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Abstract
Motion capture data is now widely available to create realistic character animation. However, it is difficult to
reuse without any additional information. For this reason, annotating motion data with kinematic constraints is a
clever step to ease further operations such as blending or motion editing. Unfortunately, prior automatic methods
prove to be unreliable for noisy data and/or lack genericity. In this paper, we present a method for detecting
kinematic constraints for motion data. It detects when an object (or an end-effector) is stationary in space or is
rotating around an axis or a point. Our method is fast, generic and may be used on any kind of objects in the
scene. Furthermore, it is robust to highly noisy data as we detect and reject aberrant data by using a least median
of squares (LMedS) method. We demonstrate the accuracy of our method in various motion editing contexts.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Animation

1. Introduction

One popular technique to rapidly produce high-quality char-
acter animations ismotion capture: the animation is recorded
by mimicking the motion of an actor. The final animation
must hence be carefully planned before the capture is done
and is only valid for characters having the same proportions
as the live performer. For this reason, these animations are
not directly reusable and need additional adaptations.

Constraint-based motion editing methods are designed
to this end. They are useful to change existing motion se-
quences while retaining as many of their initial characteris-
tics as possible. These latter are often made explicit using
kinematic constraints. In particular, kinematic constraints
emphasizing that an object (or an end-effector) is station-
ary in space or is rotating around an axis or a point are often
of interest for the animators. Unfortunately, manually defin-
ing all of them is tedious and time-consuming. For exam-
ple, manually defining all the footplants of an animation may
take minutes if not more. Consequently, it is often desirable
to automatically detect such constraints in order, for exam-
ple, to simplify and speed up the motion editing process.

Methods relying on the position, velocity and/or accelera-
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Figure 1: A break dance motion. Robust constraint detec-
tion on raw motion capture data. Only active constraints are
shown. Though the motion is highly noisy, our algorithm ac-
curately detects when the hands should be planted.

tion of the end-effectors are clearly not reliable when work-
ing with motion capture data (see Figure 2).

Indeed, derivatives tend to amplify noise in signals. Other
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Figure 2: Velocity-based methods are not reliable for noisy
motions. In this example, the character is climbing a lad-
der (see accompanying video). Red dots: unlabeled frames.
Green dots: manually labeled frames. Blue dots: mislabeled
frames. Due to the presence of outliers in the data, the ve-
locity threshold is overestimated to ensure that we detect at
least all the expected constraints (green dots). This leads to
a high number of mislabeled frames (blue dots).

methods relying on learning algorithms lack genericity and
are difficult to generalize to any object or end-effector.

This paper presents a fast and generic method that auto-
matically detects kinematic constraints in potentially highly
noisy data such as motion capture. Our algorithm success-
fully identifies events like a character body part being sta-
tionary, rotating around an axis or even rotating around a
point. The animator is then free to edit or remove them to
retain only those of interest. We use these constraints to edit
long motion sequences though they are generic enough to
index a database or for motion blending.

In the next section, we review previous work. Section 3
gives an overview of our algorithm. Sections 4, 5, 6 and 7
detail its important stages. Section 8 presents several appli-
cations and experimental results. Finally, we present future
work and conclude this paper in Section 9.

2. Previous Work

Very few constraint detection techniques can be found in
the literature. A classical application of constraint detection
is the identification of footplants in motions. Several meth-
ods [KSG02, MKMA04] use specific thresholds on the po-
sition and velocity of the feet to detect them. Similarly, Lee
et al. extend this approach in [LCR∗02] to body segments
and objects in the environment. They consider their relative
velocity and position to decide whether a body segment is in
contact with an object in the scene or not. However, these
methods are not reliable for motion capture animation as
derivatives tend to amplify noise in signals.

Bindiganavale and Badler [BB98] present a method map-
ping the animation of a subject being motion captured to
another character having different proportions. They essen-
tially focus on motions containing interactions with the sur-
rounding environment. To avoid checking for collisions at
every frame of the animation, they suppose that potential
frames of interest are located at the zero-crossing of the
second derivative of the end-effectors’ trajectories. For the
same reason as above, this method is then not reliable when
working with noisy signals. Moreover, they require manu-
ally tagged-objects to avoid checking for collisions with all
the objects in the scene.

