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Abstract

We introduce staggered poses—a representation of character motion that explicitly encodes coordinated timing
among movement features in different parts of a character’s body. This representation allows us to provide sparse,
pose–based controls for editing motion that preserve existing movement detail, and we describe how to edit coor-
dinated timing among extrema in these controls for stylistic editing. The staggered pose representation supports
the editing of new motion by generalizing keyframe–based workflows to retain high–level control after local timing
and transition splines have been created. For densely–sampled motion such as motion capture data, we present
an algorithm that creates a staggered pose representation by locating coordinated movement features and mod-
eling motion detail using splines and displacement maps. These techniques, taken together, enable feature–based
keyframe editing of dense motion data.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

An important part of a character’s motion is the timing that
specifies how a character moves from one pose to another.
For example, speed of transition is important for conveying
mass or character thought [Las87,Las95]. Simply interpolat-
ing from pose to pose appears over–constrained and unnatu-
ral. Animators have long observed that a motion begins at the
hips and propagates out to the extremities [Las87]. To quote
Disney, “Things don’t come to a stop all at once, guys; first
there is one part, and then another” ( [TJ81], p.59). In addi-
tion, coordinated movement in different limbs is not exactly
aligned in time; non–symmetrical action is another impor-
tant part of believable motion [Com99]. Despite the impor-
tance of timing variation in modeling believable movement,
current animation and motion editing tools provide no sup-
port for working with these relationships as a whole.

Traditional poses represent the geometry of the charac-
ter and are interpolated to create movement. Tools for edit-
ing such geometric poses require a large number of similar

† {patrick|jacky|karan}@dgp.toronto.edu, gleicher@cs.wisc.edu

poses to capture timing variation. If any significant geomet-
ric change needs to be made, each of the similar poses cre-
ated to model the timing variation must be updated. Spline
editors and other knot–editing tools allow users to create
timing variation at a low level by moving individual knots
in the time domain, but making these changes comes with
the cost of losing the ability to geometrically alter coor-
dinated extrema as a single pose. Again, users must work
across multiple frames to introduce any significant geomet-
ric change. In this paper, we introduce staggered poses, a
representation of motion that explicitly encodes timing vari-
ation among coordinated motion extrema; this enables geo-
metric pose–based editing of coordinated extrema that have
varied timing as well as the procedural editing of these tim-
ing relationships.

Staggered poses generalize traditional poses by allowing
key values of different degrees of freedom to be specified at
slightly different times. Relative to a traditional pose (Fig-
ure 1a), this representation staggers the timing, using explic-
itly encoded timing refinements (Figure 1b). The timing re-
lationships among these key values determine how the char-
acter will pass through the extreme values of the pose and
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(a) (b)

Figure 1: Pose–based editing systems align all coordinated
knots in time (a). Staggered poses (b) incorporate a timing
refinement for each knot that encodes timing variation.

are important for modeling believable propagation of force
and intention through a body.

In keyframe animation that represents motion as inter-
polation between sequential poses, each pose specifies one
knot for each degree of freedom, and splines typically spec-
ify the interpolated values between the knots. In practice,
poses are not often explicitly represented, as animators need
to break the temporal alignment of knots to create believable
motion. In typical workflows, animators will quickly create
poses and block them out in time to sketch out a motion
(Figure 2b). The lack of explicit representation of timing re-
finement among the coordinated knots in each pose has a
profound effect on animator workflows. From an interface
standpoint, it is difficult to even locate coordinated extreme
values, even for simple systems (Figure 2c). This challenge
grows in complexity as the number of controls increases. In
addition, adding this timing variation eliminates the presence
of a representative extreme pose at any given time, causing
the coordinated extreme values to no longer be editable as
a single geometric entity. Staggered poses, by encoding ex-
plicit timing relationships among coordinated extreme val-
ues, do allow for geometric pose–based editing of the coor-
dinated extrema after timing has been refined, while retain-
ing the mutual coordination among the knots that is impor-
tant for representing believable transfer of motion from body
part to body part.

As in keyframe animation, we use splines to interpolate
between sequential extreme values and to provide concise
user control over transitions. These splines are defined on
a normalized time domain between the refined times of the
bounding staggered poses (red, in Figure 3a). As we wish
to support the representation of motion with arbitrary high–
frequency detail, we also include a displacement map that
represents an offset relative to the value interpolated by the
spline (green, in Figure 3b). This facilitates the use of stag-
gered poses as a high–level interface for editing coordinated
extreme values in densely–sampled data such as recorded
motion capture data. This also generalizes layered displace-
ment maps [BW95, WP95]; each temporal region between a
pair of adjacent knots can be “interpolated” using a stack

(a)

(b) (c)

Figure 2: When refining motion from a sequence of rough
poses (b) to add timing variation (c), coordination becomes
visually confusing in low–level spline–based tools. Even this
simple oscillating system with four degrees of freedom (a)
quickly becomes disorganized when timing is refined.

of concatenated splines and displacement maps. As inter-
polation does not exactly meet environmental contact con-
straints, a final displacement map represents an inverse kine-
matic solution that modifies the value to meet any such con-
straints. To facilitate direct geometric pose editing in the
presence of timing refinements, we introduce an additional
knot at the time of the pose (Figure 3b); this extra knot and
the extreme value knot are mutually constrained during edit-
ing to maintain continuity.

