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1 Isotropic stress derivatives in terms of singular values

When specifying a constitutive model energy density ¥ in terms of singular values o;, it is convenient to

compute the first Piola-Kirchoff stress tensor P = g—%’ and its derivatives M = g—g directly in terms of % and

agja‘l}a - To do this we parameterized F in terms of the singular values using the singular value decomposition

F =UXVT. Let K = {01,09,03,u1, us,u3,v1,v2,v3} be the degrees of freedom parameterizing U, 3, and
V. We parameterize the rotations using Rodrigues’ rotation formula, though any parameterization that
is well-behaved around the identity would suffice. Let C;, = 88;;17 where Latin characters (i,7) are used
to represent the degrees of freedom of F (flattened into a 9-vector) and Greek letters («, 3,7) are used to
represent the degrees of freedom parameterizing the singular value decomposition. Then, C;, is the Jacobian
matrix (in terms of K) for the change of variables. Let D,; be the inverse of the Jacobian (also in terms of
K), so that CijoDaj = d;5. Let ¥ be the energy in terms of the degrees of freedom of F and ¥ be the energy
in terms of the degrees of freedom K. Using commas to indicate partial differentiation,

ViCia = Vo
(\II,iCi,a)7ﬁ = \il’aﬂ
U ;Ci.aCip + ¥ ;Ci g ¥ op
CiaDaoj = 0i
v, U o Dai
U iCiaDarCig = V. oDak — ¥ ,;CiapDar
U 1;Cis = WapDar — ¥ ,;CiapDak
Vij = VapDaiDs; = V4D CrapDaiDs;
The Piola-Kirchoff stress tensor ¥ ; in diagonal space can be computed as ¥ ;(F(K)) ‘U:V:I' It is a diagonal
matrix whose diagonals are 06% and corresponds to P (o) from Section 2 of [1]. The stress derivatives in

diagonal space are similarly given by ¥ ;;(F(K ))‘U:V:I. This corresponds to the g—E(E) from Section 2
of [1]. When this computation is performed, one finds that the 9 x 9 matrix can be permuted into a block
diagonal matrix with diagonal blocks A%*3 B1X? BIx? B3x2.

My Miiaz Muss Vioior VYoion ¥Yoios
A= | Mai1r Mz Mgz | = | Vo, Yoo Vo
Mss11 M3saa  Mssss Usor Uioson Voo,
and . ) ) .
By = (Moo M) L (ho—oibe, oide— o)
Juig Jijt o; — O'j O'j\I/,gi — O'i\I/’gj O'Z‘\I/’gi — o’qu’o'j

for (ij) € {(12), (13), (23)}.
The division by o2 — sz is problematic when two singular values are nearly equal or when two singular
values nearly sum to zero. The latter is possible with a convention for permitting negative singular values.



Expanding B;; in terms of partial fractions yields the useful decomposition

1V, —,, (1 1) 1V, + 0, (1 _1>
Bjj=-—"1— + - — .
2 0; —0j 11 2 o;+0; -1 1

Note that if ¥ is invariant under permutation of the singular values, then \i'g — \ilﬂgj as 0; — o0;. Thus,
the first term can normally be computed robustly for an isotropic model if implemented carefully. The other
fraction has deeper implications. This term can be computed robustly if \il,,l + \i",,j —0aso; +0; — 0.
This property is unfavorable, as it means the constitutive model will have difficulty recovering from many
inverted configurations. This corresponds to the kink described in Section 3.1 of [1]. Since we are specifically
interested in models with robust behavior under inversion, this term will necessarily be unbounded when
0; +0; = 0. The best that we can hope to do in this case is avoid numerical problems by modifying the
derivatives. We do this by clamping the magnitude of the denominator to not be smaller than 10~% before
division. Since this change does not affect the stresses, it does not affect the constitutive behavior, and its
consequences will primarily be numerical in nature. We have not observed any ill effects from this alteration.

2 (' model

In this section, we construct the energy density and its derivatives for the C'* extrapolation model. We begin
by presenting the model in 3D. This model has four regions, depending on how many singular values are
below the cutoff o; = a. If all of the singular values are above this threshold, then the energy is just the base
model U. Next, assume one singular value crosses this threshold (o3 < a), and let Aog =03 —a < 0. Let

_ov o v T
i = 802' q E 802-8%- q ik = 80’1'80']'80]@ q ikt = aJianaUkaO'l q.

