
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

Linear-Time Dynamics for Multibody Systems with General
Joint Models

Weiguang Si†1 and Brian Guenter‡2

1University of California, Los Angeles
2Microsoft Research

Abstract
Most current linear-time forward dynamics algorithms support only simple types of joints due to difficulties in
computing derivatives of joint transformations up to order two. We apply the D* symbolic differentiation algorithm
to a recursive formulation of forward dynamics to get a highly efficient linear-time forward dynamics algorithm
supporting multibody systems with general scleronomic joints. With this new algorithm we can easily build a tree-
topology multibody system with complex joint models and perform forward dynamics efficiently. The source code
for the algorithm is freely available for non-commercial use.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

This paper describes a new linear-time algorithm for forward
dynamics of tree structured systems with rigid bodies con-
nected by scleronomic joints, which are defined as arbitrary
functions of the minimal generalized coordinates of the sys-
tem. In a minimal coordinate formulation the generalized co-
ordinates usually correspond directly to the variables param-
eterizing the kinematics of the system, which makes these
formulations immune to drift. However, since derivatives of
the joint transformations up to second order are required for
dynamics simulation, they have, in the past, primarily been
applied to simple joint models whose derivatives are easy
to compute, such as revolute and universal joints. Many in-
teresting joint types, such as surface-surface, surface-point,
curve-curve, and curve-point, have easily specified kinemat-
ics but complicated derivatives which are difficult to com-
pute. Our new algorithm extends an existing recursive for-
ward dynamics algorithm [Plo97] to allow for joints of arbi-
trary complexity. The recursive equations, including deriva-
tives, are computed symbolically using D* [Gue07] , trans-
formed to C++ code, and compiled to generate an efficient
executable. For the simple joint types the new algorithm is

† e-mail: forswg@cs.ucla.edu
‡ e-mail: bguenter@microsoft.com

generally faster than widely used existing forward dynamics
algorithms. The source code for the algorithm is freely avail-
able for non-commercial use and can be downloaded at the
authors’ webpage.

2. Related Work
Early work on dynamics simulation focused on the prob-
lem of computational efficiency [Fea83, Kha87]. However,
the difficulty of computing complex derivatives has made
it difficult to apply these algorithms to general scleronomic
joints. Computer graphics researchers have employed differ-
ent strategies to compute derivatives of complex functions
[Gue07,Kas92,Coh92,PSE∗00,GHDS03]. But efficient dy-
namics algorithms which can support general scleronomic
joints have been a challenge.

Featherstone [Fea83] developed the Articulated Body Al-
gorithm (ABA), which is a linear-time dynamics algorithm.
The first version of this algorithm supported only single-
degree-of-freedom joints, but an improved version [Fea87]
included general scleronomic joint models. This algorithm
is widely used in dynamics simulation. However, due to the
complexity in computing derivatives of complex joints, most
of the implementations of Featherstone’s algorithm support
only simple types of joints, which are called lower pairs
[Reu76], such as prismatic joints, spherical joints, etc.

c© The Eurographics Association 2010.

DOI: 10.2312/SCA/SCA10/031-037

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/SCA/SCA10/031-037


Si & Guenter / Linear-Time Dynamics for Multibody Systems with General Joint Models

Symbolic dynamics has also received much attention in
both industry and academia. Michael et al. [SR94] developed
SD/FAST, which is widely used in physically-based simula-
tion. Autolev [KL00], a symbolic manipulation package that
uses Kane’s method to develop equations of motion and per-
form simulations, is also frequently used for rigid body sim-
ulation and motion analysis. However, both of these software
support only simple joint models. Guenter et al. [GL09] pro-
posed a symbolic Lagrangian multibody dynamics algorithm
which supports general scleronomic joints with empirically
measured O(n) inverse dynamics and O(n3) forward dynam-
ics. However, the O(n3) time complexity and long symbolic
preprocessing time for large-DOF systems make it most use-
ful for smaller systems.