Overview: We have developed a prototype motion editing
system for articulated character motion that uses a motion
representation based on staggered poses as its foundation.
Users can create motion from scratch, or they can work with
motion captured data that is uniformly and densely sampled.
Pose–based editing is accomplished by making geometric
changes to coordinated extrema as a single unit using exist-
ing forward kinematic or inverse kinematic posing tools. We
allow them to edit coordinated pose extrema directly, which
have slightly different times, or they can directly edit the
true pose at the staggered pose time. Our system mutually
constrains extreme value knots and editing knots to maintain
local continuity. For stylistic control of timing, we provide
tools for adding procedural timing variation using a com-
bination of random values and succession patterns. These
stylistic timing controls are important, as animators often
exaggerate such timing [WH81]. To support the editing of
dense articulated character motion data in this keyframe–like
setting, we have developed an algorithm that locates coordi-
nated extrema in human motion. It combines such extrema
via temporal filtering to create a pose probability signal that
indicates the presence of extreme poses; we use these prob-
abilities in conjunction with a local feature measure based
on curvature to create staggered pose motion representations
that include splines and displacement maps for modeling
transitions.
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(a) (b)

Figure 3: a) The staggered pose representation models tran-
sitions as a composition of splines (red) and displacement
maps (green) to provide low–frequency editing controls that
preserve detail. b) To facilitate direct geometric editing of
poses, we include an additional knot at the pose time; this
knot and the knot at the extreme value are mutually con-
strained to maintain continuity.

1.1. Coordinated Features in Human Motion

When abstracting a motion as a sequences of poses, pose
times are chosen to correspond to perceptual events of sig-
nificant motion change. Animators refer to such poses as
extreme poses and use these poses to specify, conceptually,
the content of a motion (See Williams [Wil01], page 65).
These extreme poses, which are also often used to lay out a
first pass of a new motion, contain the basic information that
specifies the geometric aspects of movement. In the cogni-
tive science literature, it has been found that low–level event
perception in simple motion is correlated to a number of
measurable motion features, most notably peaks of accel-
eration and other differential measures [Zac04]. In human
motion, these features are often coordinated among differ-
ent parts. We have experimented with a variety of motion
features, including maxima of acceleration, directional ac-
celeration, and a scaled variant of directional acceleration,
which we define in Section 4. We use the latter measure, al-
though any of these are effective. Figure 4 illustrates plots
of this measure for different degrees of freedom in a running
motion. The peaks of these plots are directional accelera-
tion features and indicate the presence of direction change.
The coordination among the extrema is apparent in the clus-
tering of the peaks; the local spread indicates timing vari-
ation among coordinated body parts. Character stance near
the center of these clusters, overlaid in Figure 4, is similar to
that in extreme poses used by animators. We have found that
motion with large intentional movement or physical contacts
exhibits the greatest degree of feature coordination and that
passive resting motion such as ambient change in a static
stance has less–prevalent features. This is not surprising, as
resting motion involves significantly smaller forces.

As we use staggered poses to edit existing dense motion

Figure 4: In recorded human motion, local motion features
are temporally correlated to changes in movement of the
corresponding body parts. When many parts of the body
change direction together, many features cluster nearby in
time, which appears as greater peak density and height.

data, we need to choose pose times representative of extreme
stance and locate existing timing variation. Existing pose se-
lection algorithms based on the minimization of global er-
ror [LT01, ACCO05, BZOP07], while good at selecting sig-
nificantly different poses appropriate for illustration, can cre-
ate poses where coordinated features do not exist and the
motion is smooth. Choosing a good set of staggered poses
for geometric editing of existing motion is a similar prob-
lem to choosing control points for geometric representation
of curves or surfaces. Similarly to how important curve and
surface control points are located at geometric features, we
use coordinated motion features to locate staggered poses.
As coordinated motion features have varied timing, we can
explicitly model them with the staggered pose representa-
tion. Our algorithm for creating staggered pose representa-
tions searches for times with many nearby features to create
coordinated staggered pose extrema. It then fits splines and
displacement maps to represent the transitions between the
staggered poses.

