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Abstract

Motion capture data has been pivotal to the success of creating realistic animation for human characters. There
are a number of public full-body motion databases available, but large and heterogeneous databases for hand
articulations are not available. In this paper, we introduce a novel acquisition framework for acquiring a wide
range of high-fidelity hand motion data. Our key idea is to leverage marker position data recorded by a twelve-
camera optical motion capture system and RGB/Depth data obtained from a single Microsoft Kinect camera. We
formulate the hand motion capture problem in a nonlinear optimization framework by maximizing consistency
between the reconstructed motion and observed measurement. We introduce an efficient optimization technique to
estimate the optimal hand pose that best matches observed data. We have demonstrated the power and effectiveness
of our system by capturing a wide variety of delicate hand articulations, even in case of significant self-occlusion.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

One of fundamental challenges in computer graphics has
been the realistic animation of the human hand. One way
to address this challenge is data driven approaches, where
sets of example motions are available for editing, retar-
geting, interpolation and composition. However, acquiring
high-fidelity hand motion data is difficult because it requires
modeling delicate hand articulations in a high-dimensional
space (usually higher than 25 degrees of freedom).

Decades of research in computer graphics have explored a
number of approaches for capturing articulated hand motion
data, including marker-based motion capture, glove-based
systems, and image-based systems. Despite the efforts, ac-
quiring high-fidelity hand motion data remains a challeng-
ing task. For example, marker-based motion capture sys-
tems such as Vicon [Vic] often produce ambiguous solu-
tions because of significant self-occlusion caused by cam-
eras. Glove-based systems such as CyberGlove [Cyb] are
occlusion-free but recorded motion data is often noisy and
fails to capture delicate hand articulations with high pre-
cision. Glove-based systems are also cumbersome and un-
wieldy, thereby impeding the subject’s ability to act out the
motion. Image-based systems offer an appealing alternative

to hand motion capture because they require no markers, no
gloves, or no sensors. However, current image-based sys-
tems are often vulnerable to ambiguity caused by significant
self-occlusion and a lack of discernible features on a hand.

Figure 1: Our system automatically captures high-fidelity
hand motion data by combining marker position data and
RGB-D image data. (top) reference image data; (bottom) the
reconstructed poses.
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The primary contribution of this paper is to introduce a
novel acquisition framework for acquiring high-fidelity hand
motion data (see Figure 1). Our key idea is to leverage high-
resolution marker position data recorded by a twelve-camera
optical motion capture system [Vic] and RGB/Depth (RGB-
D) image data obtained by a single Microsoft Kinect camera.
We choose the Kinect camera for hand performance acqui-
sition because it is low-cost and portable and requires no
controlled illumination. More importantly, the two capturing
devices are complementary to each other as they focus on d-
ifferent aspects of hand performances. On one hand, marker-
based motion capture systems can obtain high-resolution 3D
position data at very high frame rates (up to 2000 Hz) but
due to their low spatial resolution (usually 20 to 30 mark-
ers) they are often not capable of reconstructing 3D hand
articulations accurately, particularly in case of significan-
t self-occlusion. On the other end, a RGB-D camera such
as Kinect can capture per-pixel information for both color
and depth data. However, the data from the Kinect camera is
often noisy and sampled at a much lower frame rate.

We formulate the hand mocap problem in a nonlinear opti-
mization framework by maximizing consistency between the
reconstructed motion and observed measurement, including
both 3D marker position data from the marker-based system
and RGB-D image data from the Kinect camera. We intro-
duce an efficient optimization technique to estimate the op-
timal hand pose that best matches observed data. We have
demonstrated the power and effectiveness of our system by
capturing a wide range of complex hand motion data, in-
cluding everyday hand gestures, American Sign Languages
(ASL), and hand grasping and manipulation.

Currently there are a number of public full-body motion
capture databases available, such as [cmub] and [MRC∗07],
which have been pivotal in the development of data-driven
approaches for full-body motion modeling, synthesis and
control. But this is not the case for hand. The widely pop-
ular Columbia grasp database [GCDA09] includes a large
dataset of static grasping poses, which are created by auto-
matic grasp planning process instead of real world measure-
ment. One exception is the CMU CyberGlove Database [c-
mua], which contains a number of hand grasping motions
captured by CyberGlove systems. However, motion data ob-
tained from CyberGlove systems is often noisy and might
not be able to capture highly detailed and accurate hand ar-
ticulations. We hope our proposed work can contribute to the
creation of a comprehensive high-quality hand motion cap-
ture database and can stimulate research in data-driven ap-
proaches for hand motion modeling, synthesis and control.

