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Abstract

In physical simulation, it is frequently useful to define constraints between deformable objects, ensuring that one
object follows another. Existing techniques for enforcing these constraints define the relationship between the ob-
Jects using barycentric coordinates, a linear combination of vertices. While simple to implement and understand,
barycentric coordinates have one important drawback: for stability, weights must be non-negative, which limits
the types of constraints that can be defined. We introduce the Point Cloud Glue, which uses the nearest fit rigid
rotation (the Procrustes transform) to the deformable object’s particles. Our key contribution is to demonstrate
that we can differentiate through this minimization in a numerically stable manner, allowing our method to be
used in many constrained dynamics systems including those based on bindings/embeddings and those based on
Lagrange multipliers. We demonstrate the flexibility of our method through several examples.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Physically based modeling

1. Introduction

Simulation of deformable objects and rigid bodies has be-
come a staple of visual effects work. The variety of situa-
tions in which physical simulations are used and the com-
plexity of the simulated worlds is rapidly increasing, and so
is the expectation of the tools’ robustness and ease of use.
It is often the case that geometric objects from many differ-
ent sources, created using disparate design approaches and
with little or no consideration for simulation requirements,
are quickly thrown together into a complex scene, with the
expectation that they will interact in physically believable
and visually interesting ways. We thus need the simulation
equivalent of duct tape: a general, simple, quick, and robust
tool to keep things together wherever and whenever needed.

While methods for constraining rigid bodies in this man-
ner are robust and widespread [MWS88, BB88, WTF06],
methods for constraining deforming simulations are com-
monly restricted to the use of linear combinations of ver-
tices. A simple example of this is a point-to-triangle con-
straint, which constrains a “bound” point x; to a location
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on a “parent” triangle {x;,Xp,X3}; see Figure 1. To make
this constraint more formal, we could simply define the
bound particle’s position in terms of the parent particles,
oX] + 0pXy + 03X3; this is sometimes known as an “em-
bedding” of the point into the triangle, or, in the terminology
introduces by Sifakis and colleagues [SSIF07], we would
say that the particle x; is “hard bound” to the parent tri-
angle. Alternatively, we might define a constraint function
c(x;) = xp — Y;0;x; = 0 to fit into a constraint formulation
that uses Lagrange multipliers [PB88, WW90].

Because methods for solving constrained dynamics in-
variably require the computation of the constraint Jacobian
dc/dx;, defining constraints using barycentric coordinates
has the advantage of simplicity. However, they have the lim-
itation that weights should always be positive; if weights are
negative (which would happen in our point-to-triangle con-
straint if the point was outside the triangle), then methods
for solving constraints tend to generate poor-quality results.
For example, using hard bindings we will find that any force
applied to the bound particle actually drives the parent parti-
cles apart (see Figure 1, right). Similarly, if we solve con-
straints using Lagrange multipliers (similar to Barzel and
Barr [BB88]), we will find that when we perform a least-
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Figure 1: (Left) Here, bound point X, is constrained to lie at
the location 04X + QX + 03X3. (Right) To constrain X, to
lie outside the parent triangle, we must use a negative weight
for a3, which in a bindings/embeddings frameworks means
that forces applied to the bound particle will drive the parent
particles apart.

squares projection of particle velocities (accelerations) onto
the space of valid velocities (accelerations), the resulting be-
haviors will be counterintuitive and potentially unstable.

While this might seem like a minor limitation, it in fact
has significant ramifications that make linear constraints
unsuitable as an all-purpose simulation duct tape. Defin-
ing constraints involving cloth, for example, becomes much
more difficult when the constrained points must be on the
cloth surface. For volumetric simulations, constrained points
on one object must be entirely contained within another’s
tetrahedral mesh, putting an added burden on users and pos-
sibly necessitating changes to the original geometry. Ideally,
our constraint system should lift these limitations, while be-
ing simple, intuitive, and very robust.

