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Abstract

This paper addresses the problem of efficiently computing optimal paths of arbitrary clearance from a polygonal
representation of a given virtual environment. Key to the proposed method is a new type of triangulated navigation
mesh, called a Local Clearance Triangulation, which enables the efficient and correct determination if a disc of
arbitrary size can pass through any narrow passages of the mesh. The proposed approach uniquely balances speed
of computation and optimality of paths by first computing high-quality locally shortest paths efficiently in optimal
time. Only in case global optimality is needed, an extended search will gradually improve the current path (if not
already the global optimal) until the globally shortest one is determined. The presented method represents the first
solution correctly extracting shortest paths of arbitrary clearance directly from a triangulated environment.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

The efficient computation of free paths in virtual environ-

ments remains a central problem in many areas of computer

animation, and in particular in applications related to com-

puter games and crowd simulation systems [ST07, MH03].

In these applications, free paths are needed each time an

agent (or a group of agents) has to navigate to specific given

locations among obstacles. Paths should take into account

agents of different sizes and they should be the shortest pos-

sible ones. Efficiency of computation is also of main im-

portance, since the simulated environments are often large,

with many agents, and with high frame rate requirements.

Furthermore, the underlying data structure should well sup-

port the computation of reactive behaviors [Rey99] and other

queries. A useful path planning module must be able to ad-

dress these many needs in satisfactory ways.

This paper describes a new algorithm for computing free

paths among obstacles which addresses all the requirements

depicted above. The presented method is able to efficiently

compute paths with any desired clearance on-line, without

the need of precomputed data structures dependent on a par-

ticular clearance value. The computed paths can therefore be

safely used to guide agents of different sizes (see Figure 1),

and as a side effect, it can also be used to efficiently deter-

mine if an agent of arbitrary size is able to reach any given

location of the environment. If there is no path with enough

clearance to the given destination, the path planner will cor-

rectly return false in optimal time.

Figure 1: Paths are computed for agents of different sizes.
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In order to address both speed of computation and path

optimality, the notion of local and global optimality of paths

is employed in this work. The proposed algorithm first com-

putes a locally shortest path of arbitrary clearance in op-

timal O(n logn) time, where n is the number of segments

describing all obstacles in the environment. This path is a

high-quality short and smooth path which is always suit-

able to be used. If additional computational time is available

(and global optimality is required) an extended search pro-

cedure can then be executed, and if the current path is not

already globally optimal, it will be gradually improved until

the globally shortest one is determined.

Another unique characteristic of the proposed method is

that it only requires as underlying data structure a novel

type of triangulation, called a Local Clearance Triangula-
tion (LCT ), which is similar to the navigation meshes com-

monly used in many applications. The local clearance prop-

erty of LCTs ensures that two local clearance values stored

in each edge are sufficient for precisely determining if a disc

of arbitrary size can pass trough any narrow passages of the

mesh. This property is essential to correctly and efficiently

determine paths of arbitrary clearance. In addition, LCTs

can also be used as a flexible navigation mesh structure for

many other queries, such as for determining free corridors

(or channels) around paths and for computing visibility and

proximity queries.

In summary, the proposed approach uniquely offers many

useful properties for practical applications: 1) paths can be

of arbitrary clearance from obstacles, 2) high-quality locally

shortest paths are computed efficiently in optimal time, 3)

global optimality can be also guaranteed with additional

computation, and 4) the underlying data structure is a flexi-

ble triangulated mesh useful for many navigation queries.

2. Related Work

Path planning is often a key component of applications in-

volving the navigation of characters. This is in particular

the case when specific goal locations have to be attained,

such as in the simulation of autonomous virtual humans

[NT95, KL99] and autonomous pedestrians [MH03, ST07].

Discrete search methods such as A* [HNR07] applied to

grid representations are robust and simple to implement, and

thus represent a popular approach for path planning. Unfor-

tunately the performance and quality of the obtained paths

greatly depend on the chosen grid resolution and fine reso-

lutions quickly result in too many cells to be processed in

acceptable times, in particular in large environments.