2. Related work

Our system combines a marker-based motion capture sys-
tem and RGB-D image data for acquiring high-fidelity hand
motion data. We therefore focus our discussion in related
technologies for hand motion acquisition.

Marker-based Motion Capture. A popular approach to
hand motion capture is to use marker-based motion capture
systems [Vic], which track a sparse set of retro-reflective
markers (usually 20 to 30 markers) attached on hand and use
recorded marker position data to reconstruct 3D hand poses
across an entire sequence. Recent technological advances in
motion capture equipment have made it possible to acquire
3D motion data with stunningly high temporal resolution (up
to 2000 Hz), but due to significant self-occlusion they are
often not capable of acquiring high-fidelity hand motion da-
ta consistently. Another challenge for marker-based motion
capture systems is how to build temporal correspondences
for all visible markers over time. Automatic marker label-
ing, particularly for hand capture, remains challenging while
manually annotating markers over time is not only time con-
suming but also error prone.

Several researchers have recently explored how to sim-
plify the problem by reducing the markers used. For ex-
ample, Hovet and his colleagues [HRMO12] reconstructed
3D hand poses from a small number of markers via inverse
kinematics techniques, while keeping the perceived fideli-
ty. However, it is not clear if their technique can be applied
to acquiring a wide range of high-fidelity hand motion da-
ta shown in this paper, particularly when significant self-
occlusion occurs. An alternative is to use prior knowledge
embedded in a prerecord motion capture database to reduce
the number of markers required for articulated motion recon-
struction [CH05]. However, unlike full-body motion capture,
hand motion databases for detailed motions of the hand were
not available.

We propose to complement a marker-based mocap system
with RGB-D data obtained by a Kinect camera. This com-
bination significantly reduces ambiguity for 3D pose recon-
struction and enables us to capture hand motion even in case
of significant self-occlusion. In addition, our system is fully
automatic and requires no tedious manual user intervention
such as marker labeling and gap filling.

Image-based Motion Capture. One way to capture 3D
hand motion from images is model-based motion tracking
(e.g. [dLGFP11]), which initializes the 3D hand pose at
the starting frame and sequentially updates the 3D poses by
minimizing inconsistency between the hypothesized and ob-
served data. The approach, however, is vulnerable to ambi-
guities in image data caused by self-occlusion as well as a
lack of discernible features on hand. In practice, image ob-
servations alone are often noisy and insufficient to capture
high-fidelity 3D hand articulations.

An efficient way to reduce ambiguity is to utilize motion
priors embedded in prerecorded hand motion database. Thus
far, two different approaches have been taken, including gen-
erative approaches [WLH01, ZH03] and discriminative ap-
proaches [AS03, WP09, RKK10]. However, data-driven ap-
proaches can only acquire motions that are similar to train-
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ing datasets, thereby significantly limiting their application
to hand motion capture.

Recently, Oikonomidis and his colleagues [OKA11] se-
quentially estimated one-hand pose configurations by find-
ing 3D hand poses that best match observations provided by
a RGB-D camera. Combining color and depth images for
hand tracking improves the accuracy of the tracking process.
However, as shown in our comparison experiment, the solu-
tion might still be ambiguous when significant self-occlusion
occurs. We address the challenge by complementing the
RGB-D camera with a marker-based motion capture system,
which enables us to accurately reconstruct hand poses even
in case of significant self-occlusion.

Glove-based Systems. Thus far, one of the the most reliable
options for hand capture has been glove-based devices be-
cause they are occlusion-free [Cyb,cmua]. For example, the
recent wireless CyberGlove II system [Cyb] can provide up
to 22 joint-angle measurements. However, glove-based sys-
tems suffer from several limitations. First and foremost, the
recorded data is often noisy and fails to capture delicate hand
articulations with high precision. Second, they require extra
devices to capture absolute 3D positions of the hand. Lastly,
glove-based systems are cumbersome and unwieldy, thereby
impeding the subject’s ability to perform the motion.
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Figure 2: Incomplete marker information caused by signif-
icant self-occlusion. The vertical axis shows the number of
visible markers over time for a motion sequence of 45,092
frames (about 6.2 minutes) captured by a twelve Vicon cam-
era system. On average, about 15 markers out of 21 markers
are visible for each frame. To capture hand motion data, te-
dious work is required to manually label the markers and fill
the gap for missing markers over the whole motion sequence.