Liu and Popović [LP02] propose a generic method
based on geometric transformation properties to extract con-
straints. This method is dedicated to keyframed animation
and is not intended to be applied to motion capture as it does
not consider noise in the data.

Finally, Ikemoto et al. [IAF06] use a learning method to
automatically identify footplants and correct them using IK.
This method is dedicated to footplants detection and would
be difficult to generalize to any kind of effectors and/or con-
straints. Indeed, detecting another type of constraints would
require to build a new kind of feature vectors and to train the
classifier once more. Additionally, they rely on the charac-
ter’s leg configuration to detect a footplant. As a result, they
need to annotate frame examples for each different footplant
configuration, however much noise is present in the data.
Conversely, we detect a constraint by modeling the noise in
the data itself. Thus, for the particular case of footplant de-
tection, we only need one example constraint to detect all
the remaining constraints even for very dissimilar footplant
configurations.

All these methods prove to be unreliable for noisy signals
and/or lack in genericity to be applied in other contexts. In
this paper we present an algorithm for constraint detection
for motion capture animation. We demonstrate, using several
examples, that our algorithm is generic, robust and that it
accurately detects constraints even on highly noisy data.

3. Method Overview

In this section, we first define specific terminology used in
this paper. We then give an overview of our algorithm.

3.1. Definition and Terminology

Instantaneous Constraints

Given an object O, an instantaneous constraint represents all
the points in space remaining stationary with respect to some
displacement D from one frame to the next. Instantaneous
constraints then last only one frame. These sets of stationary
points may be of dimension:

• 3: all the points in space are stationary i.e. O is stationary.
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• 1: all the points on a line in space are stationary i.e. O is
rotating around an axis.

Note that no rigid transformation such that a single point or
all the points belonging to a plane remain stationary in space
exists [Cha30].

Kinematic Constraints

A kinematic constraint (called constraint in the remainder)
is built by merging neighboring instantaneous constraints.
In particular, point constraints result from the merging of
several intersecting line constraints. As a result, constraints
may be of three types depending on whether object O is:

• Stationary in space. This is a space constraint.
• Rotating around an axis. This is a line constraint.
• Rotating around a point. This is a point constraint.

A constraint only occurs during a specific time interval
[kcbegin,kcend]. Sliding constraints are more difficult to
detect and necessitate complex minimization techniques.
Hence, we do not consider this group of constraints as we
mainly focus on interactive techniques.

Template Constraints

A template constraint is an example constraint provided
by the animator to help the algorithm compute important
thresholds. We call these thresholds the noise pattern as they
are fundamental to take into account the noise in the data.

Outliers

The main feature of our algorithm is to deal with noise in
the data. While Gaussian noise is handled using thresholds,
it is much more difficult to deal with outliers. An outlier is an
observation that lies outside the overall pattern of a distribu-
tion [MM99]. In our case, we consider outliers over the dura-
tion of template constraints only: an outlier is a frame which
is annotated as being part of a template constraint while it
should not. It is important to note that outliers usually in-
duce an important bias into the results and must be taken
into account when present in the data.

3.2. Algorithm Overview

To simplify the exposition and without loss of generality, we
focus our discussion on detecting constraints related to a sin-
gle animated object in the scene. Given an animated object
O, the steps of the algorithm are as follows (see Figure 3):

1. Discretize the animation.
2. Express the results as displacements between each pair

of consecutive frames.
3. Project the displacements onto the σε-space. This

space characterizes the noise for each displacement.
4. Compute the noise pattern, given a small set of tem-

plate constraints. This step is critical as it must consider
outliers to avoid detecting too many constraints.

5. Generalize the noise pattern to the rest of the data to
detect all the instantaneous constraints.

6. Merge neighboring instantaneous constraints as much
as possible to end up with meaningful constraints.

Steps 4. and 5. may be repeated for long motion sequences
to hierarchically refine the noise pattern. Steps 1. and 5. are
trivial and are thus not explained further. Steps 2., 3., 4. and
6., are respectively detailed in Sections 4, 5, 6 and 7.
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Figure 3: Main steps of our constraint detection algorithm
(see Section 3.2 for an explanation of steps 2, 3, 4, 5 and 6).
(a) Discretized animation. (b) Associated displacements. (c)
Displacements after projection onto the σε-space. (d) Close
up view of (c) after computation of the noise pattern. Red
dots: original data. Green dots: template constraints. Blue
dots: detected instantaneous constraints.