Then we extrapolate the energy across the threshold, add a quadratic term, and compute the derivatives
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The remaining terms are obtained by exchanging the indices 1 and 2.
If we instead assume two singular values cross this threshold (o3 < a, 03 < a), and let Aoy =09 —a <0
and Aos = 03 —a < 0. Then the extrapolated energy is

\i/ = d) + ggAO’g + ggAO’g + H23A02A0'3 + kACT% + kAO’g
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The remaining terms are obtained by exchanging the indices 2 and 3.



Finally, if all three singular values cross the threshold (o1 < a, 02 < a, 03 < a), let Aoy =01 —a < 0,
Aoy =09 —a <0 and Aos = 03 — a < 0. Then the extrapolated energy is then

v = ¢+91A0'1 +92A0'2+93A0'3+H12A0’1AO’2+H13A01A03+H23AO’2AO’3
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The remaining derivatives are obtained by cycling the indices.

2.1 Continuity

To see that the model is in fact C', we need to show that the energy and first derivatives match at the
interfaces between regions. In the case of one singular value right at the extrapolation surface, Aoz — 0,

and ) .
N ov ov
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These are just the base model. At the transition from two to one singular values outside the extrapolation
surface, Aoy — 0 and
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These agree with the values obtained when only one singular value was extrapolated. Finally, in the transition
from three to two singular values outside the extrapolation surface, Aog; — 0 and
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These match the expressions obtained for the case where two singular values are beyond the extrapolation
surface, so C! continuity is established.
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Figure 1: This figures shows some of the quantities used for the C? extrapolation.

3 (C? model

This section provides a detailed derivation of the energy density and its derivatives for the C? model described
in [1].

In this section, index notation is used for conciseness and clarity. We follow the convention that letters
(i,4,k,...) are used for indices with the Einstein summation assumed. In a few places, this convention does
not fit will. For those cases, we use Greek letters (a,3,7,...) for the index to indicate that summation

over that index is never implied. Indices that occur after a comma are differentiated. Thus, ¥ ; = % and
Ui jk = a‘?:@;k. Summation limits are not stated and should go up to the dimension (that is, 2 or 3). The
; yr

derivation that follows is valid in any dimension, except where noted.

The base energy WV is the be extended to the extrapolated energy U at the point o by extrapolating along
the line to the rest configuration r (r; = 1 for all ). The direction of the line is u; = m(o; — r;), with m =
|lo—r||~t. This line intersects the contour J = a at ¢; = r; + (0; —r;)s. The distance along this line from the
contour to o is then A = (0; —g;)u;. The extrapolated energy is U= ¢+hgju;+ %h2Hljuluj, where ¢ = \I!|q,

=Y, » and H;; = W ;; ’q. The scalar s is given by the polynomial equation a =[], (7o + (00 — 74)s).
The differentiation of ¥ at first may seem like an impossible task, particularly in terms of debugging. We
compute the extrapolated energy in many small intermediate steps, and then we differentiate each of those
steps along the way to construct the extrapolated energy derivatives. This breaks the task down into many
simpler quantities, which simplifies the implementation. This has the added advantage that the derivatives
of each intermediate quantity can be checked numerically, which drastically simplifies the debugging process.

See section 4 for suggestions on testing derivatives numerically.

3.1 Simple quantities

First, we start with a few simple quantities. The quantity §;; = 1 if i = j, and J;; = 0 otherwise. The scalar
m is the reciprocal of the distance between r and o, which is a convenient intermediate in computing wu;,



the direction along with extrapolation occurs.

oij = 0
5ij,k = 0
ri; = 0
m = |lo—r|™
m,; = —(o;— Ti)m3
mi; = —6iym®+3(0i—ri)(o; —1rj)m®
u; = mo; —r;)
i = my(o;—ri) +mdig
Uik = mpjlos —1i) + (mdij +m ;6ik)

These quantities do not depend on anything else. Throughout this derivation, we will group pairs of terms in
Hessians that are symmetric as we have done in the expression for w; y; with (m d;; +m ;jd;;). In practice,
one of these terms should be computed and then transposed to obtain the other.