Kry and Pai [KP03] used reduced coordinates to evolve
a continuous contact between smooth piecewise paramet-
ric surfaces. The computation of derivatives is very involved
as they handle general object geometry by subdivision sur-
faces. Lee and Terzopoulos [LT08] modeled more general
joints for multibody dynamics, their method features the effi-
cient computation of derivatives by representing joints using
spline. However, the joint types are still limited to special
forms that can be modeled by splines. Rodriguez [Rod87]
proposed a linear-time forward dynamics algorithm by in-
voking results from Kalman filtering. Ploen [Plo97] red-
erived this algorithm using Lie groups and Lie algebras. His
formulation is clear and easy to understand but only deals
with simple joints. We reformulate this algorithm, extend-
ing it to handle complex joints. We use D* to compute the
complex derivatives and to symbolically perform all opera-
tions, applying algebraic simplification to the resulting ex-
pressions. The D* code generator converts the symbolic ex-
pression into a C++ program which is then compiled and
executed. This algorithm runs in linear time and supports
general scleronomic joint models. Symbolic preprocessing
time is less than one minute even for systems with hundreds
of degrees of freedom and the resulting executable is com-
putationally efficient.

3. Geometric Preliminaries

The mechanical systems under consideration are tree struc-
tured linkages of rigid bodies. The relative orientation and
position of two linked bodies are defined by SE(3), the Spe-
cial Euclidean Group of rigid-body motions, which consists
of matrices

[
R t
0 1

]
,

written as an ordered pair (R, t), where R ∈ SO(3), t ∈ R3,
and SO(3) is the group of 3× 3 rotation matrices.

Given a moving body frame T(t) = (R, t), its generalized
velocity expressed in the instantaneous body frame is a twist

v̂ = T−1Ṫ =
[
[ω] v
0 0

]
, (1)

where

[ω] =




0 −ω3 ω2

ω3 0 −ω1
−ω2 ω1 0



 .

The Lie algebra of SE(3), denoted as se(3), consists of
matrices of the form v̂. We also represent v̂ as a vector
v = [ωT ,vT ]T . The ∨ operator maps a twist to its vector
form, i.e. v̂∨ = v.

For T ∈ SE(3) and g = [ωT ,vT ]T , the adjoint mapping is
defined as AdTĝ = TĝT−1, or in matrix form as

AdTg =
[

R 0
[t]R R

][
ω
v

]
. (2)

In Section 4 we show how to use the adjoint mapping to
transform between coordinate frames.

We can also define the adjoint mapping using the Lie
bracket: adĝ : se(3) %→ se(3), defined as adĝ1 ĝ2 = ĝ1ĝ2 −
ĝ2ĝ1 or

adg1 g2 =
[
[ω1] 0
[v1] [ω1]

][
ω2
v2

]
. (3)

The dual space of se(3), denoted as se∗(3), represents gen-
eralized force, written as f = [mT ,hT ]T , where m ∈ R3 is
a moment and h ∈ R3 a force. In matrix form, the corre-
sponding dual operators of adjoint mappings Ad∗T : se∗(3) %→
se∗(3) and ad∗g : se∗(3) %→ se∗(3) are the transposes of AdT
and adg:

Ad∗T = AdT
T, ad∗g = adT

g .

In this notation the Newton-Euler equations of rigid body
motion are [PBP95]:

f = Jv̇− ad∗vJv, (4)

where f ∈ se∗(3) is the generalized force applied to the
rigid body and v ∈ se(3) is the generalized velocity. Here
J ∈ R6×6 is the generalized inertia of the rigid body:

J =
[
I −m[r]2 m[r]
−m[r] mI

]
, (5)

where m is the mass, I is the inertia tensor of the rigid body
about the center of mass, r ∈ R3 is the position of the center
of mass, and I denotes the 3× 3 identity matrix.

4. Dynamics of Tree-Topology Multibody Systems with
General Scleronomic Joints

Consider a general tree-topology multibody system where
links and joints are numbered from 1 to n. Let λ(i) be the
index of the parent link of link i. We use Ti to represent
the configuration of body frame i with respect to the iner-
tial reference frame. Letting Gi = fλ(i),i denote the relative
configuration of i with respect to λ(i) gives:

Ti = Tλ(i)Gi. (6)

c© The Eurographics Association 2010.