4. Displacement computation

Given a discretized animation of an objectO, we first express
its motion as displacements from one frame to the next. Let
us consider Wi the matrix transforming, at frame i, a point
p expressed in the O local coordinate system to xi expressed
in the world coordinate system. Then we have:

x̂i =Wip̂ (1)
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with x̂i (resp. p̂) the homogeneous coordinates of point xi
(resp. point p). Similarly, at frame i+1, we have:

ˆxi+1 = Wi+1p̂

= Wi+1Wi
−1Wip̂

= Wi+1Wi
−1x̂i

= Dix̂i

with Di the displacement of point x between frame i and
frame i+1. This formulation is similar to the one presented
in [LP02]. It represents the displacement of O from frame i
to frame i+ 1 with respect to the world coordinate system.
However, this global formulation is not efficient when work-
ing with noisy data, as it introduces a bias in subsequent
stages of the algorithm. Indeed, in this formulation, Di di-
rectly dependents on the global position of O at frames i and
i+1. We therefore reformulate the problem by expressingDi
with respect to the previous position of O:

Di = Wi
−1Wi+1Wi

−1Wi

= Wi
−1Wi+1

This local formulation is more accurate as it is independent
of the global position of O. We give a demonstration in Ap-
pendix A and we show numerical comparisons between both
formulations.

5. Projection onto the σε-space

We now have all the displacements Di related to O. Each Di
is then expressed as a σε-point in the σε-space. Given the
displacement Di of O from frame i to frame i+ 1, we need
to find all the points p remaining stationary in space. More
formally, we have to solve:

Dip̂ = p̂ (2)

(Di − I4)p̂ = 0 (3)

where p̂ is the homogeneous coordinates of a point p ex-
pressed in the O local coordinate system. In our framework,
we are interested in finding all the solutions of Equation (3).
Suppose that Di represents a rotation along an axis Raxis. It
is clearly not satisfactory to know that a specific point (actu-
ally lying on the axis Raxis) is stationary is space: we need
to precisely determine Raxis. As a consequence, a straight-
forward method finding a single solution (the least squares
for example) is not usable. As Di is a rigid transformation, it
can be rewritten as:

Di =
[
Ri ti
03 1

]
(4)

with Ri and ti respectively denotating the rotation and trans-
lation components of Di. We then reformulate Equation (3):

(Ri − I3)p+ ti = 0 (5)

Ap = −ti (6)

Using a singular value decomposition, we express A as:

A = UΣVT (7)

with U and V being 3×3 orthogonal matrices and Σ a 3×3
diagonal matrix [PTVF92]. Matrix Σ contains the 3 singu-
lar values σi=3,2,1 (with σ3 > σ2 > σ1) of A. To completely
solve Equation (6) we must compute:

1. The particular solution pparticular = −VΣ−1UT ti to Equa-
tion (6).

2. A basis of the nullspace of A.

Matrices U and V span the range and the nullspace of
matrix A. In particular, the columns of V, whose same-
numbered elements σi are zero, are an orthonormal basis for
the nullspace ofA [PTVF92]. The complete solution (i.e. the
instantaneous constraint) is then given by the particular solu-
tion pparticular and the basis of the nullspace of A. However,
no σi is exactly zero due to the noise. High-dimensional in-
stantaneous constraints are then difficult (actually impossi-
ble) to detect. Moreover, Equation (6) sometimes produces
a solution while it should not. We then need to additionally
check whether the current solution is relevant or not. To do
so, we compute the residual error ε of Equation (6) as:

ε = ‖Apparticular + ti‖ (8)

Depending on ε, we then determine whether the solution is
acceptable or not.

In summary, we can influence the solution of Equation (6)
using two values:

• σmax: threshold below which the singular values are ze-
roed. The number of null singular values defines the di-
mension of the instantaneous constraint.

• εmax: residual error of equation (6) (after zeroing the sin-
gular values smaller than σmax) below which the solution
is acceptable.