The logical alternative is to consider the environment

delimited by polygonal obstacles and solve the problem

geometrically. One approach for computing shortest paths

among polygonal obstacles defined by n segments is to

build and search the visibility graph [LPW79,DBCvK08] of

the obstacles, what can be achieved in O(n2) time [OW88,

SR94]. The shortest path problem is however O(n logn)
and optimal [HS97] and near-optimal [Mit93] algorithms

are available following the continuous Dijkstra paradigm.

However, algorithms considering an arbitrary clearance ra-

dius which are suitable for practical implementations usually

solve the problem in O(n2 logn) time [Che85, LA95].

Many path planning alternatives exist if the desired path

does not need to be the shortest one [Lat90,LaV06] and dif-

ferent solutions have been proposed specifically for com-

puter animation applications. Examples are corridor maps

[GO07, Ger10], elastic roadmaps [GSA∗09], multi agent

navigation graphs [SAC∗08], and methods based on the me-

dial axis or Voronoi diagrams [HCK∗00, Ger10]. Hardware

acceleration has also been extensively applied [HCK∗00] in

order to reduce the obtained computation times. These meth-

ods provide suitable paths for several applications but they

do not address the specific problem of finding optimal paths

with arbitrary clearance.

One important characteristic of the proposed method is

that it only relies on a triangulated navigation mesh. While

this paper focuses on the path planning problem, the pro-

posed triangulated mesh is also suitable for supporting the

implementation of many geometric queries, such as the ones

needed for handling dynamic obstacles [FS98, BLM08] and

navigation behaviors [Rey99] during path execution. Previ-

ous approaches based on triangulated meshes have been pro-

posed [KBT03,LD04], however no previous work has solved

the problem of extracting optimal paths of arbitrary clear-

ance directly from a triangulation.

The proposed method solves this problem by introduc-

ing a new local clearance property which enables the pre-

cise and efficient clearance determination of paths in a tri-

angulated mesh. As a result locally shortest paths of arbi-

trary clearance are efficiently computed in O(n logn) opti-

mal time, and an extended search algorithm is also presented

for determining global optimality.

3. Background and Overview

Let S = {s1,s2, ...,sn} be a set of n input segments describ-

ing the polygonal obstacles in a given planar environment.

Segments in S may be isolated or may share endpoints form-

ing closed or open polygons. The input segments are also

called constraints, and the set of all their endpoints is de-

noted as P .

The process of constructing the proposed navigation mesh

starts with the Constrained Delaunay Triangulation (CDT )

of the input segments. Let T be a triangulation of P , and con-

sider two arbitrary vertices of T to be visible to each other

only if the segment connecting them does not intercept the

interior of any constraint.

Triangulation T will be the CDT of S if 1) it enforces the

constraints, i.e., all segments of S are also edges in T , and
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Figure 2: The left–most image shows the CDT of input obstacles. The next image shows the corresponding LCT triangulation,
obtained after 5 refinements. Based on the LCT representation, locally shortest paths of arbitrary clearance are efficiently
computed. The right–most image shows the globally optimal solution of the central path.

2) it respects the Delaunay Criterion, i.e., the circumcircle of

every triangle t of T contains no vertex in its interior which

is visible from all three nodes of t.

Although CDT (S) is already able to well represent the

environment and has been used before for path planning

[KBT03], an additional property is proposed for enabling

the efficient computation of paths with arbitrary clearance.

This property is called the local clearance property and will

guarantee that only local clearance tests are required during

the proposed search algorithms.

Whenever the local clearance property fails in CDT (S),
refinement operations on the input segments are performed

for enforcing it. The final obtained navigation mesh is called

a Local Clearance Triangulation (LCT ) of the input seg-

ments. Note that due the possible refinement operations, the

edges in S may be subdivided into smaller segments forming

a new set of constrained edges Sre f . The refinement process

results with LCT (S) = CDT (Sre f ). The LCT and the refine-

ment operations are presented in Section 4.

Once T = LCT (S) is computed, T can be efficiently used

for computing free paths of arbitrary clearance. Let p and

q be two points in R
2. A path between p and q is consid-

ered free if it does not cross any constrained edges of T .

A free path will however cross several triangles sharing un-

constrained edges, and the union of all traversed triangles is

called a channel.