3.2 Point on extrapolation surface

Next, we define g as the location where extrapolation begins. It is the location on the segment connecting
the rest configuration  and the current configuration o that intersects the extrapolation surface. The energy
density will be extrapolated along the segment from g to o. The length of this segment is denoted h.

¢ = Tit(o;—ri)s
Gij = Oijs+(0i—ri)s,
Gk = (0ij8,k +0iks ) + (00 —13)8 jk
h = (0i—qi)ui
hi = (6 = qij)ui+ (00 — qi)ui
hje = —Gijeuwi + (055 — Gij)uik + Gik — Gik)uij) + (00 — @i)ui gk

Note that these quantities depend on an interpolation fraction s (with 0 < s < 1) and its derivatives, which
we compute next.

3.3 Interpolation fraction

The interpolating fraction is constrained to lie on the extrapolation surface given by [], ¢o = a for some
constant 0 < a < 1. This leads to the equation

a = an = H(Ta + (0o = Ta)$)-

[e3

This is a cubic equation in the scalar variable s. Note that when s =0

H(raJr(Uafra)s)fa:Hm*a:1*a>07

[e%

and at s =1

[[r + (0 —7)s) —a=[[ e —a=J <01

(03

Thus, we are guaranteed that there will exist a solution s to the cubic in the interval (0,1). We compute
this intersection using the bisection method since it is efficient and robust.



To compute the derivatives, we use implicit differentiation. We introduce two intermediate scalars { and

¢ (with no particular physical

interpretation) to simplify these computations.
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Now, we can proceed with the differentiation of s.
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3.4 Base model
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so far can now be computed. The expression for s g, can be shown to be

The base model and its first four derivatives are required on the extrapolation surface to compute the stress
derivatives. These quantities are all evaluated at the point g;.

¢ = ‘I’|q
9 = Vi,
Hy; = \If,ij|q
Tijk = ‘I/,z‘jk’q
A = ¥ ijnll

These quantities are symmetric in all of their indices. We will also use some of the derivatives of these
quantities. Note that the point ¢; is constrained to the extrapolation surface, so the derivatives of these will



depend on the derivatives of g;.

i = kQk
i = 9k,jki + 9kQk,ij
ki = HimGmy
Ikii = ThmnGm,iGnj + Hemqm,ij
Hys = ThimGm,i
Hiii = Akimntm,in,g + ThimQm,ij

3.5 Extrapolated energy

We now have all of the quantities we need to compute U and its derivatives. The scalars grug and Hyjuguy
are required for interpolation, and we differentiate them separately first.

b = gruk

bi = griur+ gk

bij = Gkijuk + (GriUej + Gk jUki) + Irlk,ij
cC = Hklukul

ci = Hyzupu +2Hug

cij = Hpjurw + (2Hrjug ju + 2Hig jugiw) + 2Hgugiw + 2Hgug u
d = Tkljukuluj

Finally, we compute the extrapolated energy and its derivatives.

A 1
U = ¢+hb+ 5h2c
A 1
U, = ¢i+hib+hb;+hhc+ §h2c,i
. 1
\I],ik = (b,ik + h,ikb + (h,ib’k + h’kb’i) =+ hb’ik + h’kh’ic =+ hh’ikc + (hh’ic,k + hh’kc,i) + ihzc,ik

3.6 Robustness

The formula for 86 Ii’” requires that terms of the form

b, -0,

5 )

0 — Ot

be computed robustly. To work out a robust way to do this, it will be very convenient to introduce some
new notation. We take the index [it] to indicate quantities like

