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Abstract

To simulate multiple fluids realistically many important interaction effects have to be captured accurately.
Smoothed Particle Hydrodynamics (SPH) has shown to be a simple, yet flexible method to cope with many fluid
simulation problems in a robust way. Unfortunately, the results obtained when using SPH to simulate miscible flu-
ids are severely affected, especially if density ratios become large. The undesirable effects reach from unphysical
density and pressure variations to spurious and unnatural interface tensions, as well as severe numerical instabil-
ities. In this work, we present a formulation based on SPH which can handle density discontinuities at interfaces
between multiple fluids correctly without increasing the computational costs compared to standard SPH. The basic
idea is to replace the density computation in SPH by a measure of particle densities and consequently derive new
formulations for pressure and viscous forces. The new method enables the user to select the desired amount of
interface tension according to the simulation problem at hand. We succeed to stably simulate multiple fluids with
high density contrasts without the above described artifacts apparent in standard SPH simulations.

Categories and Subject Descriptors (according to ACM
CCS): I.3.5 [Computational Geometry and Object Model-
ing]: – Physically Based Modeling

1. Introduction

When simulating fluids, it is important to capture interac-
tion effects accurately in order to reproduce real world be-
havior. Focusing on the interaction between multiple fluids,
the challenges are to realistically model miscible as well as
immiscible liquids. In that context, we can observe that sur-
face tension forces produce effects observable in everyday
life. Some examples are the formation of drops, puddles on
a surface, soap bubbles, and separation of dissimilar liquids
such as oil and water.

So far, multiple fluids have been modeled using Eulerian
as well as Lagrangian simulations. Although the strength of
grid-based methods are the smooth and visually appealing
surfaces, difficulties still exist in resolving small-scale fea-
tures on or below the scale of the underlying grid. It is also
clear that these methods still demand more attention to avoid
the severe volume loss encountered, especially when simu-
lating several turbulent liquids [LSSF06, LTKF08]. Another
approach is to use a fully particle-based fluid model such
as SPH (Smoothed Particle Hydrodynamics) where particles

with different physical quantities are used to represent sev-
eral fluids [MSKG05]. In contrast to level set methods, parti-
cle simulations need some effort to achieve smooth surfaces
from the particles, but small-scale features down to single
droplets are modeled implicitly, facilitating and enriching
the simulation of complex interactions between multiple liq-
uids.

In SPH, particles have a spatial distance (smoothing
length) over which their properties are smoothed by a ker-
nel function. Problems arise when rest densities and masses
of neighboring particles vary within the smoothing length,
as in such cases the smoothed quantities of a particle show
falsified values. Such problems can be observed near the in-
terface of multiple fluids with density contrasts. The erro-
neous quantities lead to undesirable effects, reaching from
unphysical density and pressure variations to spurious and
unnatural interface tensions (see for example the left image
in Figure 2), and even to severe numerical instabilities.

In literature, these problems have been mainly described
in computational physics so far, nevertheless, graphics ap-
plications have to cope with similar difficulties. In [Hoo98],
the spurious interface tension due to degraded densities and
pressures near interfaces has been described for the first
time. A similar observation was reported in [AMS∗06],
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Figure 1: Rayleigh-Taylor instability of three fluids with density contrasts simulated with our method using one million parti-
cles. The margins are slightly cut to see the interior of the fluid. In contrast to our method, standard SPH fails to stably simulate
this example.

where it has been shown that the erroneous pressure forces
lead to a gap between two fluids with high density contrasts
preventing important instabilities such as Kelvin-Helmholtz
to evolve. When increasing the density contrast of the flu-
ids, one has additionally to cope with severe numerical in-
stabilities. [CL02] have shown that density ratios of more
than a factor of 10 between two fluids cannot be stably sim-
ulated with SPH and that decreasing the time step does not
reduce or overcome this problem. Alternatively to the stan-
dard density summation, the authors evolve the density over
time according to the SPH equation for continuity (conver-
gence equation) [Mon94]. Although the use of the conver-
gence equation allows to set the initial densities freely, simi-
lar problems are encountered as when calculating the density
directly from the particle distribution [OS03].

Because of the different requirements of computational
physics and computer graphics, we focus on 3D simulations
and visually demonstrate how the unnatural interface ten-
sion of the standard SPH formulation behaves. Our examples
highlight the fact that when using standard SPH a user has
no control over the behavior of multiple fluids and that in the
worst case the simulation results in instability. As one of the
main issues in graphics is to have full control over the simu-
lated materials, we introduce a method which can handle in-
terface discontinuities and eliminates the artifacts described
above. Since our derived equations are simple modifications
of a standard SPH solver, they are easy to implement and do
not negatively affect the performance. In the following, we
propose to compute the density based on the particle num-
ber density and we derive new formulations for the pressure
equation, pressure forces as well as viscous forces. Addi-
tionally, a new interface tension model based on a smoothed
and normalized color field is introduced, adding a fully con-
trollable interface tension to our model. This allows us to
simulate miscible as well as immiscible fluids according to
the simulation problem of interest.