32



Si & Guenter / Linear-Time Dynamics for Multibody Systems with General Joint Models

Substituting (6) into (1), we can obtain

v̂i = T−1
i Ṫi

=
(

Tλ(i)Gi
)−1 (

Ṫλ(i)Gi +Tλ(i)Ġi
)

= G−1
i v̂λ(i)Gi +G−1

i Ġi. (7)

Using the adjoint mapping, we can write (7) in vector
form:

vi = Ad f−1
λ(i),i

vλ(i) +Siq̇i, (8)

where

Si =
[(

G−1
i

∂Gi
∂q1

i

)∨ (
G−1

i
∂Gi
∂q2

i

)∨
· · ·

(
G−1

i
∂Gi

∂qdi
i

)∨]
.

(9)
Here the number of DOFs of joint i is di, i.e qi =[
q1

i q2
i · · · qdi

i

]T
; Si is therefore a 6× di matrix.

Using the relationship d
dt AdT−1 = −advAdT−1 (see Ap-

pendix C) , where v is defined in (1), we have

Ȧd f−1
λ(i),i

= −adSiq̇i Ad f−1
λ(i),i

. (10)

Take derivatives of both sides of (8) to obtain:

v̇i = Ad f−1
λ(i),i

v̇λ(i) − adSiq̇i Ad f−1
λ(i),i

vλ(i) + Ṡiq̇i +Siq̈i, (11)

where

Ṡi =
∂Si
∂q1

i
q̇1

i + ...+
∂Si

∂qdi
i

q̇di
i . (12)

Let µ(i) be the set of child link indices of link i, i.e. µ(i) =
{k|λ(k) = i}. Then from (4) we have

fi = ∑
k∈µ(i)

ifk +Jiv̇i − ad∗vi Jivi − fe,i (13)

= ∑
k∈µ(i)

Ad∗f−1
i,k

fk +Jiv̇i − ad∗vi Jivi − fe,i, (14)

where fi ∈ se∗(3) is the generalized force applied by link
λ(i) to link i, ifk = Ad∗f−1

i,k
fk denotes fk relative to frame i,

and fe,i is the external force (e.g., gravity) on link i.

The di×1 vector of joint torques, τi, can be extracted from
the generalized forces

τi = ST
i fi. (15)

From equations (9) and (12), notice that Si and Ṡi
need first and second partial derivatives. Both matrices are
necessary for forward and inverse dynamics. For simple
joints, these derivatives are trivial to compute, e.g. for rev-
olute joints rotating around z-axis, Si = [0,0,1,0,0,0]T and
Ṡi = [0,0,0,0,0,0]T ; for non-simple joints, computing these
derivatives is much more complex. However, computing Si
and Ṡi with D* is straightforward.

The motion equations for a tree-topology multi-body sys-
tem are

M(q)q̈+C(q, q̇)q̇+φ(q) = τ. (16)

Detailed formulation is provided in Appendix A. To perform
forward dynamics, we need to solve (16) to obtain

q̈ = M(q)−1(τ−C(q, q̇)q̇−φ(q)) (17)

As the inverse mass matrix M(q)−1 has a square factoriza-
tion, the forward dynamics procedure can be rewritten recur-
sively (refer to Appendix B for more details). We can get the
following O(n) recursive algorithm:

1. Forward recursion: for k = 1 to n

vk = Ad f−1
λ(k),k

vλ(k), (18)

ak = −adSk q̇k vk + Ṡkq̇k, (19)

vk = vk +Skq̇k, (20)

bk = −ad∗vk Jkvk − fe,i. (21)

2. Forward recursion: for k = 1 to n

αk = Ad f−1
λ(k),k

αλ(k) +ak, (22)

ᾱk = Jkαk +bk. (23)

3. Backward recursion: for k = n to 1

pk = ∑
i∈µ(k)

Ad∗f−1
k,i

pi + ᾱk, (24)

p̄k = ST
k pk, (25)

τ̄k = τk − p̄k. (26)

4. Backward recursion: for k = n to 1
J̄k = Jk+

∑
i∈µ(k)

(Ad∗f−1
k,i

J̄iAd f−1
k,i

−Ad∗f−1
k,i

J̄iSiΩ−1
i ST

i J̄iAd f−1
k,i

),

(27)

Ωk = ST
k J̄kSk, (28)

Yλ(k),k = Ad∗f−1
λ(k),k

(I− J̄kSkΩ−1
k ST

k ), (29)

Πλ(k),k = Ad f−1
λ(k),k

J̄kSkΩ−1
k . (30)

c© The Eurographics Association 2010.

