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Abstract

DrivenShape is a data-driven technique that exploits known correspondence between two sets of shape deforma-

tions (e.g. a character’s pose and her shirt). It allows users to drive deformation of secondary object simply by

animating the pose shape. The tool is especially useful when the corresponding shapes are highly correlated and

the space of all the possible shapes is limited. We have successfully used this technique in our recent productions,

and it enabled artists to save on both computation time and man hours.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

DrivenShape is a technique that exploits known correspon-

dences between two sets of shape deformations. It aims at

providing an efficient alternative to expensive deformation

computations (e.g. cloth simulations) by reusing precom-

puted deformations. For example, one may notice that in

tightly fitted clothings, formation of wrinkles and foldings

are highly correlated with the underlying pose (try raising

your arm may times, and observe how your shirts respond to

the pose in very similar ways).

This correlation between the pose and secondary objects

allows us to develop an efficient algorithm to reuse precom-

puted data over and over for new poses. The tool is espe-

cially useful when the shape pairs are highly correlated and

the space of all the possible shapes is limited. Such cases

are common in animation, such as deformation of tight fit-

ting clothing or muscle flexing, where deformation is almost

determined by the pose of the character.

We formulate the problem as that of interpolation. If the

new pose can be interpolated from a set of key poses, then

we can use the same interpolation weights to interpolate the

target (driven) shapes. In this paper, we show how one can
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reuse precomputed shape data once we create appropriate

databases.

For all of our examples, our system runs in real-time, pro-

viding rapid feedback to the animator. This allows users to

indirectly control driven shape (e.g. cloth) while using ani-

mation method of their choice for the pose shape (e.g. char-

acter’s body) deformation. This way, computationally ex-

pensive deformation can be intuitively controlled as if they

were simple deformation tools.

We have used the technique in our recent productions, and

this allowed artists to save both on computer time and man

hours. In many shots, shirts and pants of animated characters

were entirely animated with the presented technique.

1.1. Related Work

Data-driven approaches have been actively explored in re-

cent research work. Examples include a method to precom-

pute dynamic scenes and reconstruct simulations among

cyclic events via model reduction [JF03], and a method

to ease facial animation task by constructing plausible se-

quences of facial expression with a model learned from mo-

tion capture database [LCXS07], and a method to stitch

together and reuse related mesh deformation sequences

[JTCW07], reusing existing deformations on one shape to

other shapes [SP04] and many algorithms to reuse motion

capture data (e.g. [KGP02]).
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Figure 1: Top) we build a database of 5 key shapes, marking correspondence between the shirt(driven shape) and the charac-

ter’s pose. Bottom) When a new (arbitrary) pose shape is given , we compute weights from the key pose shapes, and reconstruct

cloth shape as weighted combination of the key cloth shapes. The graphs illustrate weights from key poses of matching colors.

Conceptually similar to ours, [BLCD02] extract blend-

ing weights from existing cartoon animations through an op-

timization process on affine transformations, and then use

those weights to generate new animation sequences. We

follow similar procedures (we apply the weights computed

from pose shapes to deform secondary objects), but in a dif-

ferent context of shape deformations.

Algorithms exist that exploit user supplied data to as-

sist shape deformations. Among others, the Pose Space De-

formation (PSD) technique [LCF00] explored ways of us-

ing user-supplied example skins while augmenting skeletal-

driven deformation. The MeshIK system [SZGP05] sup-

port mesh deformations (without skeleton) via user-specified

constraints, through non-linear optimizations on meshes.

Weber et al. presents a system similar to ours that use

example shapes in the context of joint-based shape defor-

mations [WSLG07]. Although promising, the method re-

quires specialized skeleton setups for shape deformations.

In production environments, deformations do not always use

skeletons, and are often combined with other methods even

when they do. We do not need any skeletons for the pose

shape.

It is illuminating to note that while the pose shape can be

deformed by any existing technique mentioned above, our

technique can provide a back-end to deform the secondary

(driven) shapes (e.g. complex wrinkle formation of clothing)

that users may not wish to manually animate.

Secondary objects (e.g. clothings and skins) are often

computed by expensive simulations since underlying defor-

mation models are highly non-linear and complex [BW98]

[BMF03]. Alternative methods include techniques to con-

struct cloth/skin’s wrinkles directly by mapping wrinkle

curves on the deformed surface [CGW∗07] [LC04]. One

can also directly capture complex motion of cloth deforma-

tion [WCF07]. Such data can be also edited through a multi-

resolution mesh editing framework [KG06].

We envision that our technique can provide a useful ab-

straction of data acquired and edited from such sources. For

example, if character’s pose was captured together with the

cloth deformation, motion captured data can be re-processed

in our framework and can provide an intuitive animation

framework to the animators. We do not the deformation data

to be subject to real physics. Any artistically carved defor-

mations can be equally abstracted via our system as well. In

practice, we have used both approaches to construct shape

databases.