2. Previous Work

Similar to us, [OS03, TM05, HA06] handle density discon-
tinuities at interfaces of multiple fluids. [OS03] have de-
rived an adapted continuity equation and they have com-
pared sound and shock wave simulation results to analyti-
cal solutions. Although the results for these specific appli-
cations are promising, our experiments have shown that the
use of the standard as well as the adapted continuity equation
does not produce stable results for long-term simulations.
This is due to severe density integration errors, especially
when using large time steps and low-order time integration
schemes which is important for the targeted type of appli-
cations. Both [TM05] and [HA06] use a corrected density
summation for their investigations. The former work con-
centrates on miscible flow in fracture apertures with com-
plex geometry and combines a modified SPH flow equation
with an advection-diffusion equation. Tension forces are not
included in their model, and the pressure computation does
only allow the simulation of closed systems or systems with
periodic boundary conditions. The latter work focuses on the
investigation of numerical examples such as droplet oscilla-
tion and deformation in shear flow in 2D and the comparison
to analytical solutions. This work has been extended with an
incompressibility condition in [HA07].

Besides the works already mentioned above, earlier
research on multi-phase fluid simulation methods in-
cludes [KFL00, PSvdW03, HK05], addressing discontinu-
ous properties, and [HK03, GH04, MUM∗06, ZYP06], fo-
cusing on bubbles and foam. While these techniques are
all fully Eulerian, [LTKF08] introduced a level set method
which is coupled with SPH particles representing diffuse
regions such as spray. A shallow water simulation us-
ing SPH particles to represent foam has been presented
in [TSS∗07], and a pure particle simulation based on SPH
to deal with multiple liquids and boiling effects has been
demonstrated in [MSKG05]. In the latter work, density ra-
tios are kept small, reducing the visibility of the problems
coming with multiple fluids. Immiscible fluids have been an-
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Figure 2: In contrast to the new method (right), the use of
standard SPH produces a spurious interface tension and a
gap between two fluids with a density contrast (left).

imated in [MY06] by explicitly detecting colliding particles.

3. Standard SPH Formulation

SPH is a Lagrangian model where the fuid is discretized by
particles carrying field quantities A. At any position r, these
quantities can be evaluated by summing up the contributions
of the neighboring particles j

A(r) = ∑
j

m j

ρ j
A jW (r− r j,h), (1)

where, W (r− rj,h) is the weighting kernel with smoothing
length h, m j the mass of particle j, and ρ j its density. Ap-
plying the SPH interpolation to the density field, we get

ρi = ∑
j

m jW (ri j,h), (2)

where ri j = ri − r j. The pressure p of a particle is then de-
rived from the state equation. One possibility is to use the
pressure equation according to [DC96]

pi = k(ρi−ρ0), (3)

where ρ0 is the rest density of the fluid, or to use the Tait
equation [Bat67]

pi =
kρ0

γ
((

ρi

ρ0
)γ−1). (4)

In the literature, the stiffness k is chosen as high as possible
and γ is set to 7 to enforce low density variations [Mon92].
The pressure and viscous force fields are directly derived
from the Navier-Stokes equations. In [MCG03, MSKG05],

these fields are computed by

Fpressure
i =−mi

ρi
∑

j

m j

ρ j

pi + p j

2
∇W (ri j,h) (5)

Fviscosity
i =

mi

ρi
∑

j

µi +µ j

2
m j

ρ j
(v j −vi)∇2W (ri j,h), (6)

where µ is the viscosity constant of a particle. Alterna-
tively to Equation 5, a pressure force equation according
to [Mon92] can be used:

Fpressure
i =−∑

j
mim j(

pi

ρ2
i

+
p j

ρ2
j
)∇W (ri j,h). (7)

For all equations, we have chosen the weighting kernels to
be as introduced by the authors in their original papers.