σmax and εmax are called the noise pattern in the remainder.
Each Di is then expressed as a σε-point Pσε (σ3, ε3,σ1, ε1)
with εi the residual error of Equation (6) after zeroing the
singular values equal or smaller than σi. The problem of de-
tecting instantaneous constraints can then be reformulated
as estimating the noise pattern (σmax, εmax) so that we effec-
tively detect the expected instantaneous constraints.

6. Noise Pattern Computation

An accurate estimation of the noise pattern is crucial for
the algorithm. Indeed, if it is underestimated (resp. overes-
timated), the algorithm detects too few (resp. too many) in-
stantaneous constraints. Several issues then arise:

• It is not reasonable to ask the animator to provide such
parameters as the results tend to be difficult to foresee.

• These parameters are very different from one motion to
another.
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• Motions containing outliers are common. In such a situa-
tion, the estimation is much more arduous.

Hence, we rely on the animator to provide a small set of tem-
plate constraints to help the algorithm calibrate the noise pat-
tern and then accurately detect the instantaneous constraints
for the entire animation.

The user specifies a template constraint with a time inter-
val [tbegin, tend] and a dimension (i.e. space, line or point).
A template constraint may then be thought of as a set Sσε
of σε-points Pσε i for which we precisely know in advance
the solution of Equation (6). A straightforward and naive
method is to first estimate σmax so that the solution of Equa-
tion (6) is of the required dimension for all Pσε i. Then, εmax
is computed to accept the solution at frames where a tem-
plate constraint has been specified. In other words, if the
template constraint is:

• A space constraint then σmax ≥σ3i and εmax ≥ ε3i for all
Pσεi in Sσε .

• A line or a point constraint then σmax ≥ σ1i and εmax ≥
ε1i for all Pσεi in Sσε . Indeed, a point constraint is the
intersection of a set of line constraints.

However, such an approach is not efficient as it leads to an
overestimation of σmax and εmax in the presence of outliers.
Suppose that a template space constraint is specified be-
tween frame a and frame b. Suppose also that during this
period of time, the frame i (with a < i < b) is an outlier.
Then, σmax is overestimated to ensure that the solution of
Equation (6) is of dimension 3 for the specified interval and
particularly for the intervals [i−1, i] and [i, i+1]. Moreover,
overestimating σmax directly leads to an overestimation of
εmax as well. Finally, the algorithm tends to detect too many
instantaneous constraints over the rest of the animation.

We therefore introduce in the next section a robust tech-
nique to identify and reject outliers during the computation
of the noise pattern.

6.1. Robust Computation of the noise pattern

In this section, we focus our discussion on the estimation of
the noise pattern based on a single template constraint only.
In the next section, we detail how this method is extended to
handle several template constraints simultaneously.

We introduce a robust computation of the noise pattern
based on the least median of squares method (LMedS)
[RL87] to identify and reject potential outliers. Let SV be
the set of singular values containing:

• All the σ1 of the σε-points if the specified template con-
straint is a line constraint.

• All the σ3 of the σε-points if the specified template con-
straint is a space constraint.

We want to find all the σi ∈ SV that significantly deviate
from the others:

1. For each σi ∈ SV , we compute the median of its squared
residuals Mi as:

Mi = med r
2
i (σi,SV)

where r2i (σi,SV) are the residual errors associated to σi
with respect to each element in SV .

2. We retain Mmin (and its associated singular value σmed)
the smallest Mi among all the Mis.

3. We then compute the robust standard deviation as:

σ̂ = 1.4826[1+5/(NSV −1)]
√
Mmin

where Mmin is the minimal median and NSV the number
of singular values.

4. Finally, we reject all the singular values such that:

r2i (σi,SV) ≥ (2.5σ̂)2

The reader can refer to [RL87] for a more detailed explana-
tion of the LMedS method. It is important to note that in our
case, we do not perform any random selection as the space of
possible solutions is SV . We can therefore afford to estimate
all the possible solutions as they are relatively few. σmax is
then the maximum of all the good singular values remain-
ing in SV . Finally, εmax is estimated to detect the expected
instantaneous constraints using the same method. Figure 4
shows a comparison of both methods. While our LMedS

First footplantSecond footplant

Template constraint

LMedS method

Naive method

Figure 4: Footplant detection. Red: given template con-
straint. Green: detected constraint using the naive method.
Blue: detected constraints using our LMedS method.

method accurately detects two footplants, the naive method
yields to an erroneous estimation by merging both footplants
into a single one. Figure 5 shows the associated numerical
values. The animation represents two footplants. While first
frames are part of the first footplant, they should not be re-
tained during the computation of the noise pattern. As a re-
sult, the naive method only detects one footplant. Using the
LMedS method, this bias is avoided and our method pro-
duces accurate results.