Our method, which we call “Point Cloud Glue” due to
its applicability to unstructured collections of points, works
by computing the nearest-fit rigid transform (the orthogo-
nal Procrustes transform [Hig08]) to the particle positions.
While this transform has been used previously for computing
the internal dynamics of objects [MTGO04,RJ07], it has not
been used in constraint systems like those mentioned above.
A key reason for this is that the closest-fit rigid transforma-
tion results from a nonlinear minimization, so it is not ob-
vious how to compute its Jacobian besides using finite dif-
ferences. Because the solution can be posed in terms of the
singular value decomposition (SVD), however, we can com-
bine earlier results on the differentiability of the individual
SVD terms with new observations specific to the Procrustes
problem to derive an analytical expression for the Jacobian
that is both fast and robust to compute. The result is a con-
straint that can be used between virtually any pair of simu-
lated objects, which is easy for users to set up and configure,
and which imposes little overhead at simulation time.

1.1. Related work

There are three broad categories of methods for handling
constraints in deformable simulation: penalty methods, La-
grange multipliers, and embeddings. Penalty methods are the
simplest, and maintain the constraint via stiff springs. Forces

can be defined in terms of the gradients of energy functions
which take the form E = ||c(x;)||* [WFB87, BW98]; differ-
entiating E requires computing dc/dx;. Lagrange multipli-
ers avoid the stiffness issues associated with penalty meth-
ods [PB88, WW90, MT92, BW92] and can maintain con-
straints to high accuracy, usually at the cost of solving a
linear system. Any method based on Lagrange multipliers
requires the computation of the constraint Jacobian. The
method of Gissler and colleagues [GBT06] can be seen as
a variant of Lagrange multiplier methods since it uses max-
imal coordinates and projects down to the constraint man-
ifold; while the method does not explicitly use the con-
straint Jacobian, all the described constraints are linear, and
it is likely that applying the method to constraints like ours
would require the use of the constraint Jacobian to solve the
resulting nonlinear equation.

The final technique commonly used for constraining de-
forming simulations is to “bind” or “embed” certain parti-
cles, removing them from the simulation and defining their
positions in terms of other particles. This might be used
to embed a high-resolution surface mesh in a lower-resolu-
tion volumetric cage for interactive performance [DDCBO01,
CGC*02] or to avoid difficult-to-handle “slivers” that appear
in conforming meshes during fracture [MBFO04]. Sifakis and
colleagues [SSIF07] formalized much of the notation related
to bound particles and showed that the Jacobian of the bind-
ing function is needed to transfer forces correctly. For sim-
plicity, we will pose our constraints using bound particles
(see §2); this limits somewhat the types of constraints we can
define, but eases implementation. We emphasize, however,
that the Jacobian calculation shown here could be used in a
Lagrange multipliers framework, and this would allow cer-
tain types of constraints that cannot be expressed in a bind-
ings framework (see also §5).

The methods listed above include many examples of “pin”
constraints, point-on-circle constraints, contact constraints,
and some constraints specifying internal dynamics (e.g., no-
stretch constraints which fix the distance between particles).
However, none of them extend between-body constraints
beyond linear combinations of particles (point-to-triangle,
point-tetrahedron, etc.), which means they suffer from the
limitations highlighted in §1.

Using the Procrustes transformation in the context of sim-
ulation was pioneered by Miiller and colleagues [MHTGOS5],
who used it to simulate geometry of arbitrary topology.
Rivers and James improved on the method’s runtime by
reusing computation [RJO7]. Both papers focused on shape
matching for the internal dynamics of single objects. With
sufficient stiffness, the earlier method could potentially be
used as a penalty method constraining groups of points to
move rigidly. However, this suffers from two major limi-
tations as a constraint formulation. First, the timestepping
method used is specialized for real-time simulations, while
our method can be used within virtually any simulation
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framework. Second, by effectively constraining points on
both objects to move rigidly, we dramatically change the in-
ternal dynamics of each. Since we find that orthogonality
between parameters improves usability, we prefer to define
the constraint so that it affects the internal dynamics as little
as possible.