33



Si & Guenter / Linear-Time Dynamics for Multibody Systems with General Joint Models

5. Backward recursion: for k = n to 1

zk = ∑
i∈µ(k)

(Yk,izi +Πk,iτ̄i), (31)

ck = τ̄k −ST
k zk, (32)

c̄k = Ω−1
k ck. (33)

6. Forward recursion: for k = 1 to n

ηk = YT
λ(k),kηλ(k) +Skc̄k, (34)

q̈k = c̄k −ΠT
λ(k),kηλ(k). (35)

The inverse of matrix Ωk can be computed symbolically, us-
ing Gaussian elimination, or numerically using any standard
matrix library. Matrix Ωk is of size dk × dk , where dk is the
number of DOFs of the joint k. The largest possible size is
6× 6 for scleronomic joints as we need at most 3 DOFs for
rotation and at most 3 DOFs for translation. For the revolute
joint, the matrix size is only 1× 1; for the surface-surface
constrained joint, it is 4×4. These small matrices can be ef-
ficiently inverted using symbolic Gaussian elimination and
this can improve runtime performance significantly, espe-
cially when there are many trivial matrix elements (e.g. 0,
1.), which is often the case.

For the fully symbolic method recursions 1 ~ 6 are all
evaluated symbolically. For the mixed symbolic-numerical
method the computation is divided into two parts: recursions
1 ~ 3 are computed symbolically while recursions 4 ~ 6 are
computed numerically. We describe results for both meth-
ods in Section 5. The mixed symbolic-numerical method has
lower symbolic processing complexity than the fully sym-
bolic method, reducing memory use and processing time
in the preprocessing phase. This method also avoids sym-
bolic matrix inverse, large improvements in efficiency can
be made with effort. However, since the symbolic prepro-
cessing is done only once this is usually not an issue, unless
the system is so complex that memory usage exceeds total
available memory.

5. Experiments and Results

Algorithms employing D* symbolic differentiation are exe-
cuted in a 2-phase process. The first phase is symbolic pre-
processing, code generation, and compilation; this prepro-
cessing is done only once per system. The second phase is
execution of the resulting code; this phase determines the
running-time property of an algorithm and this is the time
we use to compare with other algorithms. Table 1 shows the
comparison results of different algorithms for different ex-
amples. The experiment is based on our implementation of
the Featherstone’s algorithm and SD/FAST software down-
loaded from [SR94]. We compared our algorithm (Method I,

Figure 1: Torus chain example

Figure 2: Windmill example

processing all recursions symbolically) with Featherstone’s
algorithm and SD/FAST under the same conditions. We also
show the running time of the method which deals with
our forward dynamics formulation in a mixed symbolic-
numerical way (Method II). All timings were measured on a
2.67 GHz Intel Core 2 Quad processor with 2 GB of RAM.
From Table 1 we can see that our algorithm is faster than
both Featherstone’s algorithm and SD/FAST in most cases.
Our algorithm also supports non-simple joint types, such
as surface-surface constrained joints. The running time of
SD/FAST for a 100 rigid-link revolute joint chain is not
available because it takes more than tens of hours to com-
pile the C code with optimization.

The accompanying video shows some simulation results
of Method I. Fig.1 shows the example of a 20 torus chain,

c© The Eurographics Association 2010.

