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Abstract
This paper gives a simple mathematical framework for 2D shape interpolation methods that preserve rigidity. An
interpolation technique in this framework works for given the source and target 2D shapes, which are compat-
ibly triangulated. Focusing on the local affine maps between the corresponding triangles, we describe a global
transformation as a piecewise affine map. Several existing rigid shape interpolation techniques are discussed and
mathematically analyzed through this framework. This gives us not only a useful comprehensive understanding of
existing approaches, but also new algorithms and a few improvements of previous approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

Two-dimensional shape interpolation/deformation tech-
niques have been widely used for many practical applica-
tions. For example, Toon Boom and Adobe After Effects are
commercially available software tools, which provide func-
tions based on them. A big trend of the techniques lies
nowadays in a variety of the algorithms that preserve rigid-
ity [ACOL00, XZWB05, SZGP05, BBA08]. Another stream
provides the algorithms for computing high-quality shape-
preserving deformation for 2D or 3D interactive applica-
tions [IMH05, BS08, JBPS11].

We consider 2D shape interpolation between the two input
shapes: source and target. In general, when the two shapes
are given without boundary matching nor compatible trian-
gulation, we would need a preprocess to establish them. As
for this issue, [BBA09] is a good reference describing the
most relevant techniques along with their own approach. In
this paper we assume that each shape is triangulated, and
that one-to-one correspondence is established between the
triangles of the source and target shapes.

There are many approaches, including those mentioned
earlier, for 2D shape interpolation under the above assump-
tions. A typical scenario of these approaches came from the
seminal work of [ACOL00]: We first define a homotopy of
affine maps for each pair of the corresponding triangles of

the source and target objects, such that it connects the iden-
tity map and the local affine map that gives a bijection be-
tween the corresponding triangles. Let us call this homo-
topy local in this paper. Next we construct the homotopy
that gives global interpolation between the source and tar-
get. This homotopy is defined as a family of the piecewise
affine maps, each of which is derived from the affine maps
of the local homotopy through a certain energy minimization
process. This scenario works well and has inspired many re-
search works. However, from a practicality viewpoint, there
remain many things to be improved and polished. For exam-
ple, the following practical aspects of the methods should be
addressed: (a) controllability - how to add constraints to get a
better result?; (b) rotation consistency -how to treat large ro-
tations (> 180 degrees)?; and (c) symmetry - Can we make it
possible that the vertex paths for interpolation from shape A
to shape B are the same as from B to A? Recently [BBA08]
gave a formulation of rigid shape interpolation using normal
equations, presenting the algorithms that meet these require-
ments.

This paper presents a new mathematical framework for
the above homotopic approaches using affine maps. Un-
like [BBA08], we start with analyzing the local affine map
directly, and introduce a new local homotopy between the
affine maps. We also present the algorithms to achieve global
interpolation, each of which minimizes an energy func-

c© The Eurographics Association 2012.

DOI: 10.2312/SCA/SCA12/071-076

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SCA/SCA12/071-076


S. Kaji & S. Hirose & S. Sakata & Y. Mizoguchi & K. Anjyo / Mathematical Analysis on Affine Maps for 2D Shape Interpolation

tion with user-specified constraints. It is also discussed how
the algorithms meet the above practical requirements. We
demonstrate that our mathematical framework gives a com-
prehensive understanding of rigid interpolation/deformation
approaches. In particular we illustrate the power of this
framework with the animation examples obtained by several
different constraint functions.

2. Formulation overview

As mentioned above, we consider the source and target 2D
shapes that are to be interpolated, assuming that they are
compatibly triangulated. We denote the source shape made
of triangles by P=(p1, . . . , pn),(pi ∈R2), where each pi is a
triangle vertex. Similarly we denote the target shape by Q =
(q1, . . . ,qn),(qi ∈ R2), which are the triangle vertices. The
triangles are denoted by τ1, . . . ,τm, where τi = {i1, i2, i3} is
the set of the indices of the three vertices. Hence, the i-th
source (respectively, target) triangle consists of pi1 , pi2 , and
pi3 (respectively, qi1 ,qi2 , and qi3 ) for i1, i2, i3 ∈ τi.