A path of r clearance is called locally optimal if 1) it re-

mains of distance r from all constrained edges in T and 2)

it cannot be reduced to a shorter path of clearance r on the

same channel. Such a path is denoted πr, and its channel

Cr. Note that a given path πr joining two points may or not

be the globally shortest path. If no shorter path of clearance

r can be found among all possible channels connecting the

two endpoints, the path is then the globally optimal one, it is

denoted as π∗
r and its channel is denoted as C∗

r . See Figure 2

for an example.

Given an LCT of the environment and two arbitrary points

p,q ∈ R
2, three main algorithms are presented:

• First, a channel search algorithm is proposed for finding

Cr(p,q), or determining that a channel of clearance r does

not exist. This algorithm runs in optimal O(n logn) time

and is presented in Section 5.

• If a channel Cr(p,q) exists, the locally optimal path

πr(p,q) can be computed in linear time in respect to

the number of triangles in the channel. This is achieved

with an extended funnel algorithm [HS94] handling clear-

ances, which is presented in Section 6.

• If the globally shortest path is needed, an extended search

procedure is responsible for comparing alternate free

channels until the globally shortest path is determined.

This procedure is presented in Section 7.

The result is a flexible and efficient approach for path

planning. Several results and performance evaluations are

presented in Section 8.

4. Local Clearance Triangulation

Let S = {s1,s2, ...,sn} be the set of input segments and T =
CDT (S). Let π be a free path in T , and let t be a triangle of

the channel of π, such that t is not the first or last triangle of

the channel. In this case π will always traverse t by crossing

two edges of t. Let a,b,c be the vertices of t and consider

that the free path crosses t by first crossing edge ab and then

bc. This particular traversal of t is denoted by τabc, where

ab is the entrance edge and bc is the exit edge. The shared

vertex b is called the traversal corner, and the traversal sector

is defined as the circle sector between the entrance and exit

edges, and of radius min{dist(b,a),dist(b,c)}, where dist
denotes the Euclidean distance. Note that the entrance and

exit edges of a traversal cannot be constrained edges of T .

The proposed navigation mesh is based on a local clear-

ance measure defined per triangle traversal. Given a traver-

sal τabc, its sector clearance cl(a,b,c) is defined as the dis-

tance between the traversal corner b and the closest vertex or

constrained edge intersecting the traversal sector. Note that

due the Delaunay criterion, a and c are the only vertices in

the sector, and thus cl(a,b,c) ≤ min{dist(b,a),dist(b,c)}.

In case cl(a,b,c) is determined by a constrained edge s
crossing the traversal sector, as illustrated in Figure 3,

then cl(a,b,c) = dist(b,s). Note that if edge ac is con-

strained then cl(a,b,c) = dist(b,ac) and if the traversal
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sector is not crossed by a constraint then cl(a,b,c) =
min{dist(b,a),dist(b,c)}.

a

b

c

s b’

Figure 3: If constrained edge s is the closest constraint
crossing traversal sector τabc, then cl(a,b,c) = dist(b,s) =
dist(b,b′), where b′ is the orthogonal projection of b on s.

Let τabc be a traversal in T such that the adjacent traversal

τbcd is possible, i.e., edge cd is not constrained. Let v be a

vertex connected to c and on the same side of ac as b, and

let s be a constrained edge such that s is either ac (if ac is

constrained) or s and v are on opposite sides in respect to ac.

In this situation, vertex v is a disturbance to traversal τabc if:

1. v can be orthogonally projected on ac,

2. v is not shared by two collinear constraints,

3. dist(v,s) < cl(a,b,c), and

4. dist(v,s) < dist(v,c).

Note that disturbances can only occur for traversals lead-

ing to a corner transition from one side of the channel to the

other side (see Figure 4). Note also that the constraint of the

disturbance may be the edge ac of the traversal and that a

same traversal may have several disturbances.

d’ u’
a

b

s b’

d
v

c

u

v’

Figure 4: The shown traversal τabc leads to a corner tran-
sition (from b to c) and therefore may have disturbances.
The dashed lines show the orthogonal projections of several
vertices on s. Vertex v is a disturbance since dist(v,v′) <
dist(b,b′) = cl(a,b,c) and dist(v,v′) < dist(v,c). Vertices d
and u cannot be disturbances since dist(d,d′) > dist(b,b′)
and u is shared by two collinear constraints.