4. Adapted SPH Equations for Miscible Fluids

4.1. Problem Description

The standard SPH density summation (Equation 2) becomes
problematic as soon as a particle has neighboring particles
with different rest densities (and therefore different masses,
as we require constant rest volumes throughout the parti-
cles). This is the case close to the interface of two fluids
with a rest density contrast. For particles close to the inter-
face, the computed density is underestimated if they belong
to the fluid with higher rest density, and overestimated oth-
erwise. This happens because the standard SPH formulation
smoothes the density and cannot accurately represent sharp
density changes as it would be desired. This is illustrated in
Figure 3 (a) and (b) and visualized in the left part of Figure 4.
The falsified densities induce wrong pressure values close to
the interface (Figure 3 (c)), leading to a spurious interface
tension and a large gap between the fluids (Figure 2). Even
worse, the erroneous pressure forces induce numerical insta-
bilities at the interface and make it impossible to simulate
multiple fluids with high density ratios.

4.2. Comparison of Pressure Force Equations

Regarding the standard SPH formulation for multiple dif-
ferent fluids, not only the density is problematic but also
the computation of the pressure forces. We compare the two
techniques mainly used in graphics, which are Equation 5
and Equation 7, and derive adapted equations applicable to
multiple fluids later on.

Our experiments have shown that for fluids with small
density contrasts (density ratios of approximately a factor of
2), both pressure force equations result in almost the same
behavior regarding spurious interface tension and the unde-
sired gap between the fluids. When increasing the density
contrast, the use of Equation 5 leads to unstable simulations
which cannot be overcome even by decreasing the time step
of the simulation significantly (Figure 5 (a) upper-left). For
these tests, we used a viscosity coefficient µ of 5Ns/m2 and
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Figure 3: Several physical quantities in a 1D example. Stan-
dard SPH cannot represent actual desired density disconti-
nuities (a), as it smoothes the density over the interface (b).
As a result, erroneous pressures are present near the inter-
face (c). We derive new SPH equations using the particle
density (d), resulting in densities (e) and pressures (f) with
the desired behavior.

Figure 4: Standard SPH density (left) versus our cor-
rected density (right). The two fluids have rest densities of
1000kg/m3 and 100kg/m3. The computed density is color-
coded with yellow being 1000, red 700, blue 400, and black
100, respectively.

a stiffness k of 1000Nm/kg. When using the parameters de-
scribed in [MSKG05] which are a µ of 20Ns/m2 and a k of
20Nm/kg, the simulation of density ratios up to a factor of 10
is feasible, but it comes at the expense of undesired smooth-
ing and compressibility effects. The simulation behaves dif-
ferently when using Equation 7 as it is stable up to a density
ratio of 10 (Figure 5 (a) lower-left). Larger density contrasts
are not stable, and reducing the time step has again no effect
onto the stability.

In Section 4.4, we present the adapted equations for both
pressure force equations and we show that the numerical in-
stabilities and spurious interface tensions are eliminated for
both approaches (Figure 5 (b)).

4.3. Density Model

To handle density discontinuities at interfaces between mul-
tiple fluids with varying rest densities correctly, we propose
to replace the standard density summation given by Equa-
tion 2 by a measure of particle density (sometimes called
number density), similar to [OS03, PTB∗03, TM05, HA06].
The idea is to make each particle treat its neighbors as if they
would have the same rest density and mass as itself. The par-
ticle density δi of a particle is defined as

δi = ∑
j

W (ri j,h). (8)

We compute the adapted density ρ̃i of a particle by multiply-
ing the particle density by the mass of the particle

ρ̃i = miδi = mi ∑
j

W (ri j,h). (9)

For the volume V of a particle we then get

Vi =
mi

ρ̃i
=

1
δi

. (10)

For a single fluid where all particles have equal masses and
rest densities, the presented formulation corresponds exactly
to the standard SPH formulation. But when dealing with
multiple fluids of different densities we can achieve a den-
sity field reproducing sharp density changes at the interface
of the fluids as shown in Figure 4 on the right.

4.4. Adapted Pressure and Pressure Forces

Following [Bat67, Mon94], we use the Tait equation (Equa-
tion 4) to compute the pressure. In this formula, we replace
the standard SPH density ρ by the adapted density ρ̃ intro-
duced above, yielding the following equation for the pres-
sure p̃

p̃i =
kρ0

γ
((

ρ̃i

ρ0
)γ−1). (11)

Consequently, we can derive a new formulation for the pres-
sure force. In the pressure gradient term a = −∇p/ρ of the
Navier Stokes equations we replace ρ by ρ̃ and p by p̃, yield-
ing

a =−∇p̃
δm

. (12)

For the pressure force F pressure = ma we then get

Fpressure =−∇p̃
δ

. (13)

When using the formulation of [MCG03], the pressure force
is derived by applying the SPH rules to ∇p and symmetriz-
ing the equation. In the standard approach, this yields Equa-
tion 5. We derive the adapted pressure force equation simi-
larly, but we again replace ρ by ρ̃ and p by p̃, yielding the
final equation for the pressure force