Through sections 3 and 4, our local and global interpola-
tion techniques are developed as follows:

• For each pair of the source and the target triangles cor-
responding to τi, we initially get the affine map, denoted
by Âi, that maps the initial triangle to the target triangle,
where Âi is a 3×3-matrix. We then construct a homotopy
between the 2×2 identity matrix and the linear part Ai of
Âi (i.e., Ai ∈ GL+(2) and see its precise definition in the
next section). The homotopy is parameterized by t, with
t ∈ R.
• The collection of affine maps Âi’s can be considered as a

piecewise affine transformation from P to Q (see its pre-
cise definition in §4). We next construct a global homo-
topy between the inclusion map P ↪→ R2 and the piece-
wise affine transformation from P to Q, which will be de-
noted by {B̂i(t) ∈ Aff(2) | i ∈ {1,2, . . . ,m}} with t ∈ R
in section 4. It is obtained by minimizing a global error
function regarding the linear part Bi (of B̂i) and Ai along
with the user-specified constraint function.

3. Local theory

As described above, we begin with interpolating the local
affine transformation. We note that interpolating affine trans-
formation itself may have other interesting applications; see,
for example, [Ale02] and [SD92].

First of all, recall that there is a unique affine trans-
formation that maps a given triangle to another one.
Specifically, suppose that we are given three points
T (x1,y1),

T (x2,y2), and T (x3,y3) ∈ R2 and want to map
them onto T (x′1,y

′
1),

T (x′2,y
′
2), and T (x′3,y

′
3) ∈ R2 in this or-

der. Then the following 3×3-matrix

Â =

x′1 x′2 x′3
y′1 y′2 y′3
1 1 1

x1 x2 x3
y1 y2 y3
1 1 1

−1

(1)

is of the form

a1,1 a2,1 dx
a1,2 a2,2 dy

0 0 1

, and it represents the re-

quested affine transformation. We denote the group of the
two-dimensional affine transformations by Aff(2), which are
represented by 3× 3-matrices of the above form. We call

A =

(
a1,1 a2,1
a1,2 a2,2

)
as the linear part and dÂ =T (dx,dy) as

the translation part of Â and consider them separately for
interpolation. Interpolating the translation part can be ne-
glected (see the discussion in §4). We focus on interpolation
of linear transformation here. In general we may assume that
transformation is orientation preserving, that is, it does not
“flip” 2D shapes. We denote the group of the orientation pre-
serving linear transformations by GL+(2), which are repre-
sented by matrices with positive determinants.

A homotopy of a linear transformation A ∈ GL+(2) is a
series of matrices A(t) parametrized by time t ∈ R such that
A(0) = I and A(1) = A, where I is the identity matrix. For
example, the linear homotopy is given by

AL(t) := (1− t)I + tA,

where“:=” means the left hand side is defined by the right
hand side. This homotopy is not good; when, for example,
A = −I then A(0.5) = 0, which results in a collapse. We
therefore need to avoid those kind of undesirable behaviors
and to get better results.

In [ACOL00], the following method is proposed: By the
polar decomposition [SD92], we can write A = RθS, where
Rθ is the rotation matrix of angular θ ∈ (−π,π] and S a posi-
tive definite symmetric matrix. (Note that θ has choice up to
modulo 2π, which may cause a problem. We will discuss this
issue in §4.) The interpolated transformation at t is defined
to be

AP(t) := Rtθ((1− t)I + tS). (2)

It is claimed in [ACOL00] that this method produces visu-
ally the best result by comparing several methods.

Here we propose a new homotopy and compare it with
others based on mathematical analysis.