3. Motivations and Overview

This section briefly describes our idea of combing a marker-
based mocap system such as Vicon with a single RGB-D

camera such as Kinect for high-fidelity hand motion cap-
ture. Our idea is motivated by the current challenge in the
application of marker-based motion capture systems to hand
motion acquisition.

Figure 3: Marker placement for hand motion capture. In to-
tal, 21 markers are used in our experiment.

A major challenge for hand motion capture is incomplete
marker information caused by occlusion from Vicon cam-
eras. Figure 2 illustrates our concern about missing markers
for hand motion capture. In our experiment, we attached 21
markers on hand (For details, see Figure 3) and used a twelve
Vicon camera system to capture 3D hand performances for a
wide range of hand gestures. Figure 2 shows the number of
visible markers over time for a motion sequence of 45,092
frames (about 6.2 minutes). On average, about 15 markers
are visible for each frame. For some frames, the number of
visible markers is even lower than 8. Thus tedious work is
required to manually label the markers and fill the gaps for
missing markers over the whole motion sequence. In prac-
tice, it is almost impossible to obtain high-quality motion
data with manual annotation and intervention because many
markers might miss completely for long periods of time.

We solve the problem by complementing the marker-
based mocap system with RGB-D image data obtained from
a single Kinect camera. We choose the Microsoft Kinect
camera for hand performance acquisition because it is low-
cost, portable and non-intrusive. The Kinect camera allows
us to simultaneously capture depth data with a resolution
of 320× 240 and color image data with a resolution of
640× 480 at 30 frames per second based on infrared pro-
jection. We hypothesize that the information lost by missing
markers can be filled by per-pixel color and depth informa-
tion obtained from the Kinect camera. We develop a robust
acquisition framework that seamlessly combines marker po-
sition data and RGB-D image data for 3D hand capture. Our
system is fully automatic and does not require tedious mark-
er labeling and gap filling. In addition, our method can ac-
quire high-fidelity hand articulation data in the same frame
rate as the marker-based motion capture system.

We formulate the motion capture problem in a nonlinear
optimization framework by minimizing inconsistency be-
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Figure 4: System overview.

tween the reconstructed motion M and the observed data O:

argmin
M

E(M,O) (1)

where the reconstructed motion M = [q0, ...,qT ] specifies
hand poses qt over time. The observed data O = [o0, ...,oT ]
includes both marker position data from Vicon and RGB-D
image data obtained by the Kinect camera.

An overview of our method is shown in Figure 4. We be-
gin with the calibration process, including subject calibra-
tion and camera calibration (Section 4). Subject calibration
estimates both hand skeletal sizes and local coordinates of
each marker attached on hand. Subject calibration ensures
that our motion capture process is robust to hands of dif-
ferent skeletal sizes and to variations in marker placement.
Camera calibration estimates both intrinsic and extrinsic pa-
rameters of the Kinect camera, which allows us to transform
marker position data from the marker-based mocap system
into the Kinect system. Both calibration processes are done
offline. At run time, the system records both 3D marker po-
sition data and RGB-D image data of hand performances.
We formulate the 3D hand pose reconstruction as a non-
linear optimization problem and reconstruct 3D poses via
an efficient optimization process (Section 5). Finally we run
a post-processing step to enhance the reconstructed motion
to match the frame rate of the marker-based mocap system
(Section 6).

We demonstrate the effectiveness of our method by cap-
turing a wide range of sophisticated hand articulations. In
addition, we compare against pose inferences using only
marker position data or RGB-D image data to show the ne-
cessity of combination (Section 7).

4. Pre-processing

Our pre-processing step consists of two components: subject
calibration and camera calibration, which will be described
separately in the following.