Contributions: The core contribution of this paper is a new
representation for motion that explicitly represents relative
timing relationships among coordinated degrees of freedom
(§3). The key advantage of this representation is that it en-
ables new editing tools that allow for a sparse set of con-
trols to be used for editing coordinated degrees of freedom
with timing variation; we introduce these tools in §5. First,
§5.1 describes pose–based editing tools that allow the user
to alter geometric aspects of motion without damaging ei-
ther the temporal relationships among body parts or motion
details. Second, §5.2 introduces temporal editing tools that
alter the timing relationships among degrees of freedom as a
coordinated unit, allowing for procedural control over some
stylistic aspects of movement. In §4, we provide a “reverse–
engineering” method that produces staggered pose repre-
sentations from existing motion, including recorded motion
capture data. Together, these new tools allow for more facile
geometric motion editing, as they free the user from explic-
itly maintaining coordinated temporal relationships during
pose–based editing, while enabling high–level temporal ad-
justments for stylistic control.
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2. Related Work

Explicit control over pose–based timing has been provided
in animation tools. Some techniques allow motion timing to
be specified interactively, given a preexisting set of extreme
geometric pose values [NCD∗00, IMH05]. These methods
treat entire poses as a unit, precluding local control over
timing relationships. Many systems in the literature provide
methods that alter the timing of existing motion [CCZB00,
DYP03, NF05, TM04, WDAC06, MPS06, HdSP07]. While
these methods inspire our approach by showing how stylistic
effects and “higher–level” control can be achieved through
timing manipulation, they do not alter the relative relation-
ships among body parts, which limits the types of effects
that can be achieved. One particular inspiration is Neff and
Fiume’s work, which allows target poses for simulation or
interpolation to have varied timing among the degrees of
freedom in a specific succession pattern [NF03]. Staggered
poses explicitly encode a general class of relative timing re-
lationships and allow for both high–level pose–based editing
that preserves these relationships and motion edits that pro-
cedurally control this relative timing, allowing for a wider
range of effects within a keyframe–style workflow.

Tools that “reverse engineer” recorded motion into ed-
itable representations, such as keyframes for interpolation,
have existed in commercial products, such as Character-
Studio, for at least a decade. In recent years, the research
community has also developed algorithms for extracting key
poses for visualization and compression [LT01, HCHY05,
ACCO05,BZOP07]. However, recorded motion data is more
typically edited by applying spatial deformations as “lay-
ers” of displacement maps†. In the research community,
this form of editing has been explored in a variety of sys-
tems [BW95, UAT95, WP95, LS99]. Staggered poses build
on both approaches. We provide a variant of reverse en-
gineering that constructs a motion representation based on
staggered poses to provide the advantages of pose–based
editing to recorded data. We use displacement maps in a
manner similar to Pullen and Bregler [PB02], but to en-
sure motion details are preserved, and we enforce constraints
similarly to Kovar et al. [KSG02].

3. Representing Motion with Staggered Poses

The staggered pose motion representation models motion
with a sparse sequence of key events; each of these events
is modeled as a staggered pose that captures not only the
values of the character’s control variables, but also the local
timing relationships among them. Geometric editing of the
character’s changing stance is facilitated by the sparseness
of the staggered poses, while stylistic timing refinements are
made by adjusting the explicitly–represented timing.

A staggered pose can contain values for an arbitrary set of

† Also known as motion warps.

control variables. In the case of an articulated figure, these
parameters are the root position and orientation and the lo-
cal joint orientations; we use quaternions for orientations to
support smooth spline interpolation. To simplify notation in
the remainder of this paper, we define transformation con-
catenation and factorization operators ⊕ and 	. These are
equivalent to vector addition and subtraction for translations
and quaternion multiplication and factorization for rotations;
note that the latter are non–commutative. By convention,
a⊕ b applies b after a, and c	 a provides the transforma-
tion b such that a⊕b = c.

Motion is represented as a sequence of staggered poses Sk
with times tk. For each staggered pose, each control variable
i has a value vk,i and timing refinement rk,i. The equivalent
knot in a traditional spline representation is (tk + rk,i,vk,i).
We show these staggered poses in blue in Figure 3a.

To support interpolation control, while retaining the abil-
ity to model arbitrary motion detail, we use splines (cu-
bic in our current system) and displacement maps (Fig-
ure 3a). We define these on a normalized time domain to
provide intrinsic localized time warping when the timing
parameters of the poses are changed. To evaluate a control
variable vi(t) at time t, we identify the neighboring stag-
gered poses Sk and Sk+1, as well as the spline si(t′) and
displacement map di(t′) connecting Sk and Sk+1. Evalua-
tion is then the composition vi(t) = si(t′)⊕ di(t′), where
t′ = (t − (tk + rk,i))/((tk+1 + rk+1,i)− (tk + rk,i)), the nor-
malized time between Sk and Sk+1 for control variable i.
This generalizes to multiple splines and displacement maps
to support layered representations; note that layer order is
important for rotations.

We refer to the character configuration obtained by us-
ing extreme values for each variable in a pose as the non–
staggered pose. Note that the non–staggered pose will never
actually exist in the motion, unless all of the timing refine-
ments rk,i are zero. This is different from the pose at the
staggered pose time, which is obtained by performing inter-
polation to compute the values for all variables at time tk.
Conceptually, a non–staggered pose often appears as an ex-
aggerated version of the pose at the staggered pose time, as
it brings all extrema into temporal correlation. The control
variable values of the pose at the staggered pose time are
generally convex in value relative to the extrema, resulting
in a less extreme appearance.