Non-degeneracy is a desirable property for “good” inter-
polation. In this sense the interpolated transformation should
always give an affine homeomorphism at any t. More pre-
cisely, the determinant should always be positive. Unfortu-
nately, none of previous methods satisfy it. In fact, we ob-
serve that the determinant of (2) can vanish;

detAP(t) = det(Rtθ((1− t)I + tS))

= detRtθ det((1− t)I + tS))

= ((λ1−1)t +1)((λ2−1)t +1),

where λ1 and λ2 are the singular values of A. Hence,
detAP(t) becomes negative for some t when λ1 6= 1 or
λ2 6= 1.
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We propose an alternative method which does satisfy
the desirable property: As mentioned above, let A = RθS ∈
GL+(2). The interpolated transformation AE(t) ∈ GL+(2)
for t ∈ R is then defined as

AE(t) := Rt
θSt . (3)

Note that Rt
θ is nothing but Rtθ and St = exp(t logS) is well-

defined since S is a positive definite symmetric matrix (see
Appendix). This method, which uses both the polar decom-
position and the exponential map, can be seen as a combina-
tion of the ideas in [Ale02] and [SD92].

We observe that detAE(t) is actually positive. Recall that
for any matrix B, det(exp(B)) = exp(tr(B)) and, in particu-
lar, det(exp(B))> 0. Then for any t ∈ R,

detAE(t) = det(Rt
θSt) = detRt

θ detSt = exp(tr(t logS))> 0.

Furthermore, one can see that detAE(t) is monotonic with
respect to t; we compute

d
dt

detAE(t) =
d
dt

(λt
1λ

t
2) = log(λ1λ2)exp(t log(λ1λ2))

where λ1 and λ2 are the singular values of A. Since
exp(t log(λ1λ2)) > 0, we deduce that d

dt detAE(t) either
is constantly 0 when λ1λ2 = 1 or otherwise never van-
ishes. The monotonicity of detAE(t) implies that of the area
change during interpolation. This is also a nice property of
our method. Figure 1 and the animation example in the sup-
plemental video illustrate these advantages.

Figure 1: A triangle is extrapolated from t = 0 through t =
1.35. The top row is obtained by (2), while the bottom is
by (3). In the top, the triangle collapses around t = 1.1 and
then turns over. In the bottom, the triangle never collapses.
Please enlarge to see details.

Several other methods are discussed in [ACOL00] such as
those based on SVD. One can show that none of them sat-
isfy the non-degeneracy by a similar argument. We therefore
adopt AE(t) in (3) for the local homotopy in our method.

Remark

In [ACOL00], the following properties for local homotopy
were claimed to be desirable:

(a) The homotopy should be symmetric with respect to t.
(b) The rotational angle and scale should change linearly.
(c) The triangle should keep its orientation, i.e. should not

be reflected.

(d) The resulting vertices’ paths should be simple.

As we mention in §4, (a) can be realized at global interpola-
tion level for whatever local homotopy we use. Through the
above discussion, we know that the method in [ACOL00]
does not satisfy (c). As for (b), the scale change is not even
monotonic. On the other hand, our method satisfies (c) and
can easily achieve (b), by adjusting the speed of time pa-
rameter t. As for (d), we would need to estimate how “sim-
ple” a path is. It is possible to define a mathematical eval-
uation indicators with an analogy to topological invariants
of curves such as winding numbers. We also find that our
method is satisfactory in terms of those indicators. We will
address these issues in a separate paper.

4. Global interpolation

To achieve global interpolation between the two shapes, we
have to assemble local translations considered in the previ-
ous section. In our context, this means that we represent a
global transformation as a piecewise affine transformation.
More precisely, we construct a collection of affine maps

B(t) := {B̂i(t) ∈ Aff(2) | i ∈ {1,2, . . . ,m}}, (t ∈ R)

such that

• B̂i(t)’s are consistent on the edges. More precisely,
B̂i(t)pk = B̂ j(t)pk (∀t ∈ R) whenever k ∈ τi∩ τ j.

• B(t) interpolates P and Q, i.e., B(0)pk = pk and B(1)pk =
qk, where B(t)pk = B̂i(t)pk for k ∈ τi.