2. Bound particle basics

As noted above, we will adopt the notion of hard-bound par-
ticles from Sifakis and colleagues [SSIF07] for its simplic-
ity (extensions of our method to more complicated methods
using Lagrange multipliers should follow naturally). In this
framework the position of the “bound” particle x;, is defined
to be a function of its parents, X, = ¢(X1,Xa...X,). Its ve-
locity can be computed using the chain rule,

dx, d 99 dxi _ v 8¢
b = 1
dt — dr (x1,%;-- Z 1 0X; dr Z ax, M
Sifakis and colleagues showed by applying the chain rule

to the potential energy function that forces are distributed
from child particles to parent particles via the transpose of
the Jacobian,

fx, = a—(])Tf

X aXi o
We adopt their notion of the effective mass m. which mea-
sures the resistance of the bound particle to acceleration,
me = fe/de, and can be used to compute timestep restric-
tions. However, the formula must be modified slightly, since
their derivation only handles the case where the binding uses
scalar weights. We will need the second derivative of (1),

dZXb _ 8(])
arr  dt (Z ox; ’)

i=1
" 30 dv; 30
Z’ ox; dr Y (a;;,) vi

:._ 87 '+Z<ax,8x )V

Since this effective mass is used only for computing an ap-
proximate timestep restriction, a certain amount of error is
acceptable, so we drop the second term here as it would be
complicated to compute. Taking magnitudes where appro-
priate, we have,

I Il ~ |y 2, || 90,

e = |lax, || = 27 Y ,:21 Y 2)
v |90 -1 99 100"
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Here, M, is the diagonal mass matrix for the ith parent parti-
cle. Since we need only an upper bound on 1/m, for comput-
ing the timestep restriction, we can conservatively estimate
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Figure 2: (Left) Particle x;, is bound within the frame

rest rest rest rest

defined by the parent particles x|, X5, X3, and Xy
(Right) At a subsequent frame, to determine the new loca-
tion of X, we find the nearest rigid transform {R,t} taking

X" to x;. We then apply the same translation and rotation

to the offset vector (xj¢* — t"").

the effective mass using the largest singular value syqx of
do/dx;, that is, my < Y s%wx/m,-. A consequence of (3) is
that small masses for the parent particles (as for finely tes-
selated meshes) can lead to small timesteps, but our method
can avoid this by averaging over more particles in the com-
putation of ¢(x;) (see §3).

3. Defining ¢(x;)

First, let x;** and x[°"" be the rest positions of the bound

and parent particles, respectively. The algorithm we use
here is essentially the same one used for shape match-
ing [MHTGOS]. Define

(])(X,') — R(XZES[ rest) +t (4)

where t,t" € R? and R € SO(3) is a 3 x 3 rotation matrix.
Intuitively, t and R are the translation and rotation that best
fits the current parent particle positions x;; see Figure 2. To
make this concrete, the problem is posed using least squares,

R tfargmme,H X[ tre”)—i—t)—x,»H;. (5)

Note that, as did Miiller and colleagues, we have included a
per-particle weight w; to allow more control over the influ-
ence region. This can be useful because we can use a wider
influence region to increase the stability of the computed
transform while letting the weights fall off as a function of
distance to ensure that far-off parent particles do not exert
too strong an influence. We will assume that the weights
have been normalized (} ; w; = 1).

As in the earlier paper, t is simply the mean of the parti-
cles,

t= Zwixi rest Zwl rest. (6)
l
Computing the rotation matrix that minimizes (5) is an in-
stance of the orthogonal Procrustes problem. The Procrustes
problem can be solved using either the polar decomposition
or the SVD [Hig08]. In graphics, the polar decomposition is
commonly used as it can be computed quickly using simple-
to-implement algorithms [SD92]. In our case, however, we
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will need the singular values for calculating the Jacobian
(§4.1), so it makes sense to compute the full SVD. Let A
be the sum of outer products,

A— Zwi (X{“t _ trest)(xi _ t)T. (7)

Let A = USV7 be the SVD, where U and V are orthonor-
mal and S is the diagonal matrix of positive singular val-
ues. The Procrustes transform is then R = UV; however,
we require that the resulting R have a positive determi-
nant. Higham calls this the “rotation variant,” and its solu-
tion can easily be computed from the SVD by defining the
matrix Z = diag(1,1,det(UVT)) which can be used to flip
the smallest singular value if the determinant of UvT is neg-
ative,
A= (UzZ)(ZS)V" R=UZV’.