With the definition of disturbances a local clearance trian-

gulation (LCT ) can be now defined with the following defi-

nitions.

Definition 1 (Local Clearance) A traversal τabc in T has

local clearance if it does not have disturbances.

Definition 2 (LCT) A LCT triangulation is a CDT trian-

gulation with all traversals having local clearance.

4.1. Computing LCTs

The proposed procedure for achieving LCT (S) is based on

iterative refinements of disturbed traversals. The algorithm

starts with the computation of triangulation T0 = CDT (S).
A linear pass over all traversals of T0 is then performed, and

all traversals detected to have a disturbance are stored in a

list L. Then, for every traversal in L, the constraint s of the

disturbance is refined with one subdivision point pre f in s.

Note that, before a traversal is actually refined it has to be

verified again for disturbances, since previous refinements

may have changed the state of the current traversal.

Each refinement operation is equivalent to one vertex in-

sertion in the current CDT and can be implemented using

the recursive Delaunay flips of the incremental CDT algo-

rithm [KBT03]. Every time a constraint s ∈ S is refined, s
is replaced by two new sub-segments. After all disturbed

traversals in L are processed, a new (refined) set of con-

straints S1 is obtained. Triangulation T1 = CDT (S1) is the

result of the first refinement iteration.

T1 however is not guaranteed to be free of disturbances

and therefore the process has to be repeated k times, until

Tk = CDT (Sk) is free of disturbances, in which case Sk =
Sre f and Tk is the desired LCT (S).

The performance of the described refinement iterations

greatly depends on the location of pre f . The key is to en-

sure that each disturbed traversal is fixed by one refinement

operation. A suitable refinement point pre f for a disturbance

v in respect to τabc and constraint s can be obtained as the

mid-point between the intersections of s with the circle pass-

ing by vertices b, v and u, where vertex u is the next vertex

around c, when rotating from v to b, as shown in Figure 5.

Note that in case of multiple disturbances, v is selected as

the closest disturbance to s.

The point of subdivision pre f is carefully chosen to be in

a location where it will be guaranteed that both the corner

of the traversal and the disturbance vertex will become con-

nected to pre f by edges after the refinement. Based on the

chosen refinement point and on the definition of considered

disturbances, it can be showed that each vertex of the trian-

gulation can, in the worst case, be a disturbance in respect

to only a small number of constraints; and that since every

refinement point is shared by two collinear constraints, prop-

agations cannot occur. Therefore the total number of vertices

in LCT (S) remains O(n).

Figure 6 shows a step by step example of the iterative re-

finement algorithm. Further examples are presented in Sec-

tion 8 showing that in practice the number of added vertices

is usually very low. Once T = LCT (S) is computed, T can

then be used to efficiently compute navigation queries, and

in particular free paths of arbitrary clearance.
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b b
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s pref

d
v

c
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d
v
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u u

Figure 5: Vertex v is a disturbance to traversal τabc and
therefore constraint s is subdivided. Points x1 and x2 are the
points of intersection between s and the circle passing by u,
v and c. Vertex u is the next vertex around c, when rotat-
ing from v to b. The subdivision point pre f is defined as the
midpoint between x1 and x2. The refinement will connect all
vertices between b and v to pre f .

Figure 6: In this example, T0 = CDT (S) has three distur-
bances detected in the first iteration. The blue segments con-
nect each disturbance to its respective refinement point for
clearing the traversal. In the following iteration, one distur-
bance is detected in T1. The additional refinement leads to
T2, which still shows one disturbance. Finally, after 3 itera-
tions, T3 = LCT (S).

4.2. Path Clearance in LCTs

The local clearance property of LCTs guarantees that a sim-

ple local clearance test per triangle traversal is enough for

determining if a path πr can traverse a given channel with-

out any intersections with constraints.

Given the desired clearance radius r, πr will not have any

intersections with constraints if 2r < cl(a,b,c) for all traver-

sals τabc of its channel. Figure 7 presents an example show-

ing that local clearance tests are not enough in CDT s but

provide correct results in the corresponding LCT s.