Subject calibration. We describe a hand pose using a set
of independent joint coordinates q ∈ R33, including abso-
lute root position and orientation as well as the relative join-
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Figure 5: Our hand pose consists of 33 degrees of freedom,
including absolute root position and orientation (6) and the
relative joint angles of individual joints (27). (left) skeletal
hand model; (right) skinned mesh model for hand.

t angles of individual joints. Figure 5(a) shows our articu-
lated hand skeletal model. For Distal Interphalangeal (DIP)
and Proximal Interphalangeal(PIP) joint, we use 1 Degree of
Freedom (DoF) to describe their movement. We choose to
model Metacarpophalangeal (MCP) joints using a ball and
socket joint, which has 3 DoF instead of the 2 DoF in most
literature (for example, [OKA11] and [WP09]). Thus each
finger has 5 DoF except the thumb. For the thumb, we use
1 DoF for Interphalangeal (IP) joint, 3 DoF for MCP, and 3
DoF for Trapeziometacarpal (TM) joint. So a 3D hand pose
consists of 33 DoF in total.

We represent the skeletal size of a hand using a long vec-
tor s = [s1, ...,s20]

T , where sb,b = 1, ...,20 is the length of
the b-th bone segment. We attached 21 markers on hand to
capture 3D hand performances (see Figure 3). Specifically,
there are 4 markers on each of five fingers. For the thumb,
the 4 markers are placed at fingertip, IP, MCP and TM, re-
spectively. For the other fingers, the 4 markers are placed at
fingertip, DIP, PIP and MCP. Additional 1 marker is placed
at the wrist. We denote the local coordinates of each marker
as pi, i = 1, ...,21. The goal of subject calibration is to esti-
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mate the hand’s skeleton model (s) and local coordinates of
each marker attached on hand (pi, i = 1, ...,21).

The subject calibration process is conceptually similar to
skeletal calibration process required for full-body motion
capture using the Vicon system. Briefly, the subject was in-
structed to perform some simple hand gestures, denoted as
qn,n = 1, ...,N, in front of Vicon cameras. In our experimen-
t, we instructed the subject to bend each finger separately so
that all the markers are visible to at least two Vicon cameras
and their 3D positions can be accurately recorded. The 3D
marker positions of each frame are then used as the input to
simultaneously estimate the skeletal sizes and local coordi-
nates of each marker.

Specifically, we formulate the subject calibration process
as the following nonlinear optimization problem:

argmins,{pi},{qn}∑n ∑i ‖f(pi,s,qn)− ti
n‖+λ1‖s− s̄‖

+λ2 ∑i ‖pi− p̄i‖
(2)

where the vector-valued function f is the forward kinematics
function that maps the local coordinates of the i-th marker
(pi), under the hand skeletal size (s) and joint angle pose
(qn), to its global coordinates. The vector ti

n represents the
observed global coordinates of the i-th marker at calibration
frame n.

Intuitively, the first term measures how well the hypothe-
sized marker positions match the observed marker positions.
The second and third terms are regularization terms used to
reduce the solution space for skeletal lengths (s) and local
coordinates of each marker (pi, i = 1, ...,21). This is because
in general the solution is not unique because of the uncer-
tainty of local coordinate systems. The default values of lo-
cal coordinates of each marker, denoted as p̄i, i = 1, ...,21,
were simply set to zeros because they are approximately at-
tached to joints. The default values for skeletal lengths, de-
noted as s̄, were obtained by computing the Euclidean dis-
tances between inboard and outboard markers. The weights
λ1 and λ2 balance the importance of each term.

We optimize the cost function using the Levenberg-
Marquardt (LM) algorithm [BSS93]. The optimization si-
multaneously computes skeletal lengths of the hand s and
local coordinates of each marker pi, i = 1, ...,21, as well as
each calibration pose qn,n = 1, ...,N. Based on the result of
the subject calibration, we can further build a skinned mesh
model for the hand so that our hand mesh model can be de-
formed according to pose changes of an underlying articu-
lated skeleton using Skeleton Subspace Deformation (Fig-
ure5(b)), which will later be used in pose inference.

Camera calibration. Camera calibration is required for
combining 3D marker position data from the Vicon system
and RGB-D image data from the Kinect camera. Here we
focus our discussion on calibrating the Kinect camera since
calibrations of Vicon cameras are automatically achieved by
Vicon software.