A similar transformation was used by Irving and colleagues
to ensure that tetrahedra in finite element simulations did not
invert [ITFO4]. Its effects will be discussed further in §5, but
for now we will assume that any SVD that is discussed here
has been adjusted such that R € SO(3) is orthonormal with
positive determinant.

Note that while there are fast methods for computing the
polar decomposition based on Newton’s method [HigO8],
both Miiller and colleagues [MHTGO5] and Rivers and
James [RJ07] instead use Jacobi iterations to diagonalize the
matrix A7 A, which is more accurate for nearly-singular ma-
trices. Our implementation uses two-sided Jacobi rotations
to zero off-diagonal entries of A [GL96]. We do not currently
take advantage of temporal coherence [RJ07], although this
would be a relatively simple addition. The SVD implemen-
tation in LAPACK is a reasonable alternative [ABD*90];
while it takes roughly ten times longer to compute the 3 x 3
SVD than our optimized implementation, in typical simu-
lations the number of constrained particles is small enough
that computing the SVD is not a bottleneck. By contrast, a
faster analytical version of the 3 X 3 SVD [Smi61] proved
problematic in production, since accurate singular values are
essential for the derivative calculation in §4.1.

4. Computing d¢/dx;
Examining (4), it is clear that

o Xj oR resi resi
T w0

ot

P 8)

since x)**" and t"*" are constants. The second term is trivial

to compute, since by (6) we have dt/dx; = w;I where I is the
3 X 3 identity matrix. The first term, however, is somewhat
more challenging, since it involves differentiating through
the Procrustes problem.

4.1. Differentiating the Procrustes transform

Recall that we defined the Procrustes transform using the
SVD. The basics of differentiating the SVD have appar-
ently been known for some time; Papadopoulo and Loura-
kis [PLOO] give a very complete treatment whose notation
we will borrow, but the basics can also be found in ear-
lier works [Mat97]. We repeat the derivation here because
we will need to make some important modifications specific
to the Procrustes problem that ensure the method is well-
behaved.

Let us simplify the problem by assuming that A(0) is a
function of an arbitrary scalar parameter 6 € R. We can first
observe that there exists a decomposition (the SVD),

A(8) =U(0)S(0) VT ().

where U and V7 are orthonormal (UUT =viv= I) and S
is the diagonal matrix of singular values. Differentiating, we
get

dA  dU_ 7 . dS_r dv’

—=—SV +U—-V +US——.

de  do * doe + de
Multiply on the left and right by U and v, respectively, and
by orthogonality

rdAy _yrdUg dS  cav’

U derU 70 +de+S 70 V. )
Following Papadopoulo and Lourakis, we define (for conve-
nience in notation)

def .7 dU def dVT
Quy=1U 70 Qy = 70 V. (10)
Substitute (10) into (9) to get
T dA ds
—V=0Q — Qy. 11
U dGV US+de+S v (11)

Note that everything on the left-hand side is known and the
values on the right-hand side are the unknowns. There are
two key points to note:

a. % is diagonal, and
b. Qu and Qy are skew-symmetric (antisymmetric).

(a) follows trivially since S is always diagonal. (b) results
from the fact that U and V7 are orthogonal,

v'u=1
d 1o\
%(U U)=0
auT 7dU
g UtU o =0
ol +au=o.

Since R = UV does not use S, we will not need to com-
pute %. Since Qg and Qy have zeroes along the diagonal,
we can ignore the diagonal entries in (11). For off-diagonal
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entries i # j:
{ rdA

U %V:| y = [QU]ij S;+S; [QV]ij'

Here, Papadopoulo and Lourakis set up three pairs of equa-
tions, one for each entry in the lower triangle (remember that
[Qu];; = — [Qu] ;; by skew-symmetry). Each has the form,

<S,~ S,-) (['Q'U]ij)_ [UT%V]U .12

Si S;)\[@vl;) |- [UT%V} p
Each such pair can be solved for [Qy]; ;= [Qu] ji and
[Qv];; = —[Qv] ;. However, we run into difficulty for re-

peated singular values S; = S; = s, as the matrix becomes
singular, and with round-off error we expect high levels of
error for near-repeated eigenvalues. Papadopoulo and Lou-
rakis suggest solving this robustly using the SVD, but this
risks introducing difficulties in choosing the cutoff value,
and further seems counterintuitive: the case where the singu-
lar values are (1,1, 1) should ideally be the easiest to solve.