2. Algorithm

We start by anaylizing reference animations that contain

both pose shape (driver) and its corresponding deformed

(driven) shape. These can come from existing simulations

or keyframed animations. We only require that correspon-

dences between two shapes are known. From these corre-

spondences, we extract N most distinct pairs of key shapes

and store them as a database. Once the database is con-

structed , the pose shape is the only input to the system. Our

system then reconstructs corresponding deformation of the

driven shape.

2.1. Database Construction

Given reference animations, we extract N key pairs that

would sufficiently cover all the possible shape variations.

Often these shapes are at the extrema of underlying defor-

mations. For example, if chracter’s arm is bending along one

axis, the shape at the beginning and the shape at the end of

bending will provide reasonable key shapes as we can inter-

polate all the in-between shapes as weighted combination of

the two shapes.
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Key shapes can be extracted automatically or hand picked.

We provide a tool to automatically extract N most distinct

pairs of shapes based on a greedy process. We first pick

any (usually the rest) shape and add that to the set. We

then expand the set of pose shapes by adding at each step

a shape that’s the most different from all the shapes con-

tained within the set. After N iterations, we have a set of N

shapes that are sufficently different from each other. The dif-

ferences in shapes are measured in a simple euclidean mea-

sure - ∑ ‖ Pi − Qi ‖
2, where Pi and Qi are corresponding

vertex positions of the two shapes to compare.

We also allow users to directly pick the pair of shapes

they want to add. Usually, users start with small number of

automated picks (5-10) and add to the database as they wish.

These additions are mostly out of artistic need. For example,

similar poses can often result in significantly different shapes

for the driven shape (e.g. due to non-linearity in simula-

tions). In that case, decision on whether to add these features

becomes totally an artistic call. In practice, we found about

10-20 shapes are usually sufficient to cover entire space of

pose deformation without generating too much visual qual-

ity degradation.

Once key shapes are extracted, these are stored as a

database. At this point, reference animations are no longer

needed. Note that one can create as many databases as

needed. In our experience, users have created dozens of

databases, varying simulation parameters such as friction on

collision object, stiffness of cloth, etc.

2.2. Weight Computation

For a database of N shape pairs, let us call the pose shape Pi,

and the driven shape Di, for 1 ≤ i ≤ N. We find the weights

from the given target pose shape Ptarget such that blending

the pose shapes Pi with these weights would result in a shape

as close as possible to Ptarget . Then, using these weights, we

compute the desired driven shape Dtarget as a weighted com-

bination of driven shapes Di from the database. See Figure

1.

In a mathematical form, we wish to minimize ‖ A ∗w−
b ‖2, where A’s column vectors are filled with vertices of Pi,

w is the weights, and b is a column vector with vertices of

Ptarget .

We seek for wi that minimizes the above norm, resulting

in the following equations.

G = A
T ∗A (1)

g
T = −2∗A

T ∗b (2)

b0 = b
T ∗b (3)

‖ A∗w−b ‖2= w
T ∗G∗w+g

T ∗w+b0 (4)

, subject to

∑
k

i=1
wi = 1 (5)

0 ≤ wi ≤ 1 (6)

.

Equation 6 ensures that we avoid artifacts from nega-

tive weights. We solve the above equations using the stan-

dard quadratic programming (QP) techniques [GI83]. Once

weights are found, one can plug these values to create the

new deformation Dtarget = ∑wi ∗Di .

2.3. Correction of Residual Displacement

Figure 2: The D̃target = ∑wi ∗Di (blue) matches the blended

pose P̃target (wire), but penetrates the given pose target

Ptarget (yellow)

The basic algorithm outlined above works well for lin-

ear interpolation problems. However, for highly deformable

characters, a simple linear blend would not match the target

shape. Let P̃target = ∑wi ∗Pi. In general, Ptarget 6= P̃target .

Note that when the targeted pose shape is outside the

space of shapes spanned by original pose shapes, we get pro-

jection of weights onto the convex space of the shapes, due

to the non-negativeness constraint we impose in 6. In other

words, we do not extrapolate the shape - we rather clamp

when the input is out of bounds. This has a desirable ef-

fect of keeping interpolated shapes always plausible, but the

blended shape Dtarget may not match Ptarget well. Notice-

ably, this introduces an artifact. For example, driven shape

could penetrate the pose shape (Figure 2).

For improved accuracy, we use the residual displacement

from the blended pose shape P̃target to the target pose shape

Ptarget . Note that if we apply the same weights to the driven

shape (D̃target = ∑wi ∗ Di), the resulting blended (driven)

shape D̃target will be roughly in line with P̃target as long as

the two deformations are correlated, since our weights are

always interpolative. So, by mapping a residual from P̃target

to Ptarget to D̃target , we can get a new deformation for the

driven shape Dtarget that is close to the target pose Ptarget .