34



Si & Guenter / Linear-Time Dynamics for Multibody Systems with General Joint Models

Example RC20 RC50 RC100 TC10 TC20 WM
DOFs 20 50 100 38 78 73
Method I 0.020 0.050 0.112 0.055 0.115 0.108
Featherstone 0.025 0.064 0.127 NA NA NA
SD/FAST 0.016 0.136 — NA NA NA
Method II 1.0 2.4 4.9 1.05 2.2 2.4

Table 1: Running Time Comparison: RC20 stands for revo-
lute joint chain of 20 rigid links; RC50 stands for revolute
joint chain of 50 rigid links; RC100 stands for revolute joint
chain of 100 rigid links; TC10 stands for torus chain of 10
tori; TC20 stands for torus chain of 20 tori; WM stands for
a tree structured windmill example. All the running time en-
tries are in milliseconds.

which consists of 20 tori connected by surface-surface con-
strained joints. In Fig.2 is a windmill example which has
sphere-sphere, sphere-ellipsoid, sphere-torus, torus-torus,
and torus-ellipsoid surface joint connections. Fig.3 shows an
example of a torus chain sliding along a Bezier spline with 7
control points under the effect of gravity. The spline passes
through the center of the first torus, while the main axis of
the first torus is always aligned with the tangential direction
of the spline. Fig.4 shows an example of a multibody sys-
tem sliding around a Bezier surface with 25 control points
under the effect of gravity. The sliding board of the system
is aligned with the tangential plane of the surface. It is easy
to model and simulate these complex mechanisms because
parameterizing the kinematics of the complex mechanisms
is straightforward. The difficulty is in computing the deriva-
tives, which is handled automatically by D*.

As our dynamics algorithm deals with all kinds of scle-
ronomic joints in a unified way, there is no limit in the joint
types of dynamics systems as long as the transformation ma-
trix of the joint can be represented as a function of indepen-
dent generalized coordinates.

In general the symbolic method results in faster code than
the mixed symbolic-numerical method but the size of the
symbolic expressions is larger which makes the symbolic
processing time and memory requirements larger. The run-
ning time of the mixed symbolic-numerical method is also
strongly dependent on the numerical matrix solver used. We
use our own implementation of Jacobi’s method, which is
slow but which we can freely distribute. Faster alternatives,
which we cannot redistribute, are Lapack and the Intel Per-
formance Math Kernel Library. These solvers can easily be
substituted by the user for our solver, if desired.

6. Discussion and Conclusion

Any collision handling techniques for minimal coordinate
approaches, for example, [KM98], can be used for simulat-
ing collision response.

Figure 3: A torus chain sliding along a spline

Figure 4: Spline surface example

Like Featherstone’s algorithm our algorithm requires gen-
eralized coordinates which parameterize system kinematics.
This is not generally a limitation; many complex mecha-
nisms are easily parameterized. Singular parameterizations,
such as gimbal lock in a ball joint parameterized with Euler
angles, can be handled by switching between parameteriza-
tions with different singular points. For example, [Gra98],
uses this method to parameterize the ball joint without sin-
gularity.

Using this new algorithm we can easily build and sim-
ulate systems with complex joints. The O(n) running time
makes it practical to simulate large, complex systems in real
time. For example, one could better model human figure mo-
tion by using more accurate joints, such as a four bar link-
age knee joint, a surface-surface type scapula joint, etc. The
source code for the algorithm is freely available for non-
commercial use and can be downloaded at the authors’ web-
page.

c© The Eurographics Association 2010.

35



Si & Guenter / Linear-Time Dynamics for Multibody Systems with General Joint Models

Acknowledgements

We would like to thank Sung-Hee Lee for providing the im-
plementation of Featherstone’s algorithm as well as and his
valuable discussions with us.

Appendix A: Formulation of Motion Equation

We formulate the equations of motion for a tree-topology
multibody system of n joints using the following global ma-
trix representation:

v =
[
vT

1 vT
2 · · · vT

n
]T ∈ R6n;

vλ =
[
vT

λ(1) vT
λ(2) · · · vT

λ(n)

]T
∈ R6n;

q =
[
qT

1 qT
2 · · · qT

n
]T ∈ R∑i di ;

S = diag(S1,S2, · · · ,Sn) ∈ R6n×∑i di ;

Mλ = diag(Ad f−1
λ(1),1

,Ad f−1
λ(2),2

, · · · ,Ad f−1
λ(n),n

) ∈ R6n×6n;

adSq̇ = diag(−adS1q̇1 ,−adS2q̇2 , · · · ,−adSnq̇n ) ∈ R6n×6n.