6.2. Dynamic Noise Pattern

Given a single template constraint, we can estimate the noise
pattern for the whole motion. However, if the motion is long,
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Figure 5: Comparison between naive and LMedS methods.

it often contains different actions. Hence, a correct noise pat-
tern for a particular part of the motion may not be suited for
the entire animation. We thus propose to represent the noise
pattern as cubic interpolation splines instead of static thresh-
olds. For each given template constraint, we robustly com-
pute the associated noise pattern. Each noise pattern then de-
fines two control points: one control point for the first frame
of the template constraint, and one for its last one. We then
ensure that the noise pattern is accurate for the period of time
defined by a given template constraint. Figure 6 shows in
particular the σmax curve of a noise pattern. This dynamic
noise pattern provides a flexible way to define different val-
ues of thresholds depending on the time in the animation.
Subsequent additions of template constraints may refine the
curves associated with the noise pattern ensuring a more ac-
curate instantaneous constraint detection.

7. Constraint Merging

Given a list of instantaneous constraints, we need to com-
pute the minimal set of constraints. For instance, if during n
consecutive frames there are n− 1 space instantaneous con-
straints, we want to replace all of them by a single space
constraint that lasts for n frames. We thus need to merge in-
stantaneous constraints as much as possible by checking for
two requirements:

• In space: we need to check for some kind of spatial in-
tersection between both constraints. For example, two line
constraints may intersect and result in a line if they are the
same, in a point otherwise.

• In time: we need to check whether the constraints are
temporally connected or not: the last frame of the first
constraint corresponds to the first frame of the second one.
For example, two line constraints may intersect in space
but occur at different times (they are separated by several
frames). In this case, they should not be merged.

Two constraints have to meet both requirements to be
merged. The concept of spatial intersection between space,
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Figure 6: An example of the σmax curve of a dynamic noise
pattern. Red: Maximum singular values. Blue: The σmax
curve associated to the dynamic noise pattern.

line or point constraints is self-explanatory and is not ex-
plained further. Note that the noise pattern additionally con-
tains two values:

• αmax: threshold below which two lines are parallel.
• distmax: threshold below which two lines or points are in-

tersecting.

7.1. Temporal Connection

When the motion contains outliers, the method presented in
the previous section discards the associated frames during
the instantaneous constraint detection step: they are com-
puted with respect to thresholds that are estimated as con-
servatively as possible to avoid detecting too many of them.
It may then happen that a constraint is artificially sliced in
spite of being continuous in time.

Therefore, we consider a frame tolerance when checking
whether two constraints are temporally connected or not.
This frame tolerance is defined once and then used what-
ever the situation. When two constraints are spatially close to
one another, it is likely that even though they are temporally
disconnected, they represent the same constraint: hence the
frame tolerance should be large enough. Conversely, when
two constraints are spatially far from each other in space, it is
likely that even though they are temporally disconnected by
only a few frames, they represent two different constraints:
hence, the frame tolerance should be small. As a result, we
use the following function to define the frame tolerance be-
tween two constraints:

ftol : R → N

ftol(d) = �Fmax exp−
d log(Fmax )
dmax 	

See appendix B for more details on the construction of ftol.
We can then robustly compute whether two constraints are
temporally connected or not.
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8. Experimental Results

In this section, we present experimental results of our con-
straint detection algorithm. Each example is presented in
the accompanying video. The final system is integrated into
AliasTM/Maya 5 as plug-ins and MEL scripts. The first sec-
tion shows constraint detection with synthetic data. We then
show results using raw motion capture animations. Detected
constraints are finally directly enforced using our motion
editing method presented in [LB04]. Note that no detected
constraint is edited before applying our motion editing algo-
rithm.