• Bi(t) is “close” to Ai(t), where Bi(t) is the linear part of
B̂i(t) and Ai(t) is the local homotopy obtained in the pre-
vious section.

• Each Bi(t) varies continuously with respect to t.

The following observation is vital in this section. Let vi(t) :=
B(t)pi,(1 ≤ i ≤ n) be the image of the initial vertices. The
piecewise affine transformation B(t) which maps pi’s to
vi(t)’s is uniquely determined by (1) and its entries are lin-
ear with respect to vi(t)’s. Therefore, giving B(t) and giving
vi(t)’s are equivalent and we identify them and interchange
freely in the following argument.

We will give a mathematical framework to obtain global
interpolation from given local homotopies. For a moment we
consider a fixed t. We then need two more ingredients other
than local homotopy data; The first one is a set of local error
functions

Ei : GL+(2)×GL+(2)→ R≥0, (1≤ i≤ m)

which is positive definite and quadratic with respect to the
entries of the second GL+(2). Intuitively, it measures how
different the given two local transformations are. The second
one is a constraint function

C : (R2)n→ R≥0

which is also positive definite and quadratic. It controls the
global translation. Furthermore, with this function, we can
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incorporate various constraints on the vertex path as we will
describe later.

If we are given local error functions for each triangle
τi,(1 ≤ i ≤ m) and a constraint function, we combine them
into a single global error function

Et(B) :=
m

∑
i=1

Ei(Ai(t),Bi(t))+C(v1(t), . . . ,vn(t)),

where we regard B(t) (or more precisely, the entries of Bi(t)
which are linear combinations of vi(t)’s) as indeterminants
to be solved. For each t, the minimizer of Et is the set

{B(t) | Et(B) attains the minimum at B(t)},

which is equal to{
B(t)

∣∣∣∣ ∂

∂vi(t)
Et(B) = 0, (1≤ ∀i≤ n)

}
since Et is positive definite quadratic form with respect to
vi(t)’s. The minimizer may have positive dimension in gen-
eral, however, one can modify the constraint function C such
that it becomes a single point, as we see by concrete exam-
ples later. The single minimizer B(t) is the piecewise affine
map that we take as a global interpolation method.

For example, the error function used in [ACOL00] is ob-
tained by setting

EF
i (Ai(t),Bi(t)) := ||Ai(t)−Bi(t)||2F ,

where the Frobenius norm of a matrix M = (mi j) is ‖M‖2
F =

∑
i, j

m2
i j . It measures how the local transformation and the fi-

nal global transformation differ as linear maps. The result-
ing global error function is invariant under translation and
hence requires two dimensional constraints to get a unique
minimizer. For example, [ACOL00] proposes the following
constraint function:

C(v1(t), . . . ,vn(t)) = ||(1− t)p1 + tq1− v1(t)||2.

It produces a fairly satisfactory global transformation when
the constraint function is very simple and rotation is “homo-
geneous.” However, this method fails if 1) we want to put
some constraints (see Figure 2), or 2) the expected rotation
angles vary beyond 2π from triangles to triangles (see Figure
3):

To achieve more flexibility of shape deformation and eas-
ier manipulation by a user, [II09] and [IMH05] considered
error functions which are invariant under similarity transfor-
mation, i.e., rotation and scale. An error function which is
slightly different from them is proposed in [WW95] as

ES
i (Ai(t),Bi(t)) := min

s,δ∈R ∑
k∈τi

‖sRδAi(t)pk−Bi(t)pk‖2 ,

which measures how different the two sets of points
{Ai(t)pk} and {Bi(t)pk} are up to similarity transformation.
In [II09] and [IMH05] they used a constraint function which

Figure 2: An example of global interpolation obtained by
EF

i with the constraints on the vertices loci indicated by the
curves. In the intermediate frames around t = 0.3 and t =
0.6, extreme shrink and flip of triangles are observed.