Ensuring that local tests are enough is critical for achiev-

ing efficient search algorithms. By being local, the clear-

ance test does not depend on adjacent traversals and there-

Figure 7: The left image shows a CDT triangulation with
an illegal path which however satisfies its local clearance
tests per triangle traversal. Once the existing disturbances in
the CDT are solved and the corresponding LCT is computed
(right image), local clearance tests are enough to correctly
detect that the channel does not have enough clearance, and
a correct solution path can be determined.

fore each traversal clearance value can be pre-computed and

stored in the triangulation. This reduces the local clearance

test to a simple value comparison per traversal.

Given a traversal τabc, the computation of cl(a,b,c) re-

quires checking if there is a constrained edge s in the op-

posite side of ac in respect to b, such that dist(b,s) <
min{dist(b,a),dist(b,c)} (see Figure 8-left). An efficient al-

gorithm based on edge adjacency relations can be imple-

mented for checking the edges “behind” ac which are closer

to b than min{dist(b,a),dist(b,c)}.

Clearance values are precomputed and stored in the edges

of the LCT . There are a total of 8 possible traversals passing

by each edge. Since traversals of opposite orientation around

a same corner will share the same clearance value, only 4

traversals may have distinct values. Each traversal passes by

two edges (the entrance and exit edges) and thus only 2 of the

4 values have to be stored per edge. Let bc be an edge of the

LCT and a and d the remaining vertices of the two triangles

sharing bc (see Figure 8-right). The two values chosen to be

stored at edge bc are the clearances of the traversals having

bc as exit edge: cl(a,b,c) and cl(d,c,b).

a

b

c

s b’

a

b

c
s b’

d
l1 l2

Figure 8: Left: for computing cl(a,b,c) all edges behind ac
and closer to b than min{dist(b,a),dist(b,c)} are checked
to be constrained. Right: the precomputation of clearances
will store at edge bc two values: cl(a,b,c) and cl(d,c,b).

Clearance at End Points It can be shown that local clear-

ance tests per triangle are enough for determining if paths

can traverse triangles, however the end points require addi-

tional tests. Even when a complete triangle traversal is legal

c© The Eurographics Association 2010.

163



Marcelo Kallmann / Shortest Paths with Arbitrary Clearance from Navigation Meshes

according to the local clearance test, the clearance may not

be enough if the path has to start or end at a given fixed point

inside the triangle. See Figure 9 for an example.

Figure 9: In this LCT, the triangle containing the right end
point of the path has enough clearance for the full traversal
but not when connected to the fixed point.

Additional departure and arrival clearance tests are there-

fore needed to make sure that a given path can depart or

arrive to the given specific end-points. Let p be the starting

path point and let bc be the first edge to be traversed by the

path, as shown in Figure 10. Let t1 and t2 be the two tangent

segments to the circle connecting to b and c. All vertices ly-

ing between the two tangents are disturbances to the path

departure across edge bc. For determining if there is enough

departure clearance, each disturbance v is checked to have

distance greater than 2r in respect to constraints on the other

side of the entrance. This test will determine that the depar-

ture edge shown in Figure 9 is not possible.

a

b

c
p

v t1

t2

Figure 10: The departure (or arrival) test detects all ver-
tices between tangents t1 and t2 and checks if they represent
a disturbance.

Departure and arrival tests can be efficiently performed

on-line since they only depend on local tests. One useful

property is that these disturbances can only occur on one

side of an entrance at each time. Another special case which

has to be dealt with is when both points p and q of the query

lie in a same triangle t. In this situation a special capsule test
is required in order to verify if there is enough clearance be-

tween the two points for a direct path inside t. These tests

are similar to the entrance and arrival tests.

5. Channel Search

Once the LCT of the planar environment is available, a graph

search can be performed over the adjacency graph of the tri-

angulation in order to obtain a channel Cr with enough clear-

ance and connecting the two input points p and q.

The process first locates the triangle tinit containing p,

following the oriented walk search method described in

[KBT03]. The departure tests are then verified in order to

determine the departure edges which have enough clear-

ance. An A* search then starts for each departure edge. The

search continuously expands triangle traversals from the cur-

rent lowest cost edge until the triangle containing q is found.