8.1. Synthetic Data

The initial animation contains 141 frames. It represents two
dice rolling on a dice carpet. We detect space constraints,
line constraints and point constraints on both dice. The re-
sults are shown in the accompanying video. Note that as we
work with synthetic animations, the noise is not as large as in
motion capture animations. We thus use minimal thresholds
to handle numerical errors instead of template constraints.

8.2. Walking Around Motion

In this example, the character walks around during 400
frames (16 seconds). We detect the space constraints asso-
ciated to both feet. We only need to specify 2 template con-
straints: one for each foot. The results are shown in Figure
7. All the constraints are correctly detected. However, some

Figure 7:Walking around motion. The constraint detection
is applied to both feet. The constraints are displayed in green
when they are active and in blue otherwise.

may be ambiguous. When the character turns, footplants are
quite difficult to identify even for the animator. In this case,
it may happen that the detected constraints are too short or
even sliced while they maybe should not. Refining the dy-
namic noise pattern using one additional template constraint
solves this problem.

8.3. Climbing a Ladder

The original animation is composed of 300 frames (12 sec-
onds). We detect the space constraints associated to the feet
and the hands. We only need to specify 4 template con-
straints: one for each foot and one for each hand. The results
are shown in the accompanying video. This example is par-
ticularly useful to highlight an important issue when dealing
with animations that potentially interact with the environ-
ment. Indeed, it is very difficult to edit the animation without
precisely viewing when the character should have the hands
or the feet planted on the ladder. Hence, our constraint de-
tection algorithm is also of great help to the animators as it
shows all the important instants of the animation at once. As
a result, future positioning of a ladder is much easier.

8.4. Break Dance

The original animation is composed of 380 frames (15 sec-
onds approximately). In this example, we show the detected
space constraints associated to the hands only. We only need
to specify 2 template constraints: one for each hand. The re-
sults are shown in Figure 1. Note that it is very difficult to
compare the results of our algorithm with potentially perfect
results as even animators sometimes have difficulties agree-
ing when manually labeling frames. However, the last three
constraints may not be of interest for the animators though
they represent instants in the animation when the hands are
as stationary as during the template constraints.

8.5. Computational Cost Consideration

The detection algorithm may be divided into three parts:
the displacements computation and projection, the noise pat-
tern computation and finally, the constraint detection itself.
The following table summarizes benchmarks performed on a
Pentium 4, 3.2 GHz, 1Go RAM. Computational costs are for
one template constraint and one object only. Our algorithm

Motion (section) 8.2 8.3 8.4
Nb frames 400 300 380

Nb template constraints 2 4 2
Nb detected constraints 27 23 19

Displacements + projection 13.1 9.6 12.4
Noise pattern computation 18.1 13.7 25.7
Constraint detection 2.8 2.2 2.9

Total 34 25.5 41

Table 1: Costs (in ms) for the examples mentioned so far.

is very fast. Indeed, given a template constraint, it takes be-
tween 25.5 ms and 41 ms to label between 300 and 400
frames. Our algorithm is therefore totally suited for inter-
active applications as animators are able to perform several
constraints detection by changing requirements (i.e. type of
needed constraints, minimal duration, etc) with immediate
visual feedback.
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8.6. Validation

To validate our results, we first hand-labeled each motion.
Then, for each manually-defined constraint, we created a
template constraint and applied our constraint detection al-
gorithm. Table 2 shows the minimum and the maximum
number of mislabeled frames. In the vast majority of the

Motion (section) 8.2 8.3 8.4
Nb frames 400 300 380
Body part Left toe Left toe left hand

Nb constraints 13 6 9
Constrained frames 186 182 96
Min/Max error 9/87 5/95 20/44

Table 2: Minimum and the maximum number of mislabeled
frames for the examples of table 1.

cases we have tested, our algorithm performs well. Note
that it is difficult to perfectly label a motion according to
some manual labeling because first and last frames of con-
straints are often ambiguous and difficult to hand-label. In
some rare cases however, our algorithm produces inaccurate
results. When a template constraint is too short in duration
or is defined during a part of the motion that does not con-
tain noise, then our algorithm cannot efficiently deduce the
needed noise pattern. As a result, the expected constraints
may not be correctly detected. However, this problem rarely
occurs because “useful” template constraints are easily iden-
tified. Moreover, in case the results are not good enough and
thanks to the dynamic noise pattern estimation, adding a new
template constraint usually leads to accurate results.