To support direct editing of the true pose, we include, for
each knot where rk,i 6= 0, an additional editing knot v0

k,i at
the pose time tk (Figure 3b) . In addition to mutually con-
straining the relative timing and values of the editing knot
and the knot representing the extremum, we also constrain
the intermediate spline tangents for continuity. Our tools in-
clude two approaches for geometric pose editing; each ap-
proach directly manipulates a different knot, and the change
is mapped to the other knot. Retiming tools can change the
timing refinement value; as the editing knot has no timing re-
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finement, we instead change its value to maintain continuity.
Details are described in §5.

Spline interpolation of sparse poses cannot represent ar-
bitrary detail. This detail is important when editing pre–
existing motion or for the potential development of algo-
rithms that create local displacement texture. In addition,
motion constraints such as foot plants cannot be modeled
using interpolation without a dense sampling of poses. The
displacement maps are capable of capturing all these forms
of detail. We model constraints on labeled end effectors with
associated joint chains. The constraint enforcement displace-
ment map values for each control variable on which such
constraints depend are nonzero only for times during which
a constraint is active. To avoid discontinuities, we also in-
clude a smoothly–attenuated constraint solution in a small
window adjacent in time. This provides a mechanism for
blending forward and inverse kinematic control. Our local-
ized use of IK constraint enforcement is important, as IK
solutions produce notoriously over–correlated motion when
used outside a constraint setting. Nearly all solvers ignore
neighboring values in time and tend to spread joint adjust-
ment out with a per–joint magnitude that is proportional to
the distance of the constraint to a default end effector po-
sition. As rotation magnitude is correlated among the joints,
IK produces motion extrema that are also correlated in time.

4. Staggered Poses in Dense Motion Data

To support the use of staggered poses for pose–based editing
of existing motion data, we have developed an algorithm that
locates staggered poses and creates a staggered pose motion
representation. Our algorithm takes a top–down approach,
first locating the staggered poses, then fitting splines, and fi-
nally measuring displacement maps that capture remaining
motion detail. As the degree of editing fidelity needed can
vary based on the particular editing problem, we prioritize
these poses using a heuristic measure and allow users to op-
tionally cull the set of poses to produce fewer editing con-
trols. Location of environmental contact constraints is inde-
pendent. Figure 4 includes poses at the times chosen using
this algorithm, which correspond to large–scale change in
movement due to contact and release with the ground.

4.1. Determining Pose Times and Refinements

To locate a sequence of prioritized candidate pose times, we
explicitly look for coordinated extrema and heuristically pri-
oritize the perceptual magnitudes of the motion features as-
sociated with these extrema. We formulate this probabilis-
tically to allow for the incorporation of different measures,
each of which is expressed as a probability pi(t). We mea-
sure a weighted combination of these probabilities, biasing
the motion of limbs with significant movement. We apply
a low pass filter f to combine peaks close in time, creating
an aggregate pose probability signal P(tk). We also include

global evidence measures such as changes in labeled con-
straints as further probability signals, as these indicate the
likely presence of a pose. Maxima of the pose probability
signal are indicative of strong evidence for correlated ex-
trema and thus indicate a good time for a pose to be created.
The peaks of individual pose probabilities pi(t) are indica-
tive of local knot times; temporal differences between these
times and the pose time lead directly to refinement values. To
prioritize poses, we bias them by both P(tk) and the distance
to neighboring peaks. We illustrate these ideas in Figure 5.

Local Evidence Measures: While different local evidence
measures can be used, we curently use the scaled curvature
of local space motion trails. For a single rotation, we create
a motion trail in local space m1( j, t) that traces the endpoint
of a normalized axis toward each child joint j. As this is in-
capable of encoding twist about the limb, we create a second
motion trail m2( j, t), using a normalized axis orthogonal to
the limb axis. Significant changes in the motion of the limb
create regions of high curvature in these motion trails.

We base our measurement of rotational curvature κ(m(t))
on the formulae given by Taubin [Tau95]. The discrete mea-
sure of rotational curvature is κi = 2 ∗ni · ei/||ei||2, given a
normal vector ni of a Frenet frame and an edge vector ei be-
tween two samples i and i+1. This is the approximation rel-
ative to one edge; we weight this measure as computed using
both adjacent edges by the corresponding edge lengths. This
discrete measure has a range of [0,∞). We use a modified
measure: κ̂i = ni · ei/||ei||, which returns a valid probabil-
ity range of [0,1] and preserves the extrema of curvature for
densely sampled data. In addition, this avoids potential prob-
lems when minor joints make tight changes in rotation. The
true measure of curvature can have extremely large values in
tight rotations. Weighting cannot predictably attenuate these
values relative to even slightly less sudden rotation changes
in other joints that have significantly stronger perceptual mo-
tion. The modified measure effectively clamps the extrema
to avoid arbitrarily large values.