Note that triangle traversals are only accepted if the clear-

ance of the respective traversal (which is precomputed in the

LCT) is greater or equal to 2r, in order to guarantee the de-

sired path clearance.

Note also that the search expansion will only allow ex-

pansions to triangles which were not already reached by pre-

vious expansions of the search. This ensures the O(n logn)
running time of the search and is efficiently implemented by

marking triangles at each search expansion. It can be shown

that marking is acceptable since LCTs will ensure that a sin-

gle long thin triangle cannot be the only access to more than

one corridor, in which case marking the thin triangle would

incorrectly make non-visited regions of the triangulation in-

accessible.

The search will therefore expand valid traversals and re-

turn a valid channel Cr if one exists. However there are no

guarantees that the returned channel will contain the glob-

ally optimal path. The cost function used to prioritize the

A* search expansion is key to ensure that good channels are

obtained. Different cost functions based on the adjacency

graph of the triangulation can be defined to prioritize the

search. The obtained A* search will be actually equivalent

to a shortest path search in the graph defined by the cost

metric. This graph does not need to be created in advance

but the costs (or lengths) of its edges are computed on-line

during the search expansion. Figure 11 shows the expanded

branches of four different graphs, each obtained according to

four different cost metrics. The segments in black represent

the expanded edges, and the segments in blue represent the

expansion front at the moment of reaching the goal point.

The first metric used in Figure 11 selects the centroid of

each triangle as the reference point for each triangle traver-

sal. Therefore each time a triangle traversal is expanded, the

expansion cost accounts for the length of the straight seg-

ment connecting the centroids of the traversed triangles. It is

possible to notice that this metric creates many unnecessary

zigzags which will make the length of the solution branch

of the graph to be much larger than the length of the locally

optimal path passing by the solution channel.

The second metric shown in Figure 11 reduces this dis-

parity by using the mid point of each traversed edge as the

reference point of traversals. The third metric incorporates

a visibility criterion. Let e be the current edge being tra-

versed. If the segment connecting q to the reference point of

the previous traversal intersects e, then the intersection point

is taken, otherwise the vertex of e which is closest to q is

taken. This improvement guarantees that C∗
r will always be

found if π∗
r is a straight line connecting the initial and final
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points. This is an important improvement since it guarantees

that straight line solutions are not missed. The fourth metric

further improves the third one by ensuring that each taken

point in e has distance r from the endpoints of e.

The fourth metric has shown to be a simple and efficient

cost computation procedure for obtaining high-quality chan-

nels, which are furthermore often the ones already contain-

ing the globally optimal path. As an example, the locally op-

timal solutions shown in Figure 2 were computed with the

third metric. When the fourth metric is used, the local solu-

tion obtained for the central path becomes equal to its global

solution. The fourth metric also shows to be superior in the

example of Figure 11.

Figure 11: The images show different channels obtained
according to different search metrics. Each metric results in
a different solution path. The path obtained by the fourth
metric (bottom image) is the global optimal.

More complex cost rules (for example even including

some backtracking) can be devised in order to improve the

cost function, however it is not possible to obtain a metric

which will always return globally optimal solutions. This

happens because a single triangle may overlap with more

than one region of the shortest path map of p [Mit93], while

the LCT representation is a generic planar subdivision which

is independent of the source query point.

6. Paths from Channels

Once the channel Cr containing the solution path is deter-

mined, Cr is guaranteed to contain enough clearance and the

problem is reduced to computing path πr inside Cr.

Note that the channel is already represented as a tri-

angulated simple polygon. This is important since it al-

lows the direct application of the efficient funnel algorithm

[Cha82, LP84, HS94], which is able to determine the short-

est path inside a triangulated simple polygon in linear time.

Although the funnel algorithm only addresses shortest paths

for points, the needed extensions for taking into account de-

sired clearances are now presented.

Given clearance r, whenever path πr has to make a turn

inside the channel it will follow a circle of radius r centered

at one vertex of the channel. Therefore the final obtained

path will be a sequence of straight segments and circle arcs.

Let cr(p) denote the circle centered at point p of radius r,

and let v1 and v2 be two vertices of the channel. Note that

a vertex will be either at the top or at the bottom boundary

of the channel and circles centered at the vertices will have

an interior and an exterior side. Finally, let τr(v1,v2) denote

the segment tangent to circles cr(v1) and cr(v2), such that

the segment is tangent to the interior sides of the circles.