Fortunately, this turns out to be simple to remedy. Re-
member that what we really want to compute is the deriva-
tive of the best-fit Procrustes transform,

d d N dU_p _dvT

ZR) = == = 13

a8 ® de(UV> o' "V (13)
=uQuVv +uQyv!  (19)
=U(Qu+Qv)V! (15)

Thus, we need only to compute the sum Qg + Qy, rather
than the individual components. If we add the first line of
(12) to the second, we get
(S;+Si) ([Qu]; +[Qv];;) =

([UT%V] - U7 4aV] ji) .36
We can thus compute Qy + Qy whenever no two singular
values sum to zero. Normally, singular values are defined to
be nonnegative, so we would expect this to hold whenever
two or more singular values are nonzero. As we allowed the
smallest singular value to be negative in §3, however, the two
smallest singular values could potentially cancel each other
out. Either case is already problematic for Procrustes, so this
is a reasonable criterion (if there are two near-zero singular
values, the solution is unconstrained and free to rotate ar-
bitrarily about the third axis; when there is cancellation we
cannot decide which of the directions needs to be flipped to
ensure a right-handed coordinate system).

Completing the derivative Now that we can differentiate
R as a function of an arbitrary parameter 6, we can use
this to differentiate R with respect to x;. Let us first define
some notation to simplify things; let v, = X" — " be the
bound particle’s offset vector in its rest configuration and

Figure 3: (Left) If a user wants to constrain a single parti-
cle in object B to the frame defined by object A, we can use
a “hard binding” in the parlance of Sifakis et al., replac-
ing the specified particle of B with one (in red) whose posi-
tion is defined by the Procrustes transform fit to A. (Right)
If the user specifies multiple constraints for a single par-
ticle, we instead create two new bound particles and attach
them to the constrained particle via stiff implicitly integrated
springs, similar to the binding springs of Sifakis et al.

vi = X[ — "' be the corresponding vector for the parent

particle. For clarity, we can rewrite (4) in terms of individual
components,

3
9;(xi) = Y Ruvpi+t;.
k=1

Now,

a¢j _ 3 BRjk atj
8x,-(z a aX,'g Vok + m

17
k=1
From (6) we have dt;/dx;; = w;8;; where 8 is the Kro-
necker delta function. Now, (16) tells us how to compute
dR j /dx;e given dA j /dx;. Combining (7) with (6),

Aje = LuwWmnVimj Xk — ti)
=Y WimVmj (Xmk — X WnXnk) »
which can be differentiated
%ﬁ; = Yo Wi Vinj (8imOks — L WnOinSpe)
=widk (Vij — Xn Wi Vimj) -

However, ¥, winVm = ¥ win (X" — 5% ) = ¥, win (x5 —

Y, waXi*h) = 0 (since ¥, wm = 1), so we can drop the sec-
ond term. As a result, each of the n Jacobian terms (one
per parent particle) can be computed with only a constant
amount of work. In practice, we generally limit the number
of parent particles to ten or fewer, and computing the SVD
accounts for the bulk of the computational cost.

4.2. Observations

At this point, it is worth taking a moment to examine how the
form the derivatives take ensures that the point cloud glue
avoids the problems inherent in linear bindings. Recall that
we transfer forces from child to parent particles via the Ja-
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cobian matrix (this is just equation (17)):
aQ)j 3 aRjk
—r = Vpk+ =— . (18)
oxj¢ k; X i
N——— ~~

rotation translation

The derivative of the translation term simply transfers the
force to each parent particle i scaled by its weight w;. We
can thus think of this as applying the force to the “center of
mass” defined by the weights w;.