Figure 3: An example of global interpolation obtained by
EF

i . To obtain smooth interpolation between the leftmost and
rightmost figures, local transformations should deal with ro-
tation angles larger than π, but EF

i fails to make it.

forces the vertex loci to be on the specified curves. We will
see the detailed construction later.

For the purpose of finding a best matching global trans-
formation with given local transformations, it is better to use
a metric in the space of transformations, rather than in the
space of points. Thus, we propose the following local error
function, which is a slight modification of ES

i :

ER
i (Ai(t),Bi(t)) := min

s,δ,∈R
‖sRδAi(t)−Bi(t)‖2

F , (4)

which measures how different Ai(t) and Bi(t) are as linear
maps up to rotation and scale. We prove in Appendix that the
above function is a positive definite quadratic form. Since
it is invariant under similarity transformation, it avoids the
flaws of EF

i in the cases of 1) and 2); Compare Figure 4 with
Figure 2, and Figure 5 with Figure 3, respectively. Also see
the supplemental video.

Now we give a concise list of the constraints we can in-
corporate into a constraint function C(v1(t), . . . ,vn(t)):

• Some points must trace specified loci (for example, given
by B-spline curves). This is realized as follows: let ui(t)
be a user specified locus of pi with ui(0) = pi and ui(1) =
qi. Then add the term ci||ui(t)−vi(t)||2, where ci > 0 is a
weight.

• The directions of some edges must be fixed. This is real-
ized by adding the term ci j||vi(t)−v j(t)−ei j(t)||2, where
ei j(t) ∈R2 is a user specified vector and ci j > 0 a weight.
This gives a simple way to control the global rotation.

• The barycenter must trace a specified locus uo(t). This
is realized by adding the term co||∑n

i=1 vi(t)/n−uo(t)||2,
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Figure 4: An example of global interpolation obtained by ER
i

with the same input data as Figure 2. By allowing rotational
and scale variance without any penalty in the error function,
we can get more flexible control of the output animation.

Figure 5: An example of global interpolation obtained by ER
i

with the same input data as Figure 3. The proper rotation
angles for the local triangles are automatically chosen by
minimizing the global error function.

where co > 0 is a weight. This gives a simple way to con-
trol the global translation.

Likewise we can add as many constraints as we want.

Improvements

Here we give three modifications to get better outcome and
to allow further user control.

In assembling local error functions, we can take weighted
sum instead of ordinary sum. We can put large weights
to more important parts (triangles). For example, the more
the area of triangle is, more important its rigidity becomes.
Hence, it is reasonable to weight by the areas of the initial
triangles:

Ei← Area(∆(pi1 , pi2 , pi3))Ei (i1, i2, i3 ∈ τi).

This was already discussed in [XZWB05] and [BBA08] as
well. Figures 6, 7 and the animation examples associated il-
lustrate this effect. Of course it’s also possible to manually
specify which parts are important, if necessary.

We proposed to use the local error function ER
i in (4) for

a general use. However, we may not want some parts of the
2D shape to rotate or to scale (such as a face of a character).
In such cases, we can use a balanced local error function

wiE
F
i (t)+(1−wi)E

R
i (t),

where wi ∈ [0,1]. If we put a large wi, the rotation and scale
of the triangle τi would be suppressed. We thus believe that
our framework provides more user controllability over pre-
vious approaches.

In addition, as is shown in [BBA08], we can symmetrize

Figure 6: An example of global interpolation obtained by
ER

i without weight. Since all parts are treated equally, the
larger triangles yield to strain as much as the smaller ones

Figure 7: An example of global interpolation obtained by
ER

i weighted with the areas of the initial triangles. Since the
rigidity of larger parts is more counted, it produces natural
interpolation.

the global interpolation by symmetrizing the global error
function. Let E(t) be any global error function for any lo-
cal homotopies A−1

i (t). Then define a new error function by

E′(t) := E(t)+E−1(1− t).

