in a KKT-matrix

K′ =

 A P CT

PT
εS 0

C 0 0

 (43)

This is clearly a symmetric indefinite matrix. The C-matrix
has full row rank and therefore the KKT-matrix K′ is nonsin-
gular. For such a KKT-matrix, we modify our preconditioner
as follows

P′diag =

[
Pdiag 0

0 diag
(
−CT (diag(A))−1 C

)] (44)

3.7. Multiple phases

One can easily adapt the DSC method so that it handles mul-
tiple phases. Instead of having just two labels for tetrahe-
dra (inside and outside), one can use an arbitrary number of
labels, each representing a different phase. This allows us
to simulate several, immiscible fluids with different density,
surface tension and viscosity values.

Since each tetrahedron in the mesh is occupied by just one
fluid, the solver remains essentially unchanged. We apply
full-slip boundary conditions on the contact surface between
each pair of interacting fluids, meaning that the vertices on
the interface between two fluids are given freedom to move
in every direction. The discretization of the Navier-Stokes
equation presented in Section 3.3 remains valid when we as-
sociate different density, viscosity and surface energy den-
sity values with different elements. The only part that needs
changing is the pressure stabilization term. In order to avoid
exchanging volume between two different fluids, we modify
the matrix S (given by Equation 32) as follows

Skl =
1
ρi

{
δkl if k 6= l
−∑m6=k δkm if k = l , (45)

where δkl is given by Equation 31 if tetrahedra k and l share
a face and belong to the same fluid (have the same label i),
or otherwise equals 0.

4. Tests and Results

4.1. Viscosity

In order to validate our viscosity model, we have run a sim-
ple experiment, in which a Stanford bunny model, given dif-
ferent viscosity coefficient values, deforms freely due to the
surface tension force (Figure 6). The results of the experi-
ment follow the intuition: when the viscosity coefficient is
low, the fluid volume deforms rapidly, however it takes a
long time to lose its kinetic energy and keeps oscillating;
as we increase the viscosity coefficient, we introduce more
damping — the deformation progresses more slowly and the
initial shape smoothly transitions into an oval, and further on
— into a sphere.

Figure 6: Stanford bunny model deforming in zero gravity
due to the surface tension forces after (from the left to the
right) 1, 2 and 3 seconds. The fluid’s viscosity, from the top
to the bottom: µ = 0 P (the unit of viscosity), µ = 0.1 P and
µ = 1 P.

Figure 7: A uniformly (top row) and non-uniformly (bot-
tom row) tessellated cube in zero gravity deforming due to
surface tension forces. Rather than deforming directly into
a sphere, the blob of fluid oscillates rapidly between an
octahedron-like and a cube-like shape until its kinetic en-
ergy dissipates and it becomes spherical. Notice that that
non-uniform tessellation of the initial volume of fluid does
not affect the behavior of the fluid significantly, nor does it
introduce ghost forces.

Figure 8: Capillary waves experiment results with first-
order surface energy term (top row) and with the previous
pressure stabilization scheme from [MBE∗10] (bottom row).
In the former case, the behavior of the fluid is similar to that
presented in Figure 7, however, noticeable asymmetry and
slight drift emerge. In the latter case, simulation quality is
significantly lower and the capillary waves are not captured
correctly.
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4.2. Capillary waves

One of the applications requiring both low numerical dif-
fusion and accurate treatment of the surface tension forces
is the simulation of capillary waves. The discussion of
the problem and benchmark results have been provided by
Brochu et al. [BBB10]. We have repeated one of their ex-
periments to see how our method deals with this problem.
Our results are in agreement with previous work (they are
presented in Figure 7). Note that the simulation results do
not depend significantly on the initial tessellation of the fluid
volume. This is the case, however, in the earlier approaches
by Misztal et al. [MBE∗10] and Erleben et al. [EMB11] (as
shown in Figure 8). While using the first-order surface en-
ergy approximation leads to generally sane results, the free
surface of the fluid quickly becomes visibly asymmetric, and
the fluid volume begins to drift. Using the pressure stabiliza-
tion scheme from [MBE∗10] dramatically deteriorates the
simulation quality, introduces ghost forces (causing the drift
of the fluid) and practically prevents us from capturing the
capillary effects at all.

4.3. Other experiments

In order to verify our model, we have performed a “crown”
experiment in which a spherical droplet falls into a shal-
low layer of fluid. The results of the simulations are shown
in Figure 9 and they follow the intuition. Observe that
proper handling of thin sheets of fluid comes naturally in
our method.

Figures 1 and 10 present the results of our experiments
with multiple immiscible fluids: in particular water and oil.
Each type of contact between fluid, solid and gaseous phases
is assigned different surface energy densities. We observe
qualitatively different behavior in the different phases.

4.4. Performance

The statistics of our simulations are presented in Table 1.
The timings are comparable to other finite element based
simulation methods [WRK∗10]. By applying an iterative
solver, we have significantly decreased the time spent on
solving the KKT system. The DSC method’s mesh improve-
ment functionality seems to work robustly, particularly for
single phase simulations, where it allows us to keep most
of the dihedral angles in the range 10◦ − 160◦ except for
the times when collisions occur. Those times, unfortunately,
tend to introduce low quality tetrahedra which might not be
removed immediately. While the fluid simulation method
seems to deal with such elements rather well, they nega-
tively affect the performance during the advection step. We
are planning to address this issue by investigating more so-
phisticated mesh refinement schemes.

We have run all our experiments on a machine with an
Intel R© CoreTM i7 CPU X 980 3.33GHz with an NVIDIA R©
GeforceTM GTX580 GPU.

5. Summary and Discussion

The distinguishing characteristic of our scheme is that it is
Lagrangian with an explicit interface representation, yet also
volumetric, using a single irregular grid for both simulation
as well as tracking and handling collisions of parts of the in-
terface. In this work, we have demonstrated that the method
can deal with multiphase flows and that the qualitative be-
havior of the simulated fluid is as expected.

Our new pressure stabilization strategy resulted in lower
numerical diffusion than in [MBE∗10, EMB11], allowing
us to capture the capillary waves correctly and making
our simulations of surface tension dominated flows on par
with the state-of-the-art methods [BBB10, TWGT10]. Thin
sheets are handled accurately without the need for any spe-
cial treatment. Furthermore, our new pressure stabilization
scheme made the method insensitive to the mesh element
size, removing the problem of ghost forces present in ear-
lier works when the initial tessellation of the fluid volume
is non-uniform. This way, we have opened the doors for an
adaptive-resolution, multi-scale fluid simulation using our
framework.

Compared to [MBE∗10], we have also improved the treat-
ment of solid boundaries. The presented formulation works
well with the iterative linear system solver and simplifies
adding moving solids to the model in the future, in contrast
to the approach presented in [MBE∗10]. The use of a precon-
ditioned iterative solver allows us to decrease the amount of
time spent on solving the linear system, which was the bot-
tleneck in [EMB11].

In the future we would like to further improve the perfor-
mance of our fluid simulation method. One way of doing that
would be by using a Krylov solver which takes symmetry
into account (unlike GMRES) which would help obtain bet-
ter quality results in a shorter time. We are also planning to
investigate different mesh refinement schemes, which would
allow us to improve the computational mesh quality when
changes in the surface mesh topology take place. We would
also like to explore the applicability of our method in simu-
lating interactions between fluids and deformable solid bod-
ies.
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