The mapping function F(P̃target → Ptarget) can be defined

in many ways. Requirements to ensure smooth transfer of

deformation include 1) the funciton be continuous inside

and outside the pose shape within reasonable distance 2)

the function be smooth. The problem is well addressed in

previous work such as Harmonic Coordinates [JMD∗07],
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Mean Value Coordinates [JSW05] and Deformation Trans-

fer [SP04].

Although these existing techniques may produce superior

results, they require substantial setup time before deforma-

tion transfer can be computed. In our case, the deformation

mapping should be updated on the fly (since the rest config-

uration is P̃target that changes every frame). For our purpose,

significant degradation in performance is less favored since

it defeats our purpose - providing fast alternative to simula-

tions.

Noting that the residual artifacts diminish as we add more

examples to the database, we settle for a simple proximity

based deformation transfer algorithm. The presented tech-

nique works well for reasonable amount of deformation

transfer. For limitations and more discussions, see Figure 8

and section 4.1.

2.4. Proximity-based Deformation Transfer (Figure 3)

Figure 3: For each point of D̃target (blue), we find the closest

point (yellow line) on P̃target (gray). Then we apply displace-

ment from P̃target (gray) to Ptarget (red), to get the final shape

Dtarget (green).

For each point di in D̃target , we find the closest triangle

from P̃target and construct a coordinate system centered at

the closest point cpi, with y-axis being the triangle normal,

and another axis being one edge of the triangle. Local coor-

dinate dlocal
i is then computed by projecting di on the coor-

dinate system.

Given a barycentric coordinate of cpi, we can reconstruct

the point on Ptarget , and similary the triangle normal and co-

ordinate system. We use dlocal
i to reconstruct the d

target
i on

the new coordinate system. The most time consuming step

is the closest point computation, and we have optimized it

with spatial acceleration structure (e.g. k-d tree) on the pose

shape. The whole process then runs in real-time for shapes

with over 5000 vertices.

2.5. Penetration Handling

Although D̃target is usually consistent with P̃target , small pen-

etrations do occur since deformation models of D̃target and

P̃target are not completely correlated. Our proximity based

transfer has an added bonus for this situation, since collision

detection can be easily done by checking if y (normal) value

of dlocal
i is negative. If so, we simply set it to zero (or any

added offset value) before we reconstruct d
f inal
i to remove

the penetration.

2.6. Avoiding Cross-Talk in the Transfer

When the pose shape has two sections that are orignally apart

and get close to each other (e.g. legs crossing each other),

the deformation transfer can come from the wrong side and

points in the driven shapes can incorrectly snap to the wrong

area in the pose shape (Figure 4). These are solved by sup-

plying additional mapping to exclude such unnecssary bind-

ing. Users controls which area of driven shape maps to which

area of the pose shape by assigning groups or painting (e.g.

left pants should only map to left leg).

Figure 4: Left: when right foot is close to the left leg, some

points on the pants are incorrectly transferred by left leg.

Right: by assigning additional mapping, the points now find

the closest points only on the right leg, eliminating the arti-

facts.

2.7. Normalizing Animation Data in a Moving Frame

In a practical environment, animation data almost always

have global transformations in it. Normalizing such transfor-

mations yields the best results for the DrivenShape (Figure

5). When we construct the database, we find such a trans-

formation matrix Ti for each pose Pi either from animation

data or orientation fitting(e.g. [HS88]). We apply its inverse

T−1
i to all the vertex data. When a new target pose Ptarget

associated with Ttarget comes in, we first normalize the pose

by T−1
target , and use it to find weights. The driven shape target

Dtarget is constructed in this normalized frame, and the final

result is transformed back by Ttarget .

3. Examples

For validation purposes, we constructed a database of 6

key shapes for the cylinder example (Figure 6), and recon-

structed the cloth shape using the pose that was contained

in the original animation/simulation (see accompanied video

as well). Although results do not exactly match, the re-

constructed shapes are visually plausible. In this example,
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Figure 5: Left) key shapes are extracted from animations in

a moving frame. Note that weight computation is dominated

by the translation. Right) after nomaliztion, we find a better

pair of shapes to interpolate, yielding more realistic results.

DrivenShape runs at 40 fps, whereas orignal simulation took

about 2 secs per frame on a single CPU AMD 1.9Ghz ma-

chine. Cloth mesh had about 5000 vertices.

Figure 7 shows snapshots of shapes at a number of poses

and show how adding more examples improve the recon-

structed results. This example uses the normalization steps

described in section 2.7.