Note that for each given pair of circles, τr identifies only one

interior tangent (see the tangents in Figure 12 for examples).

If tangent τr(p,v) is in respect to a point p which is not a

vertex of the triangulation, the tangent will start at p and

will be only tangent to the circle centered at vertex v.

Given initial and final points p and q, path πr(p,q) will

therefore be composed by τr tangents and circle arcs cen-

tered at the channel vertices. If v1 and v2 are vertices of the

channel, consider the sub-path πr(v1,v2) to be the shortest

path in the channel starting tangent to cr(v1) and ending tan-

gent to cr(v2).

The proposed r-funnel algorithm can now be described as

follows. As shown in Figure 12, let p be the starting point of

the path and u and v be at the extremities of the funnel (or

at its door). Paths πr(p,v) and πr(p,u) may travel together

for a while, and at some vertex a they diverge and are con-

cave until they reach circles cr(u) and cr(v). The r-funnel is

the region delimited by segment uv and the concave chains

πr(a,v) and πr(a,u), and a is its apex. The vertices of the

funnel are stored and processed in a double-ended queue Qd .

Figure 12 illustrates the insertion process of a new ver-

tex w. Points from the v end of Qd are popped until b is

reached, because tangents τr(a,b) and τr(b,w) form a con-

cave chain, and the tangents in respect to the popped points

not (see for instance that τr(b,c) and τr(c,w) do not form a

concave chain). The symmetrical process is performed if the

new vertex is between the extended edges of the upper con-

cave chain of the funnel. Whenever the apex of the funnel is

popped during the process, it becomes part of the path so far

and the funnel advances.

The side of Qd to start the tests is determined according

to the next triangle adjacent to the current funnel door. In

Figure 12 the door is uv and the next triangle in the channel

is uvw. Since this step advances the bottom part of the funnel
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(from v to w), Qd is processed starting from its lower end.

The triangulation of the channel therefore gives the ordering

for processing the vertices of the channel.

The described algorithm needs however to handle one

specific situation in this extended version. Let w be the cur-

rent vertex being added to the funnel. When clearance values

are relatively large, it may happen that cr(w) will intersect

the interior of the funnel, possibly generating a new internal

turn that may collapse the boundaries of the funnel. For in-

stance this will happen in degenerate cases when the funnel

is reduced to its door and cr(w) intersects the door segment.

This situation does not affect the overall logic of the algo-

rithm, however, a specific correction test has to be included

each time a new apex a is reached. Let v1 and v2 be the two

final vertices in the path computed so far. Before a is ap-

pended to the path, the following test is verified: if v2 is at

the bottom boundary of the channel, τr(v1,v2) and τr(v2,a)
have to form a clockwise turn, otherwise the turn has to be

in counter-clockwise orientation. If this test fails, vertex v2

is not needed and is popped from the current path. The test

repeats until it is verified and a can then be appended.

The final step of the algorithm happens when the final tri-

angle of the channel is reached. At this point the goal point

q on the final triangle is connected to either the apex or one

of the boundaries of the final funnel in order to finally deter-

mine the shortest path in the channel, similarly to the original

funnel algorithm. Figure 13 illustrates an example path being

computed in a channel by the presented r-funnel algorithm.

a

b

u

p

v

wc

Figure 12: The r-funnel algorithm. The red circles are cen-
tered at the top vertices of the funnel and the blue circles are
centered at the bottom vertices.

Figure 13: Two different instances of the r-funnel algorithm
while processing one channel of the triangulation.

7. Optimal Path Search

An extended search procedure is required for when global

optimality of paths is needed. First, a locally optimal path is

computed and its length lc is used as an upper bound for the

global optimum, similarly to a branch and bound search.

The extended search does not mark traversed triangles

and thus traversal expansions may overlap. In order to be

able to determine which channels are allowed to overlap,

instead of relying on a cost metric, each expansion front

expands one independent r-funnel. Let a be the apex of

a given funnel front f , and u and v be the extremities of

the funnel door. Each funnel front maintains the following

three values: 1) fp is the length of the path computed so

far, from p to a, 2) fl is a lower bound for the length of

the funnel section of path πr (from the apex to the funnel

door) and is computed with dist(a,uv), 3) fu is an upper

bound for the funnel section of the path, and is computed by

dist(u,v)+max{dist(a,u),dist(a,v)}.