B, — B Cr;— B
Bitzit Ckit:u
[it] P [it]

i — Ot 0; — Ot

where it is assumed that ¢ # ¢t. We are after the quantity ¥ ;. We will also reuse notation slightly. Since
r; = 1, we will use it for this purpose even when the usage is unrelated to the rest configuration. With this,



we can say o) = 17y and ;) = 0. Note that hm + s =1 and B[] = Bjiy-

ugy) = M0y — Tg) = mrir
mg = —(0py = rg)m’ = —m’rir;
jfie) = MM iU+ M

2
= —m u;rire + My

Qi) = Ty + (g — Tlagg)s = sTir
Si—Ss
Sl = o; — O
[ t
-1 -1
_ _qui qy
g; — O0¢
-1 19t — 4
= —séq 1% 149t 7 4%
g; — Ot
= s&q;'q auy
— 825(];161;1
Gmjit] = Om[it)S + (Om — Tm)S [ig)
= 5m[it]3 + milums)[iﬂ
hig = upg — Qeogue + Ok — Qo) Uk, fi]

MriTe — U] — m_luksy[it]uk + huk(m_lmy[it]uk + MmOy
mrire + (hm — s)upy — mfls,[it] + hukmflmV[it]uk
(hm — s+ V)ymryry — mfls)[z’t] — hm?riry

2 -1
= hm riry —m” s [y

OLi] =  GrGk,fit)
= gugs+m 'bs
gilit) = Hjmdm,[ir
= Hjugs+ m_lHjmums’[it]
Hiig = Thim%m, i)

= Ty + M ThimUms i
bl = Gk it)Uk T KUk [it]
= Hyugsuk +m " HimUm$ [t — gem>ugrive + grmoy i
= Hppysuk + m_lcs’[it] — bm?rir, + my[if]
clig = Hiiguew + 2Hgug i
= sTupgurw +m~'ds [iy) — 2Hmugryriu + 2Hgmb i w

= SThpgurw + m_lds’[it] = 2emriry + 2Hyigmug



Finally, we can assemble the desired quantity \il,[l-t].

higb + hb ) = fmflsm-t]b + hm?2rrb + hHp i suk + hmflcs,[it] — hbm?2r;ry + hmgiq
= m (he— b)s i) + hs Hypiur + hmgpiy

1 1 1
hh [igc + §h20’[it] = —hcm_ls’[it] + h2em?rir, + §h25Tkl[it]ukul + §h2m_ld3,[it] — h2emrry + thk[it]muk
1 1
= §m71h(hd —2¢)s i) + §h28Tkz[it]Uwz e
1
Uiy = d{[it] + h)[it]b + hb7[it] + hh)[it]c + 5}120,[#]
1
= ¢7[it] + mil(hc — b)s,[it] + hSHk[it]uk + hmg[it] + §m lh(hd — 26)8’[”]
Lo 2
+ gh"sThpguew + h” Hyjiggmug
1 _ 1
= ¢,[it] + im ! (th — 2b)87[it] + th[,»t]uk + hmg[iﬂ + §h25Tkl[it]ukul
—1 Lo 1.2 L.
= Jns +m bs,[it] + §m (h d— 2b)87[it] + th[it]uk + hmg[it] + gh sTkl[it]ukul
1 1
= gl + hHipgue + §h25Tkl[it]UkUl +tom 'h2ds iy
This formula is elegant, but unfortunately Hy;;) and Ty cannot be computed robustly.

The solution to this problem is to compute hHp;yjur and Tiypiukuy, since they can be computed robustly.
Consider the computation of hHyj5u (the others can be obtained by cycling indices).

Hpgu; = Hpopui + Hpgppuz + Hiigaus
Hiyup — Hisug + Hisuo — Hoou
_ 11U1 12U1 12U2 22U2 + Hyosus
g1 — 09

Hyjuy — Hypug Hygug — Hooug Higup — Higug I
= + - + [12)3U3
01 — 02 01— 02 01— 02

= Huupg + Hppypouz — Higupio) + Hiigjzus

where we have introduced the new notation

Hyy — Hyo

Hiy1,20) = pra——

The resulting terms can each be computed robustly. Note that expanding in this way allows us to isolate
the base model (Hi1, Hia, H[12)3, H]11,22)) from the details of the extrapolation (us, us, up19))-
Similarly, we can compute 7T)jx[12ju;uy robustly

Tirnayujue =  Taapousus + Taipgusur + Taopoqusue + Tigpoqusur + Tiipgyuiur + Tigpouiuz
+ Tospoustg + Toipg uaul + Toopzjuats
T33p19iusus + 2T g9purug + 2731 19yusus + 2T 3(19usus + Tiq1ojuius + Tooiojuatus