Given multiple child joints j and two motion trails for
each joint, we measure the local probability of a rotation
signal as p(t) = maxi∈[1,2], j(κ̂(mi( j, t))). For the translation
signal at the root, we use a single motion trail that traces the
root position. Finally, as discrete measures are sensitive to
noise, we apply iterated Laplacian smoothing; this removes
high–frequency noise while preserving the lower–frequency
motion content. Parameters for this smoothing are depen-
dent on the source of the motion; we set these once for a
given collection by manual adjustment until observed plots
of the curvature signals stabilize.

Global Evidence Measures: We use change in environ-
mental contact constraints as additional evidence for pose
presence. The start and end times of constraints, such as
the moment of contact or release, are indicative of extreme
poses. At these times, the discontinuous change in contact
has a corresponding acceleration that propagates through the
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Figure 5: To locate staggered pose times, we combine signals that measure motion features, filter the result to combine close
peaks into an overall probability, and select times at the peaks of this signal, prioritizing by probability and temporal locality.

body. We model this as a binary signal that is one only at
times that constraints become active or disactive.

Aggregating Evidence: We combine our local and global
probability metrics to create the aggregate pose probability
signal by taking a weighted sum of probability signals and
filtering. Weighting the results allows us to positively bias
signals associated with limbs that are moving most signif-
icantly in space. Applying a low–pass filter allows peaks
of probability to positively bias the overall probability of
adjacent frames; this has an effect of combining closely–
clustered peaks of overall probability into a single peak.
Given a set of pose probability measures pi(t), the overall
pose probability is P(t) = f (∑i wi pi(t)/∑i wi), where f is a
low–pass tent filter; we use a filter width of 0.15 seconds.

Rotation signal weight values consider limb length and
motion magnitude, we set wi = ∑ j |xi−x j||m j|; xi is the
joint position in world space and x j is the world space po-
sition of child joint j. |m j| is the arc length of the motion
trail m j. For constraints, we set wi to a nonzero value when
change in constraint state is indicative of extreme poses.

Prioritized Pose Extraction: Candidate poses are created
at all local maxima of the pose probability signal. We force
the first and last frame of the motion to have poses, as this
is necessary to fully reconstruct the motion. Physical mo-
tion tends to have very sparse poses, as muscle activations
are correlated with contact events. Looser motion often has
more candidate poses, although it remains a sparse set. We
provide users with the option of culling this set interactively.
To favor both regular temporal sampling and poses with high
probability, we define a weight wk, for each pose Sk. This
weight is wk = P(tk)(tk+1 − tk−1); the second half of the
term positively biases poses with more distant neighbors. We
sort these weights wk and display the highest–weighted per-
centage of the candidate poses as specified interactively by
the user. Users can adjust a slider to select a desired num-
ber of high priority poses, specify a time interval of interest
from which to choose poses, or individually select from the
candidate set.

Timing Refinements: We set refinements by searching for
local extrema near the pose time. We only consider those

closer to the given pose than neighboring poses, and we
bound these refinements in time by 0.25 seconds relative to
the pose time. If no extremum exists, we set the refinement
to zero. This temporal bound has been empirically set; all
natural human motion that we have analyzed has a cluster
width of about 0.5 seconds.

4.1.1. Fitting Splines and Displacements

Given a sequence of staggered poses and times (Sk, tk), we fit
spline tangents to the time samples by minimizing squared
distance (for translation) or squared angular distance on
SO(3) (for rotation). The first problem has a least–squares
linear solution. As we use cubic quaternion splines defined
using recursive spherical linear interpolation for rotation,
the second problem requires a nonlinear optimization (recur-
sive spherical linear interpolation) with nonlinear constraints
(unit length quaternions). We simplify the problem to an un-
constrained optimization by modeling the constraints as an
additional term. We then use a general nonlinear optimiza-
tion method and renormalize the quaternions. We refer the
reader to Appendix A for details.

Given an interpolated spline value si(t′) for control vari-
able i at normalized time t′, as well as the actual value vi(t′),
displacement measurement is di(t′) = vi(t′)	 si(t′).

4.1.2. Finding Constraints

A number of algorithms have been developed to detect en-
vironmental contact constraints [BB98, IAF06, LB06]. As
previously noted, these algorithms perform well, but often
make mistakes, and most require manual cleanup [KSG02].
We use a heuristic algorithm in conjunction with interactive
constraint editing tools; details are presented in Appendix B.

5. Motion Editing with Staggered Poses

Our motion editing tools allow users to work directly with
the staggered pose representation at different levels of fi-
delity. Geometric manipulation of pose, described in §5.1,
allows users to work at the highest level of geometric ab-
straction, with preservation of coordinated timing. Our tem-
poral editing tools, described in §5.2, allow users to manip-
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ulate timing refinements as a coordinated unit for stylistic
control. Users can also adjust intermediate control points of
the interpolating splines and the values of the displacement
map for fine–grained control of transitions.