In addition to maintaining these values per front, each

edge of the triangulation stores the index of the funnel front

reaching it with shortest fp. A priority queue Q maintains all

the current fronts sorted by their fp value. At each iteration,

the search removes from Q the front f exp with minimum

fp value. Front f exp is then expanded by adding one more

vertex to its funnel, if the expansion has enough clearance.

When expanded, f exp reaches a new edge e of the triangu-

lation. If e had been reached before by another front, let f e

denote such front. The following tests are then performed:

1. If f exp
p + f exp

l + dist(e,q) > lc, then f exp will die since

the minimum length of any πr path passing by it will be

longer than the current solution path.

2. If f exp
p + f exp

l ≥ f e
p + f e

u , then f exp also safely dies since

the previous front reaching the same edge is guaranteed

to contain a shorter path.

3. If the funnels in f exp and f e are equal (i.e. have the same

vertices on their boundaries), f exp will die if f exp
p ≥ f e

p ,

and otherwise f e is marked to die next time it is selected

for expansion.

When f exp is not detected to die it will be reinserted in

Q for a future new expansion. In case both f exp and f e are

not detected to die, then a traversal overlap by two indepen-

dent fronts occurs and in this case e is updated to reference

f exp if f exp
p + f exp

u < f e
p + f e

u . Overlaps will occur when the

overlapping fronts are still competing for the optimal funnel

passing by that particular region of the triangulation. Each

time a front reaches the triangle containing the goal point q,

the front’s path πr will replace the current path in case its

length is lower than lc.

In larger environments, this extended search can be sig-

nificantly slower not only due the larger number of nodes

expanded but also because each expansion requires many

more geometric computations due the many funnels being

updated. However, the proposed approach allows to obtain
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gradual improvements of the current path. Every time a new

front with lower path length reaches the goal an improved

path is returned. When all fronts are exhausted the final path

obtained is the optimal one.

Figure 14: In this example, many funnel fronts are initially
expanded, then in a mid stage (top-right image), most of the
fronts die due a narrow passage and only three remain ac-
tive. In the last iterations only two fronts are active and one
of them reduces the path with an alternate last turn.

8. Results and Discussion

Table 1 shows that the locally optimal search is highly ef-

ficient, obtaining paths in 3 milliseconds in environments

described by 63K segments. This makes the proposed al-

gorithm probably the most efficient approach available for

achieving smooth and short paths of arbitrary clearance.

Globally optimal paths require significantly more computa-

tion time, and offer only a small path reduction in average.

Figures 14 and 15 exemplify how the search for the global

optimum depends on the type of environment. Several re-

sults are also available in the accompanying video.

These results demonstrate that locally optimal paths are

perfectly suitable for character navigation, and the small dif-

ference from the global optimum can actually be used as a

way to mimic the humanlike behavior of not always using

the exact same path, for instance by varying the path search

metric (for example among the ones in Figure11).

Many extensions can be developed for customization to

specific needs (application to non-flat terrains, hierarchical

layers, etc). The triangulation can also be used for visibility

and proximity queries by having each triangle to keep track

of its agents and applying simple triangle traversals from a

Figure 15: This environment has O(n) junctions (triangles
with three free edges), what increases the branching factor
and the number of overlapping fronts expanded. From top
to bottom, the initial path has length 32.49 and is improved
3 times: first to 32.46, then to 32.30, and finally to 32.29,
reaching the global optimal.

starting triangle, up to any desired radius. While several of

such extensions are left for future work, further details and

proofs about the presented algorithms will be soon available

in an extended version of this paper.

9. Conclusion

Several new results were presented for enabling the efficient

extraction of high-quality paths of arbitrary clearance from

triangulations in optimal time. An extended search for the

global optimum is also presented. The proposed methods are

the first to correctly extract such paths from a triangulated

mesh and the overall approach demonstrates many benefits

for the navigation of characters in virtual environments.
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