Fpressure
i =− 1

δi
∑

j

1
δ j

p̃i + p̃ j

2
∇W (ri j,h). (14)
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(a) (b)

[MCG03] adapted [MCG03]

[Mon92] adapted [Mon92]

Figure 5: Two fluids with a density ratio of 10 are simulated
with two different pressure force equations, (a) on the left
using the original formulations, and (b) on the right using
our adapted equations. While the standard formulations re-
sult in instability (upper left: Equation 5) and spurious ten-
sion problems (lower left: Equation 7), these problems can
be overcome by using our modified equations (Equation 14
and Equation 19).

Monaghan’s pressure force equation [Mon92] is derived dif-
ferently from the one in [MCG03]. In Monaghan’s deriva-
tion, the pressure gradient term of the Navier Stokes equa-
tions is symmetrized by applying the quotient rule

∇p
ρ

=∇(
p
ρ

)+
p

ρ2∇ρ. (15)

This formulation uses the density gradient ∇ρ which is
problematic when applying our modified density ρ̃ for mul-
tiple fluids. In contrast to the standard SPH density ρ which
was smoothed over the interface (Figure 3 (b)), ρ̃ is discon-
tinuous (Figure 3 (e)) and the derivative thereof is thus not
defined. Simply inserting ρ̃ and p̃ into Monaghan’s pressure
force equation results in severe instabilities at the interface.

To solve this problem, we have to derive the pressure gra-
dient in a different way. Our approach is to replace the dis-
continuous quantity ∇ρ by a C1 continuous one. We use
Equation 13 and apply the quotient rule. Thus, Equation 15
becomes

∇p̃
δ

=∇(
p̃
δ

)+
p̃

δ2∇δ. (16)

As can be seen, the discontinuous quantitiy ∇ρ is replaced

by the continuous and derivable particle density (Figure 3
(d)). Applying the SPH rules, Equation 16 can be rewritten
to

∇p̃
δ

= ∑
j
(

p̃ j

δ j
+

p̃i

δi
2 δ j)Vj∇W (ri j,h). (17)

In Equation 17, the volume Vj can be replaced by 1/δ j, re-
sulting in

∇p̃
δ

= ∑
j
(

p̃ j

δ j
2 +

p̃i

δi
2 )∇W (ri j,h). (18)

Finally, we get for the pressure force of a particle i

Fpressure
i =−∑

j
(

p̃ j

δ j
2 +

p̃i

δi
2 )∇W (ri j,h). (19)

In [TM05, HA06], this formulation has been derived differ-
ently but adopted in a similar way.

4.5. Adapted Viscous Forces

We derive the adapted viscous forces by replacing the den-
sity ρ by the modified density ρ̃ in the viscosity term
µ∇2v/ρ of the Navier-Stokes equations as well as in the de-
rived SPH formulation. We end up with the following equa-
tion for the viscous force

Fviscosity
i =

1
δi

∑
j

µi +µ j

2
1
δ j

(v j −vi)∇2W (ri j,h). (20)

4.6. Controlling Interface Tension Forces

With the modified density, pressure, and force equations pre-
sented in the last sections we are able to eliminate all spuri-
ous and unnatural interface tension effects which are present
when using the standard SPH method. Now we can introduce
a fully controllable interface tension to our model, enabling a
user to select the desired amount according to the simulation
problem of interest.

Similar to [Mor00], we use a color field to model tension
forces. In contrast to their work and to [MSKG05,HA06], we
model the tension forces such that the free surface remains
unaffected while the desired interface tension between any
two different fluids can be controlled arbitrarily. If desired
by the user, additional tension forces acting at the free sur-
face can be simply added by using the technique presented
in [Mor00]. We define the interface tension force to be

Finter f ace =
1
δi

σκn, (21)

where σ is the tension coefficient defining the strength of the
force and n is the normal on the interface. This force acts to
smooth interface regions of high curvature κ, in an attempt
to minimize the total surface area. In order to compute n and
κ, a color field is defined which is non-zero at all particle
locations, and different color values are assigned to different
fluid types. As suggested in [Mor00], we smooth the color
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field to obtain more accurate estimates of the normals n =
∇c afterwards. In order to avoid tensions at the free surface,
we additionally normalize the smoothed color value. Thus,
the smoothed color value is given by

< c >i=
∑ j

1
δ j

c jW (ri j,h)

∑ j
1
δ j

W (ri j,h)
. (22)