5.1. Geometric Pose Editing

Our geometric pose editing tools allow users to manipulate
coordinated motion extrema with timing variation as a single
unit. By changing the extreme poses that the character passes
through, these tools can be used, for example, to change the
style of a character’s stance, position the limbs in new con-
figurations, or scale the magnitude of a movement. We pro-
vide two approaches to editing coordinated extrema; direct
editing of the pose values at the time of the staggered pose
and direct editing of all extreme values.

Our first approach to geometric editing allows users to
edit the true pose at the staggered pose time. The editing
knots vo

k,i represent these true values, and by mutually con-
straining them to the extreme value knots, editing changes
are applied to the extreme knots as equal changes. This
avoids the introduction of a short, large acceleration. To
enforce this constraint, the updated extreme value knot is
v̂k,i = vk,i⊕ (v̂o

k,i	vo
k,i), given the new value v̂o

k,i of the edit-
ing knot. We illustrate this in Figure 6a.

The second approach is possible with or without the pres-
ence of the editing knots vo

i,k. To directly edit all extreme val-
ues, we collapse timing refinements to zero, allow the user
to edit the non–staggered pose, and then return the refine-
ments to their previous values. The non–staggered pose ap-
pears as a slightly exaggerated version of the true pose at
the staggered pose time, as any parameters with timing re-
finements will have slightly more extreme values. We show
this in Figure 6b. We offset the values of any editing knots
as v̂o

k,i = vo
k,i⊕ (v̂k,i	vk,i) to maintain the mutual value con-

straint. This approach is useful when coordinated extreme
values have meaningful bounds. For example, adjusting a
joint near its rotation limit is easier when the extreme value
is manipulated, in comparison to the less extreme value of
an editing knot.

As many edits will push poses to more extreme or less ex-
treme values, we provide the ability to edit a pose relative
to another pose. This can be any pose of the user’s choos-
ing, such as a neighboring pose for local exaggeration or an
average pose for global exaggeration. The user has control
of a weight value wr that specifies the degree of offset; we
update each value as v̂k,i = vk,i⊕wr(vk,i	 vr

i )
‡, given the

relative pose values vr
i . As this operates on values, it can be

applied to either the pose at the staggered pose time or the
non–staggered pose, with values updated as described above.

‡ For orientations, premultiplication by wr represents a rotation
scale rather than component–wise quaternion multiplication.

(a) (b) (c)

Figure 6: We mutually constrain editing knots and extreme
value knots to maintain continuity. Change in value is copied
from one to the other (a). The non–staggered pose, shown in
orange, appears exaggerated relative to the true pose at the
staggered pose time (yellow). Change in timing refinement
requires spline evaluation and re–creation of the editing knot
to maintain continuity (c).

If users create or delete poses, we update the splines and
displacement maps to maintain the unit–length domain. In
general, this will change the motion, as a change in the knots
of the transition spline will change interpolation evaluation.
To compensate, we update the displacement map to preserve
the global transition values.

5.2. Temporal Editing

Our temporal editing tools allow users to specify how tim-
ing varies among body parts. The simplest form of tempo-
ral editing is retiming staggered poses as a unit; this simply
involves updating tk. This can be effective for changing per-
ceived energy or weight. As refinements, splines, and dis-
placement maps are defined relative to this timing, no other
change to the motion representation is needed.

We provide two tools for applying procedural staggered
timing; one applies succession–based offsets and the other
applies random offsets. As originally presented by Neff and
Fiume [NF03], succession follows an incremental profile
down the limb. Let each control parameter i have a depth
d(i), relative to some user–selected joint. Given a base tim-
ing offset s, we can apply this to a staggered pose as the
refinement update r̂k,i = rk,i + sd(i). We generalize this to
create a new nonlinear succession pattern capable of model-
ing a greater variety of stylistic movement. Our generalized
update is r̂k,i = rk,i + sd(i)l , where l controls how nonlin-
ear the timing is. For l = 1, this is the incremental succes-
sion of Neff and Fiume. Increasing l causes a limb to ap-
pear less constrained, with inertia having a greater apparent
effect on the movement; this creates a cartoony feel to the
timing. For random offsets, we apply the change in timing
as r̂k,i = r̂k,i + rand(−τ,τ); τ is a parameter for bounding
the random timing. Random offsets are appropriate for mod-
eling asymmetric timing among different limbs; we allow
users to select a set of joints and apply the effect only to
those joints. Succession and random timing variation can be
combined to both stagger the timing of different limbs rel-
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(a) (b)

(c) (d)

(e)

Figure 7: . In this example, we apply geometric editing to
the non–staggered poses (a) to change the shape of the arm
swing (b) and nonlinear succession to loosen up the timing.
We show the original motion (c), the motion with only ge-
ometric pose edits (d), and the motion with both geometric
and temporal edits (e).

ative to each other and to apply a succession pattern down
each limb.