9. Discussion and Conclusion

This paper presents a fast method for kinematic constraint
detection for motion capture data. In particular, we have in-
troduced a robust approach to detect and reject potential out-
liers in the data. Given a small set of template constraints, we
thus automatically compute a dynamic noise pattern model-
ing the noise in the data using cubic splines. This noise pat-
tern is then applied to the whole animation to detect instanta-
neous constraints. These latter are finally merged when pos-
sible to produce a minimal and meaningful set of constraints
for the animator.

Distance Between Constraints. The frame tolerance ftol
needs to compute a distance between constraints. This dis-
tance may only consider the information available at that
time. However, it depends on the dimension of the con-
straint: a space or line constraint position is defined by a
translation and a rotation, whilst a point constraint is only
defined by a position. We may then define two distance func-
tions: one considering the Euclidean and angular distance
when working with space and line constraints and another
one only considering the Euclidean distance when working

with point constraints. However, this solution is far from be-
ing practical: indeed, two different distance functions imply
two different frame tolerance functions. For genericity pur-
poses, we therefore chose to only use the Euclidean distance.

Small Periodic Motions. Small periodic motions may be
hardly handled by our algorithm directly. Indeed, if we con-
sider a quick tap of the foot for example, two problems may
then arise. Firstly, the constraints are to small in duration to
be efficiently detected. Secondly, the duration between two
successive constraints is so short that our method may tend
to merge them into a single one. A simple solution to over-
come these problems may be to simply slow down the mo-
tion (by diminishing the frame rate for example) before de-
tecting the constraints.

Manual Intervention. Animators actively participate in the
detection process, as some detected kinematic constraints
may not be of interest for the user. The final result is thus
left to the appreciation of the animator who confirms, ad-
justs and/or deletes constraints depending on their subjective
“importance”. Moreover, as we aim at working with highly
noisy data, it is difficult to compare our results with manually
labeled constraints. Indeed, some constraints are very diffi-
cult to clearly identify and lead to diverging opinions even
among animators.

Visualization According to animators’ suggestions, the vi-
sualization could be improved in several ways. We only rely
on the vertices of an object to display its related space con-
straints. Instead of displaying point clouds, we could sim-
ply duplicate the mesh itself. Furthermore, using different
constraint colors depending on their associated object could
help the animators to rapidly recognize important and useful
constraints depending on the task they have to do. Finally,
visually numbering the constraints could also give useful in-
sights on the important instants of the animation.

Template Constraints One key point of our method is that
it computes suitable thresholds using template constraints
only. They must then be chosen so that they “represent” the
characteristics of the noise in the motion. “Wrong” template
constraints then lead to inaccurate results. However, while
our LMedS method detects and rejects outliers in the raw
data, it also detects wrong labeling from the user. As a result,
even if a template constraint is not perfect in duration, our
algorithm implicitly corrects it offering the animators more
flexibility and more robustness during manual labeling.

We have shown in this paper that our method is fast,
generic and robust even when the original motion is ex-
tremely noisy. Our constraint detection method has been
used in particular to enforce environmental constraints using
our motion editing framework detailed in [LB04]. Finally,
we believe that this method can be successfully applied in
many other contexts such as database indexation or motion
blending for example.
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Appendix A: Global versus Local Displacement Matrix
Formulations

Let us consider the case of a space constraint. All the sigmas
in matrix Σ are thus small enough to be considered as zero.
The particular solution pparticular corresponding to Equation
(6) is then:

pparticular = [0,0,0]T

The residual error is ε = ‖Apparticular + ti‖ = ti.
Let us consider Wi the matrix transforming, at frame i, a

point p expressed in the O local coordinate system to xi ex-
pressed in the world coordinate system. Wi can be decom-
posed as:

Wi =

[
RWi tWi

03 1

]
(9)

In the next sections, we demonstrate that the residual error is
modified by translation when using the global formulation.
Conversely, the residual error is independent of the anima-
tion global position when using the local formulation.