This is symmetric in the sense that it is invariant under the
substitution Ai ← A−1

i and t ← 1− t. That means, it gives
the same minimizing solution if we swap the initial and the
terminal polygons and reversing time.

5. Discussions and future work

This paper describes a simple framework for rigid shape in-
terpolation between 2D shapes, where global interpolation
is defined with the homotopy as a family of the piecewise
affine maps. We have shown that most of the rigid interpo-
lation methods are characterized in this framework, while
providing several new algorithms to improve quality and us-
ability of the existing methods.

In our framework, users can interact and control an out-
come by, for example, specifying loci of vertices. This is
achieved by putting the corresponding constraints to the
global error function. The constraints are, however, handled
only in the global interpolation stage without considering lo-
cal rigidity. It is preferable that these constraints can also be
specified in the local interpolation stage.

Our interpolation method for the local transformations as-
sures that it does not flip images. Our global interpolation
method, however, may not carry this property. We thus need
to clarify when such an undesirable situation occurs, and
then should develop a new technique to avoid it.

There are a number of future avenues for this work. For
example, our method can be easily and directly extended into
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3D cases. We can also develop finer mathematical evaluators
than determinant which capture various aspects of an inter-
polation method and enable us to compare different meth-
ods. We will discuss these in a sequel to this paper.

6. Appendix

Well-definedness of the exponential: We prove that the ex-
ponential in (3) is uniquely determined and can be com-
puted using SVD. Recall the singular value decomposition
[GvVL96] gives a factorization A = RαDRβ, where Rα and
Rβ are rotation matrices and D is a diagonal matrix. The en-
tries of D is called the singular values of A. Then, the polar
decomposition is obtained as

Rθ = Rα+β, S = R−βDRβ.

Since exp(U−1BU) = U−1 exp(B)U for any U,B ∈ GL(2),
we have St = R−βDtRβ.

Closed form for the similarity invariant error function:
We give a closed form for the similarity invariant metric (4).

min
s,δ∈R

‖sRδA−B‖2
F = ‖B‖2

F −

∥∥∥B · TA
∥∥∥2

F
+2det

(
B · TA

)
‖A‖2

F

.

This is positive definite quadratic with respect to the entries

of B. We prove the above equality: Put J =

(
0 −1
1 0

)
and

we have

min
s,δ∈R

‖sRδA−B‖2
F = min

x,y∈R
‖(xI + yJ)A−B‖2

F .

Define 〈A,B〉 := tr(A · TB), then we have 〈JA,A〉= 0 and

‖(xI + yJ)A−B‖2
F = 〈xA+ yJA−B,xA+ yJA−B〉

=x2 ‖A‖2
F −2x〈A,B〉+ y2 ‖A‖2

F −2y〈JA,B〉+‖B‖2
F

=‖A‖2
F

(
x− 〈A,B〉
‖A‖2

F

)2

+‖A‖2
F

(
y− 〈JA,B〉
‖A‖2

F

)2

+‖B‖2
F −
〈A,B〉2 + 〈JA,B〉2

‖A‖2
F

≥‖B‖2
F −

∥∥∥B · TA
∥∥∥2

F
+2det

(
B · TA

)
‖A‖2

F

.

This proof is due to [Och12].

Efficiency of finding the minimizer: We show that find-
ing the minimizer of a global error function is efficient
enough. Since the global error function is positive definite
quadratic form, it can be written as a function of v(t) =
T(v1(t)x,v1(t)y, . . . ,vn(t)x,vn(t)y) ∈ R2n as

E(v(t)) = Tv(t)Gv(t)+ Tv(t)u(t)+ c,

for some (2n×2n)-symmetric matrix G, u(t)∈R2n, and c∈
R. Since ∂

∂v(t) (
Tv(t)Gv(t)+ Tv(t)u(t)+ c) = 2Gv(t)+u(t),

we have that v(t) =− 1
2 G−1u(t) is the minimizer. Note that

G is time-independent and we need to compute G−1 just
once for all frames as in [ACOL00].
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