The intrinsic parameters of the Kinect camera are com-
puted using the method in [Bou04]. To compute the ex-
trinsic parameters, i.e. the rigid transformations between the
Kinect camera coordinate system and the Vicon camera co-
ordinate system, we adopted the following procedure. We
attached several markers on a calibration box and captured
several frames of the calibration box under different poses
with both the Vicon cameras and Kinect camera. The marker
locations in Kinect images can be easily extracted because
of high intensity values caused by retro-reflective marker.
To illuminate the retro-reflective markers, we placed a pho-
tography light near the Kinect camera during the process of
camera calibration. Their 3D locations in the Kinect camer-
a coordinate frame can further be obtained via the recorded
depth maps. Given a set of 3D corresponding points in the
Vicon coordinate system and the Kinect coordinate system,
the rigid transformation between the two coordinate systems
can be estimated via least square techniques.

5. 3D Hand Pose Reconstruction

We formulate the 3D hand pose reconstruction problem in
an optimization framework by minimizing the discrepancies
between the reconstructed motion and observed data. Sec-
tion 5.1 introduces a technique for automatically extracting
silhouettes of hand from observed Kinect images. In Section
5.2, we define a cost function to measure the consistency
between the reconstructed motion and observed image data.
Section 5.3 presents an efficient optimization technique to
find the 3D hand poses that best match observed data.

5.1. Hand Silhouette Extraction

Silhouette maps are important for our combined acquisition
method, as they are not captured in marker-based systems.
We extract silhouettes of hand based on color images on-
ly. This is because depth images obtained from the Kinect
camera, particularly around the contour, are often very noisy,
thereby failing to produce clean silhouette maps.

Given a Kinect RGB image, we first do simple back-
ground subtraction to locate an approximate region of the
hand. Graph cut technique [BJ01] is then applied to refine
the results and obtain accurate segmentation of the hand
from the background image. Graph cut formulates segmen-
tation as a binary graph labeling problem, which labels each
pixel to be foreground or background. The optimal labeling
is achieved by minimizing an energy function containing t-
wo terms: data term and edge term. The data term evaluates
the likelihood of pixels belonging to foreground and back-
ground. In our experiment, we model the probability density
functions of foreground/background pixels using Gaussian
Mixture Models (GMM). The edge term constrains the ex-
tracted contour to align with edges. This optimization prob-
lem can be solved efficiently with the max-flow algorithm.
Note that we instructed the subject to wear a “red” wristband
to ensure a clean segmentation of the hand from the arm.
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5.2. Cost Function

We formulate the hand motion capture process in a model-
based registration framework and adopt the “analysis-by-
synthesis” strategy to sequentially register the skinned hand
mesh model to observed data. Specifically, we define the fol-
lowing objective function to evaluate how well a pose hy-
pothesis qt matches an observation ot :

E(qt ,ot) = λmEm +λsEs +λdEd +λeEe +λcEc (3)

where Em measures the distance between hypothesized and
observed marker positions. Es ensures the hypothesized sil-
houette map is consistent with the extracted silhouette map.
Ed and Ee measure the depth and edge discrepancies be-
tween the hypothesized and observed RGB-D data. Ec is a
smoothness term, which penalizes sudden changes of recon-
structed poses. The weights λm, λd , λs, λe, and λc control
the importance of each term. In our experiment, λm, λs, λd ,
λe, and λc are set to 1.5, 22, 0.8, 0.4, and 0.16, respectively.

The marker term, Em, measures the discrepancy between
the hypothesized marker positions, denoted as rm(i), i =
1, ...,N, and the observed marker positions, denoted as
om( j), j = 1, ...,M, obtained from the Vicon cameras. We
have

Em =
1
N

N

∑
i

min(min
j
‖rm(i)−om( j)‖,T ) (4)

Specifically, for each hypothesized marker rm(i), i= 1, ...,N,
we find the corresponding observed marker by searching
the nearest neighbor in all the observed markers om( j), j =
1, ...,M. In addition, we define a cut-off threshold T for the
return error because we want to ensure the cost function is
robust to outliers caused by missing markers. In our experi-
ment, the threshold T is set to 8mm.