As with any retiming algorithm, care must be taken to
avoid large nonlinear time warps, as this can introduce sud-
den acceleration. We warn users when refined times are set
large enough to be closer to a neighboring staggered pose
than the staggered pose with which the knot is associated.

When editing knots are present, we must update them to
maintain local continuity. As shown in Figure 6c, we first
move the editing knot to the global time tk + (r̂k−i− rk,i).
This, however, is not an appropriate time for direct editing
of pose value; therefore, we then return the editing knot to
tk with an updated value. To do this, we first evaluate the
splines and displacements at tk to determine the new edit-
ing knot value v̂o

k,i. We then replace the temporally changed
editing knot with the new editing knot at tk with value v̂o

k,i.
Similarly, if a procedural timing tool requires a new editing
knot to be created, we insert it at tk by evaluating splines and
displacement maps. In each case, we update the displace-
ment map to compensate for changes in spline interpolation.

6. Results and Discussion

The staggered poses motion representation and associated
motion editing tools have been implemented within the com-
mercial animation system Maya. This allows us to use exist-
ing control hierarchies as well as tools that support inverse

kinematic positioning to make geometric edits. In compar-
ison to pose–based editing, staggered poses require fewer
poses to capture important aspects of timing variation, which
allows us to provide sparse geometric controls. In compari-
son to independent splines, staggered poses can be retimed
and changed in geometric value without requiring users to
explicitly manage coordinated timing relationships.

We have used our editing tools to edit a number of mo-
tions, primarily to introduce stylistic effects, such as pose
exaggeration and successive timing. An example edit of a
walking motion is demonstrated in Figure 7. In this exam-
ple, we apply geometric edits to change how the arms are
held in the non–staggered poses. We then apply nonlinear
succcession to loosen up the arm movement. Subtleties of
transition are carried along in the retimed splines and dis-
placement maps. Figure 8 includes two frames from both a
carrying motion and a jump. This motion was edited using
both the geometric tools and temporal tools interchangeably.

An immediate question is how much effect the use of fea-
tures has on editing in comparison to general locations in
time. Feature–centric control is important, as feature posi-
tion and timing have a direct effect on how we identify im-
portant events in a motion [Zac04]. In addition, users must
be cognizant of extreme values, as they often reach believ-
able limits of body shape for a given motion. Editing at
points in time away from features provides only indirect
control over their value. In addition, any manual change in
value at locations away from features is likely to introduce
new motion features, as common interfaces locally modify
values of splines or displacements. Staggered poses, by ex-
plicitly representing the relationship among coordinated ex-
trema, provide concise direct control over the coordinated
features. In comparison to motion editing with layers of
splines and displacement maps, the staggered poses repre-
sentation provides all the power of layered editing, but with
sparse feature–based controls. Layered editing approaches
also require users to specify temporal layering bounds; by
smoothly adjusting all values with respect to neighboring
features, we do not impose such a requirement.

While we use inverse kinematic tools to adjust poses for
geometric editing, we only apply the IK solution to the
sparse set of poses used for interactive editing. This is impor-
tant, as animated IK configurations produce over–correlated
motion. Our use of constraints as additional local IK con-
trols is similar to how animators use blends of forward kine-
matic and IK controls when animating to minimize over–
correlation.

When applying temporal edits to recorded human motion,
care must be taken during motion processing to avoid ar-
tifacts associated with correlated noise in sequential joints.
Many motion capture pipelines filter marker positions and
fit skeletons to these filtered signals. If sequential joints are
nearly linear, as is often the case with the back, fitting algo-
rithms can create small noise contributions to the rotations
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Figure 8: . Additional editing examples: A combination of
geometric and temporal editing creates a stronger anticipa-
tion to a lifting movement and changes how an object is held
(top). Frames from the original motion are light blue and the
edited motion frames are shown in violet. These tools can be
used interchangeably, as was done to create a more expres-
sive landing and leap (bottom).

that can have a perceptual effect on the overall body motion.
However, these will correlate with child joints to approxi-
mately cancel out on descendent joints, and the effect is usu-
ally not perceptible. De–correlating these signals in time re-
moves this cancelation, and short high–frequency artifacts
can appear in descendent joints. Appropriate filtering of ro-
tation data before editing avoids this problem [LS02].

One concept that we have not fully addressed in this paper
is the use of partial poses—these are poses that control only
a subset of the degrees of freedom. These can be important
for creating independent sets of controls to facilitate editing
movement in one part of a body independently of another,
another workflow practice used by animators [Las87,Wil01].
Our system does provide support for partial poses, although
our algorithm for locating staggered poses does not attempt
to partition degrees of freedom.