Figure 8 shows what happens when there is not enough

pose in the database. Upon small deviation off the pose

space, the system reasonably constructs the cloth shape by

mapping the deformation from the closest pose to the target

pose via the deformation transfer. When the pose deviation

is too extreme, the deformation transfer fails and indicates

that we need more examples there.

Finally, Figure 9 and accompanied video show produc-

tion examples that used DrivenShape. In these productions,

we could eliminate the need for cloth simulations for about

70 percent of the shots and these shots were completely ani-

mated with DrivenShape.

4. Limitations and Discussions

4.1. Artifacts of Linear Blending

It is known that linear blending of shapes are not best suited

for rotational deformation such as in articulated characters

[WSLG07], and thus generate artifacs such as shrinking

shapes when blending shapes of different orientations.

As databases become reasonably dense (10-20 examples),

artifacts diminish (since rotational deformations can be ap-

proximated by piecewise linear deformation), so this has not

been a major issue in our production environments. Never-

theless, we anticipate that there may be better approaches.

We tried computing the delta shapes (local cooridnates) of

the driven shape w.r.t the pose shape, and blend the deltas to

reconstruct the final driven shape. This approach failed since

a single delta becomes ambiguous as most key pose shapes

are at the extrema of deformation space. Globally smooth de-

formation transfer [SP04] may help in this regard. We could

transfer deformation of driven shape from each key pose to

the target pose and then perform blending in the more local-

ized space. Note that this is essentially an inverse deforma-

tion transfer problem (instead of going from rest to deformed

shape, we need to go the other way). A better shape interpo-

lation scheme such as PSD [LCF00] can also help in getting

better intermediate shapes.

Another approach is to gain knowledge in the non-linear

deformation model of pose shape, either by construction

[WSLG07] or by optimization [BLCD02]. However, we

are not yet aware of appropriate fitting technique that can

be used to fit interpolation weights of non-linear deforma-

tions models to arbitrary shapes in an efficient (hopefully

real-time) way.

4.2. Secondary Dynamics

DrivenShape does not try to recover any secondary dynam-

ics. This is often not an issue for tightly fitted clothings,

but when secondary motions are desired, we lose substan-

tial amount of realism.

In our experiences, users turn to regular simulations when

secondary motions are desired. Even in this case, Driven-

Shape rapidly provides the initial draping of cloth - a pro-

cess that often consumes significant amount of simulation

time by itself. Often users partition the geometry and ap-

ply DrivenShape to stiffer parts, and simulate more dynamic

part (such as the hood of a sweater) with regular cloth simu-

lations.

In other instances, users would animate clothing with

DrivenShape as a rapid first pass, and use the result to drive

actual cloth simulations (e.g. with spring constraints, etc.).

This saved man hours spent on tweaking cloth parameters

needed to get the right look. Hence, we believe that Driven-

Shape can be a useful tool to jump start cloth control tech-

niques such as [BMWG07].

5. Conclusion and Future Work

The proposed framework works the best when we have a

few characters with clothings, and those characters appear in

many (in our cases, over 200 shots) animations. This greatly

justifies the time spent on creating the database since new

animations can be interactively created without the need for

expensive simulations.

One useful extension will be to apply the technique to dif-

ferent characters with different proportions. These expanded

set of databases could then prove useful for massive simula-

tion of crowd characters with clothing, or interactive appli-

cations such as games.

One may be able to extend the shape matching to the prob-

lem of motion matching. In this case, the notion of pose

would include motion history (N frames of pose deforma-

tion would make one pose in the database) as well as his-

tory of deformed geometry. Then, we could apply similar
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Figure 6: We compare reconstructed results to original simulations. Top row) reconstructed cloth by DrivenShape. Bottom row)

original simulations. Note that reconstructed shape has temporally smoother feature than orignal simulations. This is the most

evident in the third figure from the left, where reconstructed wrinkles appear earlier than in the orignal simulation.

techniques to compute weights. This will heavily expand

the size of database, so efficient data reduction/pruning tech-

nique may be necessary.
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Figure 7: Comparison on number of key shapes in the database. For each shape pairs, left side is the reconstructed shape and

the right side is original simulations. Top row) N = 4 Middle Row) N = 6 Bottom Row) N = 12.

Figure 8: (Top : left) The given pose (gray) is outside the space spanned by known poses. We find the closest pose (red), and

Middle) blend cloth shape on the pose. Right) We transfer the blended shape to the target shape. (Bottom : left) the pose is

farther away from the pose space, and DrivenShape still copes with the pressure. Right) oops. DrivenShape finally gives up!

Figure 9: Our recent productions used DrivenShape extensively. No simulations were done except for database creations, and

these shots were finalized without additional simulations. Image courtesy of 20th Century Fox and Rhythm and Hues.
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