The silhouette term, Es, ensures that silhouette maps of
synthesized images match those extracted from observed im-
ages. A silhouette map is encoded as a binary image whose
foreground and background pixels are set to one and ze-
ro, respectively. The system automatically extracts silhouette
maps of the hand, denoted as os, in observed Kinect images
using the method described in Section 5.1. In contrast, the
silhouette map of a rendered image, denoted as rs, is auto-
matically generated by the rendering process. The silhouette
term is defined as follows:

Es =
∑i os(i)(1− rs(i))

∑i os(i)
+

∑i rs(i)(1−os(i))
∑i rs(i)

(5)

where sums are computed over every pixel of the entire
rendered or observed image. Intuitively, the silhouette term
minimizes the area of the non-overlapping region between
the synthesized and observed silhouette maps, thereby max-
imizing the area of their overlapping region.

The depth term, Ed , measures the depth differences be-
tween the observed and synthesized depth maps. This term
is only evaluated within the overlapping region between the

rendered and observed silhouette map, i.e. os∧ rs. We have

Ed =
1

∑os∧ rs
∑

i∈os∧rs

|od(i)− rd(i)| (6)

where rd is the depth map generated by the hypothesized
pose qt and od is the observed depth map. Again os and rs
are the observed and rendered silhouette map, respectively.

The edge term, Ee, measures the discrepancies of edge map-
s between the rendered and observed images. In our ex-
periment, we use a binary image to encode an edge map,
where edge and non-edge pixels are set to 1 and 0, respec-
tively. In our implementation, we apply Canny edge detec-
tors [Can86] to extract edge maps of observed images, de-
noted as Io

e . We extract the edge map of the rendered image,
denoted as Ir

e , using the method described in [Goo03]. We
have

Ee =
∑i Io

d (i) · I
r
e(i)

∑i Ir
e(i)

+
∑i Ir

d(i) · I
o
e (i)

∑i Io
e (i)

(7)

where Ir
e and Io

e are the rendered and observed binary edge
maps for the hand. Ir

d and Io
d are distance transform images of

the rendered and observed edge images. The pixel values in
a distance transform image indicate the distance of the pixels
to the closest edge pixels in the corresponding edge image.
As a result, distance transform images provide a more robust
and smooth measurement for edge images.

The smoothness term, Ec, ensures that the reconstructed
motion is temporally smooth. Specifically, it penalizes the
sudden changes of poses between two consecutive frames.
We have

Ec = ‖qt − q̃t−1‖ (8)

where qt and q̃t−1 are the hypothesized pose at the current
frame and the reconstructed pose at the previous frame, re-
spectively.

5.3. Optimization

Our hand motion capture process sequentially reconstructs
3D poses of the hand by minimizing the cost function de-
fined in Equation (3). We apply particle swarm optimization
(PSO) techniques [CK02] to sequentially estimate the pose
over time. PSO is a computational method that optimizes a
cost function by iteratively improving a candidate solution
with regard to a given measure of quality.

Briefly, PSO optimizes a problem by having a popula-
tion of candidate solutions, termed “particles”, and moving
these particles around in the search-space according to sim-
ple mathematical formulae over the particle’s position x and
velocity v. Each particle’s movement is influenced by its lo-
cal best known position P and is also guided toward the best
known positions G in the search-space, which are updated
as better positions are found by other particles. This is ex-
pected to move the swarm toward the best solutions. In our
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experiment, the solution at frame t − 1 is used to generate
the initial population at frame t by Gaussian perturbation.

The update equations from generation k to k + 1 are de-
fined as

vk+1 = w(vk + c1r1(Pk− xk)+ c2r2(Gk− xk)) (9)

and

xk+1 = xk + vk+1 (10)

c1 and c2 are cognitive component and social component,
which control the importances of local and social term. w
is the constriction factor, and r1, r2 are uniformly distributed
random numbers in the range [0,1]. As suggested in [CK02],
we fix the behavioral parameters to c1 = 2.8, c2 = 1.3 and

w = 2/‖2−ϕ−
√

ϕ2−4ϕ‖ (11)

with ϕ = c1 + c2. In our experiment, we found 48 particles
and 200 generations for one frame are sufficient to generate
good results for all of our testing examples.

Initialization. Our motion reconstruction process runs in a
sequential mode and therefore requires initialization of hand
poses at the first frame. We automatically initialize the pose
at the first frame by instructing the subject to start at a default
hand pose q0. Given the default hand pose, we apply iterative
closest point (ICP) techniques to estimate the rigid transfor-
mations of the hand based on the observed and hypothesized
marker positions. We further refine the initial pose q0 via
inverse kinematics techniques, as there might be a slight dif-
ference between the performed default pose and actual one.
We denote the refined pose at the first frame as q̃0.