= Tyangquaus + 2Tiapquaiue + 2us(T11upe) + Tt 221u2 — T312Up12))

u? — ul
+ (Tii11,222) — Tizpg))ud + (Tooo — Tioo) ——2
01— 02

= Tyapguaus + 2Topuius + 2us(T311upg) + Tap1,20/u2 — T312up12))
+ (Th11,222) — Tizpz))ui + m?*(Taos — Thgz) (01 4 02 — 2)



where we have introduced the new notation

_ T311 — T390 _ Th1r — Toae
Ty1009) = ————— T2 = ————
o1 — 02 01 — 02
As before, these quantities can be computed robustly, and the base model is isolated from the details of the
extrapolation. The 2D formulas for Hyyou; and Tjy[i0ujur are obtained by discarding all terms containing
the index 3.

3.7 Continuity

To establish C? continuity for this model, we need to establish that U= o, \i'l = g;, and ‘i'ﬂ'k = H;;, at the
extrapolation surface. At this surface, s = 1 and h = 0. With these,

¢ = ri+(o;—1)s
49 = 0
Gij = Oijs+(0i—ri)s,
= Sy+mlus;
iy —qij = —m luis,
hi = (6 = qij)ui+ (00 — qi)ui
= —mfls,j
hje = —Gijeui + (055 — Gi,j)wik + (Gik — Gik)ui ) + (05 — @i)ui,jk
= Qi jkU;
Ik = HimQmy
= Hp+ mlekmums,,’
ki = Thmnlm,iGnj + HemQm,ij
= TpmnGm,idn,j + HimGm,ij
bi = GriUur+ gl

= Hyoup +m ™ Hymums jug +m (o — 1) gk + mg;
= Hyui + m_lch + m’im_lb + mg;
= Hpup +m tes;+ (i — usb)m

With these, C! is established readily

U o= ¢+hb+ %h%
= ¢
G, = ¢ +hb+hb;+hhic+ %h%ﬂ-
= ¢;+h;b

—1
ek, —m S;b
gi + grugm s —m s b

= G
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Finally, C? can be established with a bit of work.

Ui = ¢ur+hab+ (hibg +hibi) + hb i+ hghic+ hb e+ (hhic g + hb ge,) + %h%,ik

G.ik + hixb 4+ (hib g 4+ hb ;) + hhic

= i+ 95,k — Qietgb + (hibg + h b)) + hphc

= gjkGji+ (gj —u;b)q;j ik + (hibg 4+ h b ;) + hhic

= Gk + (95 —uib)(65is k + Ojrsi +mugs ) + (hiby + hibs) + hphc

= GjxQi+ (9i —uib)sp + (g — urb)s ;i + (hibx + hxbs) + hphic

= 9jkGi+ (bi— (gz - uzb) Mk + (b — (ge — ukb)m)h; + hghic

= gjrqi + (Hju; +m~ s7¢)h7k + (Hjru; + mflcsvk)hﬂv + h yhc

= GjkQ,; —chih i+ Hjuih g + Hjgush;

= Gik — 9jkuUjh; — chihp + Hjuih p + Hjpujh

= H;+ m_lHimums,k — Hjpujh; —m™ H]mums rujh i —chgh g+ Hjuih p + Hijpuih

= H;, — mlejmqukujhﬂ; —chih

= Hy

This establishes C? continuity for this model.

4 Note on testing derivatives numerically

We suggest above that the derivatives can be tested numerically. Here, we present a simple yet effective
way to do this. Choose a small random perturbation dx. Suppose we have a scalar f and its derivative V f
evaluated at x and éx. Then,

Floc+ %) — F(x) — 5 (VF(x +6%) + V() - x = O(Jox).

This test compares a second order accurate central difference approximation against a second order average,
which makes the test much less ambiguous. When the test fails, the error will generally only be of order
O(||6x]|). If the quantities being tested are on the order of one, then it is most effective to choose ||6x]|® to
be around floating point precision. If f were instead a vector quantity, then the error quantity computed
on the left hand side would be a vector, which should be nearly zero. Second order derivatives are tested
against first order derivatives.
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