From (8) and (11), we obtain the global matrix represen-
tations of the generalized velocities and their derivatives:

v = Sq̇+Mλvλ; (36)

v̇ = Sq̈+ Ṡq̇+Mλv̇λ + adSq̇Mλvλ. (37)

Defining Θλ ∈ R6n×6n as

Θλ(i, j) =
{

I6×6 if λ(i) = j
06×6 otherwise , (38)

it follows that

vλ = Θλv. (39)

Taking derivatives on both sides of (39) we obtain

v̇λ = Θλv̇. (40)

Substituting (39) and (40) into (36) and (37) respectively
gives

v = GλSq̇, (41)

v̇ = GλSq̈+GλṠq̇+GλadSq̇Γλv, (42)

where Γλ is

Γλ = MλΘλ (43)

and Gλ is

Gλ = (I−Γλ)−1 (44)

= I+ Γλ + · · ·+Γn−1
λ . (45)

We obtain (45) as Γλ is a nilpotent matrix.

We denote

f =
[
fT1 fT2 · · · fTn

]T ∈ R6n;

J = diag(J1,J2, · · · ,Jn) ∈ R6n×6n;

ad∗v = diag(−ad∗v1 ,−ad∗v2 , · · · ,−ad∗vn) ∈ R6n×6n;

fe =
[
−fTe,1 −fTe,2 · · · fTe,n

]T
.

From (14) we can obtain the global matrix representation of
the generalized forces:

f = ΓT
λ f+ ad∗vJv+Jv̇+ fe, (46)

we can solve the above equation and obtain

f = GT
λ ad∗vJv+GT

λ Jv̇ +GT
λ fe. (47)

According to (15), it is also easy to get the following equa-
tion

τ = ST f. (48)

Substituting (41),(42) and (47) into (48), we have

τ = ST GT
λ JGλSq̈+ST GT

λ (JGλadSq̇ΓλGλS

+JGλṠ+ ad∗vJGλS)q̇+ST GT
λ fe.

(49)

Finally, the motion equations for a tree-topology multi-
body system are

M(q)q̈+C(q, q̇)q̇+φ(q) = τ, (50)

where

M(q) = ST GT
λ JGλS, (51)

C(q, q̇) = ST GT
λ (JGλadSq̇ΓλGλS+JGλṠ+ ad∗vJGλS),

(52)

φ(q) = ST GT
λ fe. (53)

Appendix B: Algorithm for Forward Dynamics

We derive the linear time forward dynamics algorithm from
the motion equations. We solve (50) to obtain

q̈ = M(q)−1τ̄, (54)

where

τ̄ = τ−ST GT
λ (JGλa+b), (55)

a = adSq̇ΓλGλSq̇+ Ṡq̇, (56)

b = ad∗v JGλSq̇+ fe. (57)

c© The Eurographics Association 2010.

36



Si & Guenter / Linear-Time Dynamics for Multibody Systems with General Joint Models

Notice that the inverse mass matrix M(q)−1 has a square
factorization

M(q)−1 = (I−ST YλΠλ)T Ω−1(I−ST YλΠλ), (58)

where Ω is a block diagonal matrix, and Yλ and Πλ are upper
triangular matrices. Precise definitions of Yλ, Πλ and Ω will
be given later and can also be found in [Plo97].

Using this factorization we rewrite the forward dynamics
procedure recursively:

1. Compute a and b according to equations (56) and (57)
2. α = Gλa
3. ᾱ = Jα+b
4. p = GT

λ ᾱ
5. p̄ = ST p
6. τ̄ = τ− p̄
7. c = (I−ST YλΠλ)τ̄
8. c̄ = Ω−1c
9. q̈ = (I−ST YλΠλ)T c̄

Before we get an O(n) recursive forward dynamics algo-
rithm from direct expansion of the above procedure, we need
to analyze the structure of some matrices.

We define λp(i) as λ◦λ◦ · · · ◦λ︸ ︷︷ ︸
p times

(i), then according to

equation (45), we have

Gλ(i, j)=






Ad f−1
λ(i),i

· · ·Ad f−1
j,λp−1(i)

if λp(i) = j for some p

I6×6 if i = j
06×6 otherwise

(59)
From equation (44) we know that Γλ = I−G−1

λ , so

ΓλGλ = Gλ − I (60)

Now it is straightforward to get the O(n) recursive algorithm,
which is specified in equations 18 ~ 35.