Data Synchronization. A remaining issue is how to syn-
chronize RGB-D image data from the kinect camera with
marker position data obtained by Vicon as the two systems
run in different frame rates. Our idea is to use the initial pose
q̃0 reconstructed from marker position data to search the cor-
responding frame in Kinect data. This is achieved by match-
ing the initial pose q̃0 against the observed RGB-D images
at the first several frames of the Kinect data. We evaluate
the matching error based on the Equation (3) except that we
exclude the marker term and smoothness term from evalua-
tion. We pick the frame with the smallest matching error as
the corresponding frame. The synchronization of subsequen-
t frames between the two systems can be easily achieved as
the frame rate of the Vicon system is several (four in our
experiment) times faster than the Kinect system.

6. Post-processing

The goal of our post-processing step is to enhance the tem-
poral resolution of the reconstructed motion to match the
frame rate of the marker-based motion capture system. This
is because the marker-based motion capture systems often
run at much higher frame rates than RGB-D cameras. How-
ever, the motion reconstruction process described in Section

5 can only reconstruct hand motion data in the same frame
rate as the Kinect system. To benefit from the high frame rate
of the Vicon system, we need to estimate 3D hand poses for
the remaining Vicon frames.

Assume that we have obtained hand poses for Vicon
frame t and t + k, denoted as q̃t and q̃t+k, respectively. Our
goal here is to reconstruct the poses for in-between frames,
qt+i, i = 1, ...,k− 1, based on observed marker position da-
ta from Vicon, denoted as mt+i, i = 1, ...,k− 1. Simply ap-
plying inverse kinematics techniques might not be sufficient
to determine the 3D hand poses for intermediate frames be-
cause of missing markers caused by occlusion.

To address this challenge, we linearly interpolate poses
between frame t and t + k using q̃t and q̃t+k and refine the
interpolated pose q̂t+i by fitting it to the visible marker posi-
tions mt+i. This is an optimization problem and the objective
function is

minqt+i Em(qt+i,mt+i)+λ||qt+i− q̂t+i||, i = 1, · · · ,k−1.
(12)

The first term is the same as the marker term defined in E-
quation (4), while the second term measures the difference
between the solution qt+i and the linearly interpolated pose
q̂t+i. The weight λ controls the relative importance of the
two terms.

We solve the optimization using PSO. Once we obtain the
solution for intermediate frames, we can use them to find the
corresponding information between the hypothesized mark-
ers and observed markers, which allows us to refine the so-
lution via inverse kinematics techniques. To ensure the inter-
polated motion is temporally smooth, we employ per-frame
inverse kinematics plus filtering (PFIK+F) [Gle01] for post-
processing. PFIK+F consists of two components: per-frame
IK and filtering. Per-frame IK applies inverse kinematics
to each frame separately, to enforce the spatial constrain-
s. However, changes resulting from this step may introduce
high frequency components to the motion such as spikes.
The filtering step enforces the smoothness constraint by only
accepting low frequency changes. They are interleaved in an
iterative processing mode, and can result in accurate while
smooth results.

7. Results

We have evaluated the performance of the system by con-
structing a large and heterogeneous hand motion database
(about 30 minutes mocap data), including everyday hand
gestures, American sign language (ASL), and hand gestures
for object grasping and manipulation. Our results show that
the system can capture a wide range of high-quality hand
motion data even in case of significant self-occlusion, a ca-
pability that has not been demonstrated in previous hand mo-
tion capture systems. Our results are best seen in the accom-
panying video although we show sample frames of a few
reconstructed hand poses in the paper (see Figure 8).
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(a) (b) (c) (d) (e) (f)

Figure 6: With/without RGB-D image data. (a) the input image superimposed by all markers visible to the Kinect camera; (b)
all visible markers in 3D space; (c) result using marker position data only; (d) an overlay view of the result of (c); (e) result of
using both marker position data and RGB-D data; (f) an overlay view of the result of (e).

(a) (b) (c) (d) (e)

Figure 7: With/without marker position data. (a) the input RGB image; (b) result of using RGB-D image data only; (c) an
overlay view of the result of (b); (d) result of using both marker position data and RGB-D image data; (e) an overlay view of
the result of (d).