7. Conclusion and Future Work

In this paper, we have introduced staggered poses, a new
motion representation that explicitly encodes timing vari-
ation among coordinated degrees of freedom. This allows
users to make sparse geometric changes to coordinated ex-
treme values with timing variation and to apply procedural
timing variation, while preserving low–level detail of move-
ment. One key benefit of this approach is that pose–centric
editing can be applied to refined motion without introduc-
ing new undesired movement features and without requir-
ing users to manage coordination in timing variation among
many degrees of freedom. A second benefit is that common
refinements to timing can be procedurally applied, rather
than manually specified through low–level knot manipula-
tion. We have demonstrated the applicability of the staggered

pose motion representation to making high–level geometric
changes or timing changes to coordinated extreme values in
existing motion data, such as recorded motion capture data.
To facilitate this, we have introduced an algorithm that lo-
cates likely extreme poses with timing variation by search-
ing for coordinated motion features.

As part of our ongoing work, we are investigating how
staggered pose representations can be integrated with pose
control graphs and motion graphs as concise descriptions of
dense motion data. Our prototype system has been imple-
mented within the commercial animation system Maya, but
our current interface does not yet support interactive editing
of low–level components such as splines and displacement
maps. We are currently adding these capabilities, as well as
providing a better integration with Maya’s existing anima-
tion toolset; this will allow us to conduct a user study to
evaluate the effectiveness of our editing tools with respect
to existing techniques and to eventually release the tools for
public use. Finally, we are interested in investigating how
coordinated timing variation can be used to refine or analyze
the motion of simulated deformable objects or facial models.

Acknowledgements: We thank MITACS for financial sup-
port and Autodesk for the donation of Maya.

Appendix A: Fitting Orientation Splines

Given a sequence of quaternion orientations qi at corre-
sponding times ti, where t1 = 0 and tn = 1, we fit a cubic
orientation spline q(t), where cubic interpolation is defined
using recursive spherical linear interpolation [Sho85]. De-
note this as q(t) = s(q̂1, q̂2, q̂3, q̂4, t) for control orientations
q̂1, q̂2, q̂3, and q̂4 and time t. For endpoint interpolating
splines, q̂1 = q1, q̂4 = qn, and q̂2 and q̂3, the “tangent” ori-
entations, are free parameters. We model this problem as a
general nonlinear optimization:

f (q̂2, q̂3) = w f f f (q̂2, q̂3)+wc fc(q̂2, q̂3).

The first term, f f adjusts the tangents to fit the spline to the
data samples by minimizing the squared angular difference
on SO(3):

f f (q̂2, q̂3) =
1

n−2

n−1

∑
k=2

cos−1(qk·s(q1, q̂2, q̂3,qn, tk))
2.

The fraction normalizes the sum by the number of sam-
ples to maintain independence between w f and the sample
count. The second term models the unit length constraints
on quaternions that represent orientations. This is

fc(q̂2, q̂3) =
∣∣∣‖q̂2‖2 +‖q̂3‖2−2

∣∣∣ .
We minimize f (q̂2, q̂3) using a general nonlinear op-

timization solver, the Nelder–Mead downhill simplex
method [PTVF92]. We use linear rotation splines as the ini-
tial solution. This optimization will generally not reach zero,
and some error will be contributed by the second term. We
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therefore renormalize q̂2 and q̂3. We have experimented with
different values for w f , our fitting weight, and wc, our con-
straint weight. Setting these to values such that w f = 1000wc
produces quaternions that are close to unity in magnitude
and causes the splines to approximate the data well.

Appendix B: Environmental Contact Constraints

Our algorithm for constraint detection is similar in spirit to
that of Bindiganavale and Badler [BB98]. We incrementally
search forward in time for joints whose world space posi-
tions remain still, within a given tolerance, for a given min-
imum length of time (0.25 seconds). When these conditions
are met, we create a constraint and expand it in time to ac-
count for further frames that remain within the given posi-
tional tolerance. We set our tolerance to be slightly larger
than the apparent error introduced by noise, which we mea-
sure from example constraints that we manually label.

References

[ACCO05] ASSA J., CASPI Y., COHEN-OR D.: Action Synop-
sis: Pose Selection and Illustration. ACM Trans. Graph. 24, 3
(2005), 667–676.

[BB98] BINDIGANAVALE R., BADLER N. I.: Motion Abstrac-
tion and Mapping with Spatial Constraints. In Proceedings of
CAPTECH (1998), pp. 70–82.

[BW95] BRUDERLIN A., WILLIAMS L.: Motion Signal Process-
ing. In Proceedings of SIGGRAPH (1995), pp. 97–104.

[BZOP07] BOUVIER-ZAPPA S., OSTROMOUKHOV V., POULIN

P.: Motion Cues for Illustration of Skeletal Motion Capture Data.
In Proceedings of NPAR (2007), pp. 133–140.

[CCZB00] CHI D., COSTA M., ZHAO L., BADLER N.: The
EMOTE Model for Effort and Shape. In Proceedings of SIG-
GRAPH (2000), pp. 173–183.

[Com99] COMET M.: Character Animation: Principals and Prac-
tice. http://www.comet-cartoons.com/3ddocs/charanim/ (1999).

[DYP03] DONTCHEVA M., YNGVE G., POPOVIĆ Z.: Motion
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