Appendix C: Time Derivative of Adjoint Mapping

d
dt

AdT−1 =
[

ṘT 0
−ṘT [t]−RT [

ṫ
]

ṘT

]

=
[

− [ω]RT 0
[ω]RT [t]− [v]RT − [ω]RT

]

= −
[
[ω] 0
[v] [ω]

][
RT 0

−RT [t] RT

]

= −advAdT−1

References
[Coh92] COHEN M. F.: Interactive spacetime control for anima-

tion. SIGGRAPH Comput. Graph. 26, 2 (1992), 293–302.

[Fea83] FEATHERSTONE R.: The calculation of robot dynamics
using articulated-body inertias. International Journal of Robotics
Research 2 (May 1983), 13–30.

[Fea87] FEATHERSTONE R.: Robot Dynamics Algorithm. Kluwer
Academic Publishers, Norwell, MA, USA, 1987. Manufactured
By-Publishers, Kluwer Academic.

[GHDS03] GRINSPUN E., HIRANI A. N., DESBRUN M.,
SCHRÖDER P.: Discrete shells. In SCA ’03: Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation (Aire-la-Ville, Switzerland, Switzerland, 2003), Euro-
graphics Association, pp. 62–67.

[GL09] GUENTER B., LEE S.-H.: Symbolic Lagrangian Multi-
body Dynamics. Tech. rep., Microsoft Research, 2009.

[Gra98] GRASSIA F. S.: Practical parameterization of rotations
using the exponential map. J. Graph. Tools 3, 3 (1998), 29–48.

[Gue07] GUENTER B.: Efficient symbolic differentiation for
graphics applications. ACM Trans. Graph. 26, 3 (2007), 108.

[Kas92] KASS M.: Condor: constraint-based dataflow. SIG-
GRAPH Comput. Graph. 26, 2 (1992), 321–330.

[Kha87] KHATIB O.: A unified approach for motion and force
control of robot manipulators: The operational space formula-
tion. Robotics and Automation, IEEE Journal of 3, 1 (February
1987), 43–53.

[KL00] KANE T., LEVINSON D.: Dynamics Online: Theory and
Implementation with AUTOLEV. OnLine Dynamics, Inc., 2000.

[KM98] KOKKEVIS E., METAXAS D.: Efficient dynamic con-
straints for animating articulated figures. Multibody System Dy-
namics 2, 2 (1998), 89–114.

[KP03] KRY P. G., PAI D. K.: Continuous contact simulation for
smooth surfaces. ACM Trans. Graph. 22, 1 (2003), 106–129.

[LT08] LEE S.-H., TERZOPOULOS D.: Spline joints for multi-
body dynamics. ACM Trans. Graph. 27, 3 (2008), 1–8.

[PBP95] PARK F. C., BOBROW J. E., PLOEN S. R.: A lie group
formulation of robot dynamics. Int. J. Rob. Res. 14, 6 (1995),
609–618.

[Plo97] PLOEN S. R.: Geometric Algorithms for the Dynamics
and Control of Multibody Systems. PhD thesis, University of Cal-
ifornia, Irvine, 1997.

[PSE∗00] POPOVIĆ J., SEITZ S. M., ERDMANN M., POPOVIĆ
Z., WITKIN A.: Interactive manipulation of rigid body simula-
tions. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 2000), ACM Press/Addison-Wesley Publishing
Co., pp. 209–217.

[Reu76] REULEAUX F.: The Kinematics Of Machinery: Outlines
Of A Theory Of Machines. Kessinger Publishing L.L.C., White-
fish, MT, USA, 1876.

[Rod87] RODRIGUEZ G.: Kalman filtering, smoothing, and re-
cursive robot arm forward and inverse dynamics. Robotics and
Automation, IEEE Journal of 3, 6 (December 1987), 624–639.

[SR94] SHERMAN M., ROSENTHAL D.:, 1994.
http://www.sdfast.com/.

c© The Eurographics Association 2010.

37