Now, consider the rotation term; oR j; /dx;, must take the
form given by (15),

3, OR i

)}

k=1 aXiZ

3
Vi = Z U (Qlfj +Q/‘C/) VTth. (19)
k=1

Here we are not concerned with the actual values of Qlfj and
Q]{,; merely that they are both skew-symmetric. Since U and
V are held constant during the derivative calculation, we can
factor them out,

3 OR i

)}

=1 O

3
Vpk = U (Z Vok (Ql{] +QI\C/>> VT. (20)
k=1

It is easy to verify that the weighted sum of skew-symmetric
matrices is skew-symmetric, so this has the form U x
(skew-symmetric) * V', When applied to a force, therefore,
the (transposed) rotation term first rotates by U7, multi-
plies by a skew-symmetric matrix, and finally rotates again
by V. Since multiplying a vector y by a skew-symmetric
matrix [zx] corresponds to computing the cross product
z X'y, we can consider this first term to be analogous to the
r; X (ry x f) term that converts point forces to rigid body
torques and back to point forces. Our analogy is not exact,
of course, because the actual skew-symmetric matrices de-
pend on other factors including the weights and computed
singular values, but in the special case where all particles
are in their “rest configuration,” meaning U=V =S =1, we
will find that

3 OR
aXig

Yok = [(vi X Vp) x] @n

k=1
That is, transferring a force fx, on the bound particle to a
force fx, on the parent particle i means first converting it to a
“torque” T = v;, x fx, and then applying the “torque” to the
parent particle via fy, = v; X 7.

5. Results and Discussion

We implemented the point cloud glue within a simulation en-
gine that handles cloth, flesh, hair and rigid bodies and which
already supported bindings similar to those described by
Sifakis and colleagues [SSIF07]. We made no changes to the
engine itself, and we emphasize that this method should be
usable within virtually any simulation framework. Users of

a. b.
fx, fx,
+ O fx, > +

Figure 4: Forces fx, on the bound particle x;, are trans-
ferred to the parent particles X; via the constraint Jacobian.
In (a), the force points along the “moment arm” and hence
pushes all the parent particles in the same direction (this
makes sense, since an acceleration in this direction only af-
fects the translation part of the Procrustes transform). In (b),
the same force rotated by 90 degrees is applied to the parent
particles with the characteristic “windmill” pattern caused
by the skew-symmetric terms discussed in §4.2. In (c) we see
a combination of these two terms. Of course, in real-world
examples we expect to see significant deformation of the par-
ent particles as in (d); the fitted rigid frame is represented by
a . Note that while we may see shearing in the parent par-
ticles as in (b) and (d), our method never drives particles
violently apart as do the linear bindings in Figure 1.

our system simply specify the points to constrain and the tar-
get (parent) object(s); both constrained points and target ob-
jects can be either rigid or deformable. Because our method
is topology-agnostic, constraints can be applied equally well
to cloth and tetrahedral meshes without any additional im-
plementation effort.

For each constrained point, the system automatically se-
lects enough nearby points (typically fewer than ten) on
the target object to generate a sufficient basis for fitting
the Procrustes transform. Users can select whether the con-
straint should be maintained exactly, in which case we use
a “hard binding” as described in Sifakis et al. [SSIF07]
(Figure 3, left), or whether a penalty-based method is pre-
ferred, in which case we substitute stiff implicitly integrated
springs between x; and the constrained point. Conflicting
constraints on a given particle are handled using stiff springs
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Figure 5: “Branches” here are simulated using tetrahe-
dral meshes; the points highlighted in green are connected to
parent branches via the point cloud glue, and the rigid spher-
ical “ornament” is attached via the same mechanism. Note
that points can be outside the parent tetrahedral cage with-
out affecting stability. This simulation runs at 0.2s/frame, of
which only 1.5% is spent computing Procrustes derivatives
and an additional 1.6% is spent in SVD computation.

(Figure 3, right); in a system using Lagrange multipliers,
least squares might be a better alternative. Points on rigid
bodies are likewise constrained by attaching the constrained
points to x; with springs; applying the constraint exactly
would require interfacing directly with the rigid constraint
solver, although in principle this should be possible.