The accuracy of the normal can be improved additionally by
using the difference between neighboring particle colors

ni = ∑
j

1
δ j

(< c > j −< c >i)∇W (ri j,h). (23)

The curvature, which is defined as κ =−∇· n̂, where n̂ is the
unit normal, can be formulated with SPH and our adapted
density as

κ =
−∑ j

1
δ j

(n̂ j − n̂i) ·∇W (ri j,h)

∑ j
1
δ j

W (ri j,h)
. (24)

5. Results and Discussion

To demonstrate the effectiveness of our approach, we simu-
lated several examples with varying resolution ranging from
20k to 1M particles on an Intel Core2 2.66 GHz. The compu-
tational cost for the examples range from 0.2s to 10s per time
step and 20s to 40min to render one frame using the raytrac-
ing approach presented in [SSP07]. If not mentioned differ-
ently, we used Equation 19 to compute the pressure forces.
For all scenes, we used the leapfrog time integration scheme
with constant time step size throughout the simulation. The
time step size was initially determined by using a CFL con-
dition [CFL67]. In our examples, this value was dominated
by the stiffness of the fluid and was between 10e-3s and 10e-
4s. Note that, compared to standard SPH, the time step size
does not have to be decreased when using our method, and
the cost per time step stays the same. Furthermore, our ap-
proach makes the simulation of high density ratios possible
which cannot be stably simulated with standard SPH. An ex-
ample where standard SPH failed in our tests is depicted in
Figure 1, where 1 million particles representing 3 different
fluids with a density ratio of 20 in total were simulated with
our method. The margins are slightly cut to see the interior
of the fluid.

Figure 6 depicts another Rayleigh-Taylor instability with
80k particles representing two fluids with a density ratio of
10. Although we were able to simulate this example using
Monaghan’s pressure equation, the result is suffering from
severe and unnatural interface tension (Figure 6 (a), Fig-
ure 2). Our modifications eliminate the spurious interface
tension effects (Figure 6 (b)), and allows us to explicitly add
tension forces with full control over its strength (Figure 6
(c), (d)), facilitating the simulation of miscible and immisci-
ble fluids.

Figure 7: From left to right: two fluids with a density ratio
of 1, 10, and 100, respectively.

In the last sections, we derived new equations for two dif-
ferent types of pressure force equations which are often used
in graphics, allowing a user to select the desired formulation.
Regardless of the type, the instability and spurious tension
problems of the standard formulation (Figure 5, (a)) can be
overcome by using our new method (Figure 5, (b)). While
the standard SPH technique allows only the simulation of
density ratios up to 2 or 10, respectively (depending on the
type of pressure force equation as we have discussed in Sec-
tion 4.2), our method enables the simulation of fluids with
very high density ratios without having stability problems.
This is demonstrated in Figure 7, where fluids with density
ratios of up to 100 were simulated.

Although our method overcomes the discontinuity prob-
lems at interfaces of multiple fluids, we would like to point
out that other limitations of SPH remain. When dealing with
large density ratios in SPH, the behavior of small, light vol-
umes is negatively affected as the buoyancy is damped in
specific situations. Although viscosity dampens turbulence
and buoyancy to some extent, we have observed that this de-
fect is apparent even without integrating any viscosity into
the SPH model. We believe that this defect results from pres-
sure forces compelling the particles to arrange in a stable
equilibrium lattice structure [LSRS99] (this crystallization
effect is strongly visible in Figure 2). As a result, the buoyant
volumes have to break open the crystallized particle configu-
ration in order to rise. Thus the buoyancy may get weakened,
most notably visible at small volumes and when the system
comes to rest. Although this effect will need some attention
in the future, it is not in the scope of this paper which fo-
cuses on the specific challenge of spurious and unphysical
interface tension effects with the standard SPH approach.
Our proposed solution addresses this identified problem in
such a way that no other aspects of SPH are seriously af-
fected, being it its simulation performance or its advantages
in modeling small-scale features and multiple materials, but
also for that matter other disadvantages remain.
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(a) (b) (c) (d)

Figure 6: Two fluids with a density ratio of 10 at two different points in time. While standard SPH produces unnatural interface
tension (a), our method prevents any spurious tension between the fluids (b). As a result, interface tension forces can be added
with full control, (c) and (d) show a tension strength of σ = 5 and σ = 35, respectively.

6. Conclusion

Our modifications of the SPH formulation corrects for den-
sity problems, spurious and unphysical interface tension, and
instabilities otherwise present at high density contrast inter-
faces. High density ratios can now be simulated stably, and
the fluid behavior can be controlled according to the simula-
tion problem of interest. The modification is easy to imple-
ment and does not require smaller time steps than the origi-
nal method.
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