Without RGB-D Image Data. To demonstrate the im-
portance of RGB-D image data to our hand motion capture
process, we compared the motion capture results with and
without RGB-D image data. Specifically, we compared the
reconstruction results by dropping off the silhouette, depth
and edge terms against the reconstruction results obtained
by optimizing all the terms defined in Equation 3. We adopt-
ed the same optimization process and used the same num-
ber of particles and generations for 3D pose optimization.
The accompanying video provides a side-by-side compari-
son between the two. Figure 6 shows one sample result for
with and without RGB-D image data. Due to significant self-
occlusion, there were only 13 markers visible, out of 21 in
total. In particular, the “fingertip” and “IP” markers of the
thumb and the “fingertip” and “DIP” of the ring finger had
been missed for a long time. Therefore the pose for both the
thumb and ring finger can not be reconstructed accurately us-
ing marker position data alone (see Figure 6 (b), (c) and (d)).
But the RGB-D data can provide clear information about the
thumb and the ring finger so we can get an accurate pose
by complementing marker position data with RGB-D image
data (see Figure 6 (e) and (f)).

Without Marker Position Data. We have also evaluated
the importance of marker position data to our hand motion
capture process. We obtained the reconstruction results for
“without marker position data” by simply dropping off the
marker term in the objective function defined in Equation 3.
Figure 7 shows a side-by-side comparison of reconstructed
poses using Kinect data only and using both types of da-

ta. Without marker position data, the reconstruction pose for
both the middle finger and ring finger is completely wrong
(Figure 7(b) and (c)). This is because the RGB-D data alone
might not be sufficient to accurately determine the solution,
as the data obtained from the Kinect camera is often very
noisy and low-resolution and is also prone to occlusion. Fig-
ure 7(c) shows that the incorrect pose also fits the Kinect da-
ta well because of the confusion between the middle finger
and the ring finger from the current camera viewpoint. So
in these cases the results of using Kinect data only can not
be guaranteed. By complementing RGB-D image data with
marker position data, we can significantly reduce ambiguity
and thereby obtain an accurate reconstruction pose shown in
Figure 7(d) and (e). More comparison results can be viewed
in Figure 8 as well as the companying video.

Computational time. The current system runs in about 1
frame per second without code optimization. All of our ex-
periments were tested on an Intel Xeon GPU E5430, 3GB
RAM, NVIDA GeForce 8800 GTX.

8. Conclusion

We have demonstrated a robust method for acquiring high-
fidelity hand articulation data. By complementing a marker-
based motion capture system with RGB-D image data ob-
tained from a single Kinect camera, the effect of missing
markers is significantly reduced and high-quality hand mo-
tion can be reconstructed. In addition, the system is fully
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Figure 8: Comparisons among different methods. Each column is an example. The first row gives the reference color images
captured by the Kinect camera. The third, fifth and seventh rows give the reconstructed poses using marker position data only,
RGB-D data only, and both kinds of data (our method). The second, forth and sixth rows show the corresponding overlay views.
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automatic and requires no manual user intervention such as
marker labeling and gap filling.

Experiments have demonstrated that the system can ac-
curately capture articulated hand movement, even in case
of significant self-occlusion. However, we have not yet at-
tempted to rigorously assess when the system will break
down. Currently we use only a single RGB-D camera to
complement marker-based motion capture systems. We plan
to add more RGB-D cameras into the system and make the
system more robust to occlusion and sensor noise.

The current system does not run in real time. We be-
lieve most components of the current system can be GPU-
accelerated. For example, particle swarm optimization (P-
SO) is easy to parallelize and can be implemented entirely
on a GPU [ZT09,OKA11]. One of the immediate direction-
s for future work is, therefore, to speed up the system with
GPU implementations.

In the future, we would also like to test our system on cap-
turing more hand motion data. This would enable us to build
a comprehensive and detailed hand motion database required
for data-driven hand modeling and synthesis. We also plan
to extend our system to acquiring interaction between hand
and object such as hand grasping and manipulation. This re-
quires modeling both articulated hand movement and objec-
t movement as well as subtle contact phenomena between
hand and object (e.g. grasping the cup’s handle). Another di-
rection of future work is the investigation of new algorithms
for modifying and reusing the captured hand articulation da-
ta to achieve new tasks such as motion transformation, edit-
ing, interpolation and composition.
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