Because we always enforce a positive determinant (§3)
for the fitted transform by potentially negating the smallest
singular value, we only need two well-defined basis vectors
for good results, which can be provided by any three points
on the parent object that are not collinear. Thus, our sys-
tem works well for both cloth simulations and volumetric
flesh simulations, and constrained points can be anywhere in
space (not just on the cloth surface). More points improve the
stability of the fitted transform in the presence of any high
frequency motion of the points by averaging over a larger
area (essentially, leveraging the central limit theorem). For
cloth, the orientation provided by the Procrustes transform
ensures that constrained points remain on the correct side
of the surface, which is difficult to guarantee with penalty
forces.

Plant simulation While there are a variety of methods that
can be used for simulating plants, it may be convenient to
use tetrahedral meshes to represent branches and stems. Fig-
ure 5 shows one such simulation; we used point cloud glue
to attach each branch to its parent branch and again to attach
the rigid “ornament.” Note that the constrained points of the
child tetrahedral mesh need not be inside the parent, which
simplified the setup. Figure 7 shows a more complicate pro-

Figure 6: For this shirt simulation, Point Cloud Glue is used
to attach both the deforming pocket and the rigid buttons to
the shirt. Point cloud glue also constrains the shirt to itself at
the locations of the buttons to ensure that it stays closed. We
attach the top two buttons after the first few frames of simula-
tion to let the character’s head pass through the collar by ad-
justing the spring stiffness on the appropriate frames, later,
we detach the glue at the cuffs (reducing stiffness to zero) to
simulate unbuttoning. This simulation runs at between 5 and
6 minutes per frame and is completely dominated by colli-
sion handling; SVD and Procrustes derivative computation
combined account for less than 0.1% of the runtime.

duction simulation; branches were attached using the glue
which was disabled at the appropriate frames to allow them
to fall off as the vehicle crashes through them.

Cloth simulation Figure 6 shows a shirt where rigid but-
tons and pockets have all been attached to the main shirt
using point cloud glue. Note how we can use the glue to
keep the buttoned layers slightly separated to ensure the cor-
rect Z-order; if we used a point-to-triangle constraint as de-
scribed in Figure 1 we would find that the two layers would
be coincident at the constrained points, and if we attached
them via springs instead and relied on collision handling to
keep the layers apart we would find that the the stiff springs
defeat the repulsion phase of the collision handling algo-
rithm [BFAQ2], necessitating reliance on later phases of the
collision algorithm that tend to be slower and can produce
artifacts. Note that the glue does not affect the relationships
between the parent particles, meaning that clothing can still
remain soft and pliable even as buttons and pockets are at-
tached.

Embeddings Dealing with embedded meshes can some-
times be painful for users, since they must expend effort
ensuring that the embedded mesh is fully contained within
the volume mesh. This is especially problematic in produc-
tion, since tetrahedral cages may need be regenerated from
scratch due to only minor modeling changes to the surface
mesh. We can avoid some of these problems by automat-
ically detecting that points are outside the volume mesh
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and switching them over from barycentric coordinate-based
bindings to point cloud glue-based bindings.

Limitations A major limitation of our work is common to
all methods based on the Procrustes transform: if the parent
points lie in a line, we only have one well-defined direction,
and the resulting transform is under-constrained. This means
that it is suitable for simulations of cloth and flesh, but not
when simulating hair, for example (although it could be used
with hair simulations based on tetrahedral meshes [SLF08]).
Similarly, even if we start with two or three well-defined di-
rections, our parent mesh could collapse to a line during sim-
ulation, causing the fitted transform to have an extra degree
of freedom. Thus, we rely on the internal dynamics of the
deforming objects to maintain enough of the initial shape
for a well-defined transform. In practice, we find that this is
rarely a problem.

Future work As mentioned above, our method could be
easily adapted for use in a constraint framework based on
Lagrange multipliers. Here, constraints can be more flexi-
ble, and we could even define “joints” between deformable
objects via constructions like ¢(x;,y;) = ¢(x;) — y(y;) =0
(here, both ¢ and y represent positions defined by the Pro-
crustes transform).

Because the Procrustes transform is a very useful con-
struct, we suspect that the ability to differentiate it will have
uses elsewhere. For example, imagine adding a term to a ge-
ometric optimization of the form “minimize the difference
between a set of points and the Procrustes transform fitted to
those points.” Minimizing this efficiently would involve dif-
ferentiating through the Procrustes transform computation.
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