Global Formulation of the Residual Error

Using the global formulation, the displacement matrix Di is
expressed as:

Di =Wi+1Wi
−1 (10)

Using Equation (9), we can rewrite Di as:

Di =
[
RWi+1RWi

T tWi+1 −RWi+1RWi
T tWi

03 1

]
(11)

The residual error is then defined as:

ε = ti = tWi+1 −RWi+1RWi
T tWi (12)

Adding a translation component tΔ toWi andWi+1 gives:

tWi → tWi + tΔ
tWi+1 → tWi+1 + tΔ

Then, if ‖tΔ‖ tends to infinity, we have:

lim‖tΔ‖→∞
‖ε‖ = lim‖tΔ‖→∞

‖tWi+1 + tΔ −RWi+1RWi
T (tWi + tΔ)‖

= lim‖tΔ‖→∞
‖tWi+1 + tΔ −RWi+1RWi

T tWi −RWi+1RWi
T tΔ)‖

= lim‖tΔ‖→∞
‖tΔ −RWi+1RWi

T tΔ)‖

= lim‖tΔ‖→∞
‖(I3 −RWi+1RWi

T )tΔ)‖
= lim‖tΔ‖→∞

‖CtΔ)‖
= ∞

Figure 8 clearly shows that the more the character moves
away from the origin, the higher the residual error.
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Figure 8: Residual errors using the global formulation. The
character starts walking, then runs and finally walks. Left:
The character initial position is [0,0,0]. Its final position is
[17,0,0]. Right: The character initial position is [−17,0,0].
Its final position is [0,0,0].

Local Formulation of the Residual Error

Using the local formulation, the displacement matrix Di is
expressed as:

Di =Wi
−1Wi+1 (13)

Using Equation (9), we can rewrite Di as:

Di =
[
RWi

TRWi+1 RWi
T (tWi+1 − tWi )

03 1

]
(14)

The residual error is then defined as:

ε = ti = RWi
T (tWi+1 − tWi ) (15)

Similarly, we add a translation component tΔ to Wi and
Wi+1. If ‖tΔ‖ tends to infinity, we then have:

lim‖tΔ‖→∞
‖ε‖ = lim‖tΔ‖→∞

‖RWi
T (tWi+1 + tΔ − tWi − tΔ)‖

= lim‖tΔ‖→∞
‖RWi

T (tWi+1 − tWi )‖

= ‖RWi
T (tWi+1 − tWi )‖

= constant

Figure 9 shows that our formulation is independent from the
global position of the animation in the scene: for the same
walking motion, we obtain same residual error.

Appendix B: Construction of ftol

Given some distance d(kc1,kc2) between two constraints
kc1 and kc2, we construct a function ftol : R −→ N return-
ing a number of frames with respect to the chosen distance
d(kc1,kc2). We require ftol to respect the following condi-
tions:

ftol(d) =

{
Fmax if d = 0
0 if d > dmax

(16)

Fmax is the maximum number of frames allowed between
two constraints in order to consider them as temporally con-
nected. dmax is the maximum acceptable distance between
two constraints in order to consider them as temporally con-
nected. We additionally want ftol to severely decrease when
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Figure 9: Residual errors using the local formulation. Left:
The character initial position is [0,0,0]. Its final position is
[17,0,0]. Right: The character initial position is [−17,0,0].
Its final position is [0,0,0].

the parameter d increases: we then consider the functions of
the form f (d) = �α exp−βd	 where �x	 is the floor function.
Using the first condition of Equation (16), we have:

ftol(0) = Fmax with Fmax ∈ N
�α	 = Fmax
α ∈ [Fmax,Fmax +1[

We finally choose α = Fmax

Then, using the second condition of Equation (16), we have:

ftol(dmax) = 1

and ftol(dmax+) = 0

We then have:

Fmax exp
−βdmax = 1

Which leads to β =
log(Fmax)
dmax

Finally the frame tolerance function ftol is defined as:

ftol : R → N

ftol(d) = �Fmax exp−
d log(Fmax )
dmax 	

Figure 10 shows the frame tolerance function ftol.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

9

10

Distance (meters)

Fr
am

e 
to

le
ra

nc
e

Figure 10: Frame tolerance with Fmax = 10 frames and
dmax = 10 centimeters.
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